-->

Circles

Question
CBSEENMA10008292

A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° from 60°, as he walks towards the building. Find the distance he walked towards the building.

Solution
Let AC be the observer of height 1.5 m and BE be the building of height 30 m. The angle of elevation from the eyes of observer increases from 30° to 60° to the top of the building.

Fig. 9.8.

i.e.,    ∠ECD = 30° and ∠EFD = 60°.
Let CF = x m and FD = y m
In right triangle EDF, we have
tan space 60 degree space equals space DE over DF space open square brackets table row cell DE space equals space BE minus BD end cell row cell equals 30 minus 1.5 end cell row cell equals 28.5 space straight m end cell end table close square brackets
rightwards double arrow space space space space space square root of 3 equals fraction numerator 28.5 over denominator straight y end fraction
rightwards double arrow space space space space space space straight y space equals space fraction numerator 28.5 over denominator square root of 3 end fraction equals fraction numerator 28.5 square root of 3 over denominator 3 end fraction space space space space... left parenthesis straight i right parenthesis
In right triangle EDC, we have
tan space 30 degree space space equals space space DE over DC
space space space fraction numerator 1 over denominator square root of 3 end fraction space equals space fraction numerator 28.5 over denominator DF plus CF end fraction
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction space equals space fraction numerator 28.5 over denominator straight y plus straight x end fraction
rightwards double arrow space space straight x plus straight y equals 28.5 square root of 3
rightwards double arrow space space space space space straight y space equals space 28.5 square root of 3 minus straight x space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
fraction numerator 28.5 square root of 3 over denominator 3 end fraction space equals space 28.5 square root of 3 space minus straight x
rightwards double arrow space space straight x space equals space 28.5 square root of 3 minus fraction numerator 28.5 square root of 3 over denominator 3 end fraction
equals space fraction numerator 3 left parenthesis 28.5 square root of 3 right parenthesis minus 28.5 square root of 3 space over denominator 2 end fraction space equals fraction numerator 85.5 square root of 3 minus 28.5 square root of 3 over denominator 3 end fraction
equals fraction numerator 57 square root of 3 over denominator 3 end fraction equals 19 square root of 3 space straight m
Hence, distance (CF) equals space 19 square root of 3 space straight m

Some More Questions From Circles Chapter