-->

Circles

Question
CBSEENMA10008293

From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Solution

Let CD be the transmission tower of height h m. fixed on a building of height 20 m.
i.e.,    CD = h m
and    BC = 20 m.
The angles of elevation of the bottom C and top D of the transmission tower are 45° and 60° respectively.
i.e.,    ∠BAC = 45°
and    ∠BAD = 60°
In right triangle ABC, we have

tan space 45 degree space space equals space BC over AB
rightwards double arrow space space space space 1 space space equals space 20 over AB
rightwards double arrow space space AB space equals space 20 space straight m space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle ABD, we have
tan space 60 degree space space equals space BD over AB
rightwards double arrow space space square root of 3 space equals space fraction numerator 20 plus straight h over denominator AB end fraction
rightwards double arrow space space AB space equals space fraction numerator 20 plus straight h over denominator square root of 3 end fraction space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii) we get
20 space equals space fraction numerator 20 plus straight h over denominator square root of 3 end fraction
rightwards double arrow space 20 square root of 3 space equals space 20 plus straight h
rightwards double arrow space straight h space equals space 20 square root of 3 space minus 20
space space space space space space space space equals space 20 open parentheses square root of 3 minus 1 close parentheses
Hence, height of the transmission tower is 20 left parenthesis square root of 3 minus 1 right parenthesis end root straight m

Some More Questions From Circles Chapter