Mathematics Part Ii Chapter 9 Differential Equations
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part Ii

    Differential Equations Here is the CBSE Mathematics Chapter 9 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Differential Equations Chapter 9 NCERT Solutions for Class 12 Mathematics Differential Equations Chapter 9 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12033080

    At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, – 3). Find the equation of the curve given that it passes through ( 2, 1).

    Solution
    Let y = f(x) be equation of curve.
    Now dy over dx is the slope of the tangent to the curve at the point (x, y)
    From the given condition, 
              dy over dx space equals space 2 open parentheses fraction numerator negative 3 minus straight y over denominator negative 4 minus straight x end fraction close parentheses space space or space space space dy over dx space equals space 2 open parentheses fraction numerator straight y plus 3 over denominator straight x plus 4 end fraction close parentheses
    Separating the variables,  we get,
                               fraction numerator 1 over denominator straight y plus 3 end fraction dy space equals space fraction numerator 2 over denominator straight x plus 4 end fraction dx
    Integrating, integral fraction numerator 1 over denominator straight y plus 3 end fraction space dy space equals space 2 space integral fraction numerator 1 over denominator straight x plus 4 end fraction dx
    therefore space space space log space open vertical bar straight y plus 3 close vertical bar space equals space 2 space log space open vertical bar straight x plus 4 close vertical bar plus straight c                                  ...(1)
    Since curve passe through (-2, 1)
    therefore space space space log space open vertical bar 1 plus 3 close vertical bar space equals space 2 space log space open vertical bar negative 2 plus 4 close vertical bar space plus space straight c
therefore space space log space 4 space equals space 2 space log space 2 space plus straight c space space space rightwards double arrow space space space space 2 space log space 2 space space equals space 2 space log space 2 plus space straight c space space rightwards double arrow space space straight c space equals space 0
therefore space space from space left parenthesis 1 right parenthesis comma space space log space open vertical bar straight y plus 3 close vertical bar space equals space 2 space log space open vertical bar straight x plus 4 close vertical bar
or space space log space open vertical bar straight y plus 3 close vertical bar space equals space log space open vertical bar straight x plus 4 close vertical bar squared
therefore space space space space open vertical bar straight y plus 3 close vertical bar space equals space open vertical bar straight x plus 4 close vertical bar squared space space space or space space space straight y plus 3 space equals space left parenthesis straight x plus 4 right parenthesis squared
    which is required equation of curve.

    Question 2
    CBSEENMA12033081

    Find the equation of the curve passing through the point open parentheses 0 comma space straight pi over 4 close parentheses whose  differential equation is sin x cos y dx + cos x sin y dy = 0.

    Solution

    The given differential equation is
                            sin x cos y dx + cos x sin y dy = 0
      or          sin x cos y dx =  - cos x sin y dy
    therefore space space space space space space space space space fraction numerator negative sin space straight y over denominator cos space straight y end fraction dy space equals space fraction numerator sin space straight x over denominator cos space straight x end fraction dx
    Integrating integral fraction numerator negative sin space straight y over denominator cos space straight y end fraction dy space equals space fraction numerator sin space straight x over denominator cos space straight x end fraction dx
    therefore space space log space open vertical bar cos space straight y close vertical bar space plus space log space open vertical bar cos space straight x close vertical bar space equals space log space straight A space space space space space space space rightwards double arrow space space space space space log space open vertical bar cosx space cosy close vertical bar space equals space log space straight A
therefore space space space open vertical bar cosx space cosy close vertical bar space equals space straight A space space space space space space space space space space space space space space space rightwards double arrow space space space space cos space straight x space cos space straight y space equals space straight c space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Since the curve passes through open parentheses 0 comma space straight pi over 4 close parentheses
    therefore space space space cos space 0 space cos space straight pi over 4 space equals straight c space space space space space space rightwards double arrow space space space 1 space cross times space fraction numerator 1 over denominator square root of 2 end fraction space equals space straight c space space space space space rightwards double arrow space space space straight c space equals space fraction numerator 1 over denominator square root of 2 end fraction
    therefore space space from space left parenthesis 1 right parenthesis comma space cosx space cos space straight y space space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space space which space is space required space equation.

    Question 3
    CBSEENMA12033082

    Find the equation of a curve passing through the point (0, 0) and whose differential equation is y' = ex sin x.

    Solution
    The given differential equation is
                y' = ex sin x  or   dy over dx space equals space straight e to the power of straight x space sin space straight x
    Separating the variables,  we get,
                           dy space equals space straight e to the power of straight x space sinx space dx
    Integrating,  integral space dy space equals space integral straight e to the power of straight x space sinx space dx
    therefore space space space space space space space space space space space space space space space space space space straight y space equals space fraction numerator 1 over denominator 1 plus 1 end fraction straight e to the power of straight x space left parenthesis sinx minus space cosx right parenthesis space plus space straight c
                                     open square brackets because space space integral straight e to the power of ax space sin space straight b space straight x space dx space equals space fraction numerator 1 over denominator straight a squared plus straight b squared end fraction straight e to the power of ax space left parenthesis straight a space sin space bx space minus space straight b space cos space bx right parenthesis close square brackets
    therefore space space space space space straight y space space equals 1 half straight e to the power of straight x left parenthesis sinx space minus space cosx right parenthesis space plus straight c                         ...(1)
    Now curve passes through (0, 0)
    therefore space space space 0 space equals space 1 half straight e to the power of 0 left parenthesis sin space 0 space minus cos space 0 right parenthesis space space plus straight c space space space rightwards double arrow space space space 0 space equals space 1 half cross times space left parenthesis 0 minus 1 right parenthesis space plus straight c
    therefore space space space space space space space space straight e space equals space 1 half
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space 1 half straight e to the power of straight x left parenthesis sinx space minus space cosx right parenthesis space plus space 1 half comma space which space is space required space solution. space
    Question 4
    CBSEENMA12033083

    The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

    Solution
    Let v be volume of spherical balloon of radius r.
     therefore space space space space space space space straight v space equals space 4 over 3 πr cubed                                  ...(1)
    From given condition,
                   dv over dt equals space straight k space space or space space straight d over dt open parentheses 4 over 3 πr cubed close parentheses space equals space straight k                open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space fraction numerator 4 straight pi over denominator 3 end fraction. space 3 space straight r squared space dr over dt space equals space straight k space space space or space space 4 πr squared dr over dt space equals space straight k
    Separating the variables and integrating, we get.
    4 straight pi integral straight r squared space dr space equals space straight k space integral space dt space space space or space space space 4 space straight pi space straight r cubed over 3 space equals space straight k space straight t space plus straight c              ...(2)
    Now t = 0 when r = 3
    therefore space space space space 4 straight pi fraction numerator left parenthesis 3 right parenthesis cubed over denominator 3 end fraction space equals space straight k cross times 0 space plus space straight c space space space rightwards double arrow space straight c space equals space 36 space straight pi                ...(3)
    Again   t = 3  when r = 6
    therefore space space fraction numerator 4 straight pi over denominator 3 end fraction left parenthesis 6 right parenthesis cubed space equals space 3 straight k space plus space 36 straight pi                                    open square brackets because space space of space left parenthesis 3 right parenthesis close square brackets
    therefore space space space space 288 space straight pi space equals space 3 space straight k space plus space 36 space straight pi space space or space space 3 space straight k space equals space 252 space straight pi
    therefore space space space straight k space equals space 84 space straight pi
    Putting straight k space equals 84 space straight pi comma space space straight c space equals space 36 space straight pi space in space left parenthesis 2 right parenthesis comma space we space get
                      fraction numerator 4 straight pi over denominator 3 end fraction straight r cubed equals space space 84 space straight pi space straight t space plus space 36 space straight pi space space space or space space space straight r cubed over 3 space equals space 21 space straight t space plus space 9
    therefore space space space straight r cubed space equals space 63 space straight t space plus space 27 space space space space rightwards double arrow space space space space straight r space equals space left square bracket 9 space left parenthesis 7 space straight t space plus space 3 right parenthesis right square bracket to the power of 1 third end exponent
    Question 5
    CBSEENMA12033084

    In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs. 1000 double itself ?

    Solution
    Let P be the principal at any time t. According to the given problem,
                                       dP over dt space equals space open parentheses 5 over 100 close parentheses space cross times space straight P
    therefore space space space space space space space dP over dt space equals space straight P over 20
    Separating the variables, we get
                        dP over straight P space equals dt over 20
    Integrating,  integral dP over straight P equals space integral dt over 20
    therefore space space space space space space space space space space space space space space space log space straight P space equals space straight t over 20 plus straight c subscript 1 space space space or space straight P space space equals space straight e to the power of straight t over 20 plus straight c subscript 1 end exponent
    or                 straight P space equals space straight e to the power of straight t over 20 end exponent. space straight e to the power of straight c subscript 1 end exponent
    or                   straight P space equals space straight c space straight e to the power of straight t over 20 end exponent space left parenthesis where space straight e to the power of straight c subscript 1 end exponent space equals space straight c right parenthesis          ...(1)
    Now               straight P space equals space 1000 comma space space space when space straight t space equals space 0
           therefore space space space space space space 1000 space equals space ce to the power of 0 space space space space rightwards double arrow space space space space 1000 space equals space space straight c
    Putting c = 1000  in (1), we get
                      straight P space equals space 1000 space straight e to the power of straight t over 20 end exponent
    Let t years be the time required to double the principal. Then
                2000 space equals space 1000 space straight e to the power of straight t over 20 end exponent space space space space space rightwards double arrow space space space space 2 space equals space straight e to the power of straight t over 20 end exponent space space space rightwards double arrow space space straight t over 20 space equals space log subscript straight e squared space space space rightwards double arrow space space space straight t space equals space 20 space log subscript straight e 2.
    Question 6
    CBSEENMA12033085

    In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs. 100 double itself in 10 years. 

    Solution
    Let P denote the principal at any time t and r% per annum be the interest rate..
    From the given condition,
                               dP over dt space equals space left parenthesis 0.0 space straight r right parenthesis thin space straight P
    Separating the variables and integrating, we get,
                         integral 1 over straight P dP space equals space integral 0.0 space straight r space dt
    therefore space space space space space space log space straight P space equals 0.0 space straight r space straight t space plus space log space straight c space space or space space space log space straight P over straight c space equals space 0.0 space straight r space straight t          
    therefore                         straight P space equals space straight c space straight e to the power of 0.00 straight r space straight t end exponent                    ...(1)
    Now                straight P space equals space 100   when t = 0
    therefore              100 space equals space straight c space straight e to the power of 0                  rightwards double arrow space space space straight c space equals space 100
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space straight P space equals space 100 straight e to the power of 0.0 straight r space straight t end exponent
    Now, Rs. 100 become Rs.200 in 10 years.
    therefore space space space space space space space space space space space 200 space equals space 100 space straight e to the power of left parenthesis 0.0 space straight r right parenthesis space space 10 end exponent space space space space space space space space rightwards double arrow space space space space 2 space equals space straight e to the power of straight r over 10 end exponent
therefore space space space space space space log subscript straight e 2 space equals space straight r over 10 space space space space space rightwards double arrow space space space space space space 0.6931 space equals space straight r over 10 space space rightwards double arrow space space space straight r space equals space 6.931
therefore space space space space space required space rate space of space interest space equals space 6.9 percent sign
    Question 7
    CBSEENMA12033086

    In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs. 100 double itself in 10 years.  (e0·5 = 1·648).

    Solution
    Let P denote the principal at any time t.
    From given condition,
                dP over dt space equals space left parenthesis 0.05 right parenthesis thin space straight P
    Separating the variables and integrating,
                           integral 1 over straight P dP space equals space 0.05 space integral 1. space dt
    therefore            log space straight P space equals space left parenthesis 0.05 right parenthesis space straight t space plus space log space straight c space space space space space space rightwards double arrow space space space space space space log space straight P over straight c space equals space left parenthesis 0.05 right parenthesis space straight t
    therefore                straight P space equals space straight c space straight e to the power of 0.05 space straight t end exponent                              ...(1)
    Now              straight P space equals space 1000 space space space space space space space space space space space when space space space straight t space equals space 0
    therefore space space space space space space 1000 space equals space straight c space straight e to the power of 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight c space equals space 1000
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space straight P space equals space 1000 space straight e to the power of 0.05 space straight t end exponent
    When                 straight t space equals space 10 space years comma space then
                              straight P space equals space 1000 space cross times space straight e to the power of 0.05. space 10 end exponent
                                   equals space 1000 space cross times straight e to the power of 0.5 end exponent space equals space 1000 space cross times space 1.648 space equals space 1648
    therefore space space Rs. space 1000 will become Rs.  1648 after 10 years.
    Question 8
    CBSEENMA12033087

    In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

    Solution
    Let y denote the bacteria at any time t.
     From the given condition,
                                dy over dt space equals space straight k space straight y comma space where k is the constant of proportionality.
    Separting the variables and integrating, we get,
                         integral 1 over straight y dy space equals space straight k integral dt
    therefore space space space space space space space log space straight y space equals space straight k space straight t space space plus space straight c                                ...(1)
    Let straight y subscript 0 be bacteria at time t = 0
    therefore space space space space space space space space space space space log space straight y subscript 0 space equals space 0 plus straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight c space equals space log space straight y subscript 0
therefore space space space space from space left parenthesis 1 right parenthesis comma space log space straight y space equals space straight k space straight t space plus space log space straight y subscript 0 space space space space space space space space space space space space space space rightwards double arrow space space log space open parentheses straight y over straight y subscript 0 close parentheses space equals space straight k space straight t space space space space space... left parenthesis 2 right parenthesis
    Now,                          straight y space equals space straight y subscript 0 plus 10 over 100 straight y subscript 0 space equals space 11 over 10 straight y subscript 0 space space space when space straight t space equals space 2
    therefore space space space from space left parenthesis 2 right parenthesis comma space space log open parentheses fraction numerator 11 space straight y subscript 0 over denominator 10 space straight y subscript 0 end fraction close parentheses space equals space 2 space straight k space space rightwards double arrow space space space straight k space equals space 1 half log space open parentheses 11 over 10 close parentheses
    therefore space space from space left parenthesis 2 right parenthesis comma space space log space open parentheses straight y over straight y subscript 0 close parentheses space equals space 1 half log space open parentheses 11 over 10 close parentheses. space straight t subscript 1                         ...(3)
    Let the bacteria be 2,00,000 from 1,00,000 in straight t subscript 1 hours
    i.e.                      straight y space equals space 2 space straight y subscript 0 space space space space when space straight t space space equals space straight t subscript 1
    therefore space space space space from space left parenthesis 3 right parenthesis comma space space log space open parentheses fraction numerator 2 space straight y subscript 0 over denominator straight y subscript 0 end fraction close parentheses space equals space 1 half log space open parentheses 11 over 10 close parentheses. space straight t subscript 1
    therefore space space space space space space log space 2 space equals space 1 half log open parentheses 11 over 10 close parentheses space straight t subscript 1
therefore space space space space space space space space space straight t subscript 1 space equals space fraction numerator 2 space log space 2 over denominator log space open parentheses begin display style 11 over 10 end style close parentheses end fraction space hours. space
    Question 9
    CBSEENMA12033088

    The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20.000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009 ?

    Solution
    Let y denote the population at any t.
    From the given condition,
                   dy over dt space equals space straight k space straight y. space space where k is constant of proportionality.
    Separating the variables and integrating, 
                              integral 1 over straight y dy space equals space straight k integral space dt
    therefore space space space space space space space space space space log space straight y space equals space straight k space straight t space space plus space straight c                                  ...(1)
    Let straight y subscript 0 space equals space 20000 space be the population at t = 0.
    therefore space space space space space space space space space log space straight y subscript 0 space equals space 0 plus space straight c space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight c space equals space log space straight y subscript 0
therefore space space from space left parenthesis 1 right parenthesis comma space space log space straight y space equals space straight k space straight t space plus space log space straight y subscript 0 space space space space space space space rightwards double arrow space space log space straight y space minus space log space straight y subscript 0 minus space straight k space straight t
therefore space space space space space space log space open parentheses straight y over straight y subscript 0 close parentheses space equals space straight k space straight t space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Now y = 25000, when t = 5
    therefore space space space log space open parentheses 25000 over 20000 close parentheses space equals space 5 space straight k space space space space space space rightwards double arrow space straight k space equals space 1 fifth log space open parentheses 5 over 4 close parentheses
therefore space space from space left parenthesis 2 right parenthesis comma space space log space open parentheses straight y over straight y subscript 0 close parentheses space equals space 1 fifth straight t space log space open parentheses 5 over 4 close parentheses
    Let straight y subscript 1 be the population in 2004 i.e. after 10 years
    therefore space space space space log space open parentheses straight y subscript 1 over straight y subscript 0 close parentheses space equals space 1 fifth cross times 10 cross times log space open parentheses 5 over 4 close parentheses
therefore space log space open parentheses straight y subscript 1 over straight y subscript 0 close parentheses space equals space 2 space log space open parentheses 5 over 4 close parentheses space space space space rightwards double arrow space space space space log open parentheses straight y subscript 1 over straight y subscript 0 close parentheses space equals space log space 25 over 16
therefore space space space space space space space straight y subscript 1 over straight y subscript 0 equals space 25 over 16 space space space space rightwards double arrow space space space space space straight y subscript 1 space equals space 25 over 16 cross times 20000 space equals space 31250
    therefore required population in 2004 is 31250.
    Question 10
    CBSEENMA12033089

    The general solution of the differential equation dy over dx space equals space straight e to the power of straight x plus straight y end exponent is
    • ex + e– y = C
    • e+ ey = C
    • e– x + ey = C
    • e– x + e–y = C

    Solution

    A.

    ex + e– y = C The given differential equation is
                      dy over dx space equals space straight e to the power of straight x plus straight y end exponent space space space space space or space space dy over dx space equals space straight e to the power of straight x. space straight e to the power of straight y
    Separating the variables, we get,
                           1 over straight e to the power of straight y dy space equals space straight e to the power of straight x space dx
    Integrating,     integral straight e to the power of negative straight y end exponent dy space equals space integral straight e to the power of straight x space dx
    therefore space space space space fraction numerator straight e to the power of negative straight y end exponent over denominator negative 1 end fraction space equals space straight e to the power of straight x plus straight c apostrophe
therefore space space space space space space minus straight e to the power of negative straight y end exponent space equals space straight e to the power of straight x plus straight c apostrophe space space or space space straight e to the power of straight x plus straight e to the power of negative straight y end exponent space equals space minus straight c apostrophe
therefore space space space space straight e to the power of straight x plus straight e to the power of negative straight y end exponent space equals space straight C comma space which space is space required space solution. space
therefore space space left parenthesis straight A right parenthesis space is space correct space answer.
    Question 11
    CBSEENMA12033090

    Solve dy over dx space equals space left parenthesis 4 straight x plus straight y plus 1 right parenthesis squared.

    Solution
    The given differential equation is
                       dy over dx space equals space space left parenthesis 4 straight x plus straight y plus 1 right parenthesis squared
    Put 4 straight x plus straight y plus 1 space equals space straight t comma            therefore space space 4 plus dy over dx space equals space dt over dx comma space space or space space dy over dx space equals space dt over dx minus 4
    therefore space space space given space equation space becomes comma space dt over dx minus 4 space equals straight t squared
    or          dt over dx space equals space straight t squared plus 4
    Separating the variables, we get,     fraction numerator dt over denominator straight t squared plus 4 end fraction space equals space dx
    Integrating both sides,   integral fraction numerator dt over denominator straight t squared plus left parenthesis 2 right parenthesis squared end fraction space equals space integral 1. space dx
    or        1 half tan to the power of negative 1 end exponent straight t over 2 space equals space straight x plus straight c space space space or space space tan to the power of negative 1 end exponent straight t over 2 space equals space 2 space left parenthesis straight x plus straight c right parenthesis comma space space or space space straight t over 2 space equals space tan space open square brackets 2 space left parenthesis straight x plus straight c right parenthesis close square brackets
    therefore            straight t space equals space 2 space tan space left square bracket space 2 space left parenthesis straight x space plus straight c right parenthesis right square bracket
    or                  4 straight x plus straight y plus 1 space equals space 2 space tan space left square bracket 2 space left parenthesis straight x plus straight c right parenthesis right square bracket comma space which space is space the space required space solution.
    Question 12
    CBSEENMA12033091

    Solve left parenthesis straight x minus straight y right parenthesis squared space dy over dx space equals space straight a squared.

    Solution
    The given differential equation is
                      left parenthesis straight x minus straight y right parenthesis squared dy over dx space equals space straight a squared                             ...(1)
    Put x - y = t,       therefore space space space space 1 space minus space dy over dx space equals space dt over dx space space or space space dy over dx equals space 1 minus dt over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space straight t squared space open parentheses 1 minus dt over dx close parentheses space equals space straight a squared space space space or space space space 1 minus dt over dx space equals space straight a squared over straight t squared
    therefore space space space space space space space space space space space space space space space space space minus dt over dx space equals space straight a squared over straight t squared minus 1 space space space space space or space space space space dt over dx space equals space minus fraction numerator straight a squared minus straight t squared over denominator straight t squared end fraction
    Separating the variables, we get,
                   fraction numerator straight t squared over denominator straight a squared minus straight t squared end fraction dt space equals space minus dx
                                          negative straight t squared plus straight a squared space fraction numerator 1 over denominator long division enclose straight t squared end enclose end fraction
space space space space space space space space space space space space space space space space space space straight t squared minus straight a squared
space space space space space space space space space space space space space space space space space space space minus space space plus
space space space space space space space space space space space space space space space space space _______
space space space space space space space space space space space space space space space space space space space space space space straight a squared
    Integrating,   integral fraction numerator straight t squared over denominator straight a squared minus straight t squared end fraction dt space equals space minus integral space 1 space dx
    therefore space space space integral open parentheses negative 1 plus fraction numerator straight a squared over denominator straight a squared minus straight t squared end fraction close parentheses dt space equals space minus integral 1 space dx
therefore space space space minus straight t plus straight a to the power of 2 space end exponent fraction numerator 1 over denominator 2 straight a end fraction space log space open vertical bar fraction numerator straight a plus straight t over denominator straight a minus straight t end fraction close vertical bar space equals space minus straight x plus straight c
therefore space space minus straight t plus straight a over 2 log space open vertical bar fraction numerator straight a plus straight x minus straight y over denominator straight a minus straight x plus straight y end fraction close vertical bar space equals space minus straight x plus straight c
therefore space space straight y minus straight x minus straight a over 2 log space open vertical bar fraction numerator straight a plus straight x minus straight y over denominator straight a minus straight x plus straight y end fraction close vertical bar space equals space minus straight x plus straight c
therefore space space straight y minus straight x minus straight a over 2 log space open vertical bar fraction numerator straight a plus straight x minus straight y over denominator straight a minus straight x plus straight y end fraction close vertical bar space equals space minus straight x plus straight c
    or   straight y minus straight a over 2 log space open vertical bar fraction numerator straight a plus straight x minus straight y over denominator straight a minus straight x plus straight y end fraction close vertical bar space equals space straight c comma which is required solution.
    Question 13
    CBSEENMA12033092

    Solve the following differential equation:
    open parentheses straight x plus straight y close parentheses squared dy over dx space equals straight a squared

    Solution
    The given differential equation is
               left parenthesis straight x plus straight y right parenthesis squared space dy over dx space equals space straight a squared
    Put   straight x plus straight y space equals straight t comma space space space space space therefore space space 1 plus dy over dx space space equals space dt over dx space space or space space dy over dx equals space dt over dx minus 1
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space straight t squared space open parentheses dt over dx minus 1 close parentheses space equals straight a squared space or space space straight t squared space dt over dx space equals space straight a squared plus straight t squared space space or space space space fraction numerator straight t squared over denominator straight a squared plus straight t squared end fraction dt space equals space dx
    or        integral fraction numerator straight t squared over denominator straight a squared plus straight t squared end fraction dt space equals space integral dx
    or       integral open parentheses 1 minus fraction numerator straight a squared over denominator straight a squared plus straight t squared end fraction close parentheses dt space equals space straight x space space or space straight t minus straight a squared space 1 over straight a tan to the power of negative 1 end exponent straight t over straight a space equals straight x plus straight c
    or        straight x plus straight y space minus straight a space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator straight a end fraction close parentheses space equals space straight x plus straight c
    or          straight y minus straight a space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator straight a end fraction close parentheses space equals space straight c space is space the space required space solution. space
    Question 14
    CBSEENMA12033093

    Solve the following differential equation:
    open parentheses straight x plus straight y plus 2 close parentheses space dy over dx space equals 2

    Solution
    The given differential equation is
             open parentheses straight x plus straight y plus 2 close parentheses space dy over dx space equals 2                           ...(1)
    Put x+y+2 = t,
    therefore space space space space space 1 plus dy over dx equals dt over dx space space or space space dy over dx equals dt over dx minus 1
therefore space space from space left parenthesis 1 right parenthesis comma space space straight t open parentheses dt over dx minus 1 close parentheses space equals space 2 space space or space space straight t dt over dx space equals space 2 plus straight t space space or space space fraction numerator straight t over denominator 2 plus straight t end fraction dt space equals space dx
    or     integral fraction numerator straight t over denominator 2 plus straight t end fraction dt space equals space integral dx
    or space space integral open parentheses 1 minus fraction numerator 2 over denominator 2 plus straight t end fraction close parentheses space dt space equals space straight x space space or space space straight t minus 2 space log space open vertical bar 2 plus straight t close vertical bar space equals space straight x plus straight c
or space space straight x plus straight y plus 2 minus 2 space log space space open vertical bar straight x plus straight y plus 4 close vertical bar space equals space straight x plus straight c space
or space space straight y minus 2 space log space open vertical bar straight x plus straight y plus 4 close vertical bar space equals space straight c minus 2 space equals space straight C comma space say comma space is space the space required space solution.
    Question 15
    CBSEENMA12033094

    Solve the following differential equation:
    dy over dx plus 1 space equals space straight e to the power of straight x plus straight y end exponent


    Solution
    The given differential equation is
                   dy over dx plus 1 space equals straight e to the power of straight x plus straight y end exponent                           ...(1)
    Put straight x plus straight y space equals straight t comma space space space space space space space space space space space therefore space space space space 1 plus dy over dx equals space dt over dx space space or space space space dy over dx space equals dt over dx minus 1
    therefore space space space from space left parenthesis 1 right parenthesis comma space space dt over dx minus 1 plus 1 space equals space straight e to the power of straight t space space space space space or space space space dt over dx space equals straight e to the power of straight t
rightwards double arrow space space space space 1 over straight e to the power of straight t dt space equals space dx space space space rightwards double arrow space space space integral straight e to the power of negative straight t end exponent space dt space equals space integral 1. space dx
therefore space space space space space space space space space space fraction numerator straight e to the power of negative straight t end exponent over denominator negative 1 end fraction space equals space straight x plus straight c space space space space rightwards double arrow space space space minus straight e to the power of negative left parenthesis straight x plus straight y right parenthesis end exponent space equals space straight x space plus straight c space space which space is space required space solution. space space
space
    Question 16
    CBSEENMA12033095

    Solve the differential equation dy over dx space equals sin left parenthesis straight x plus straight y right parenthesis space space or space sin to the power of negative 1 end exponent open parentheses dy over dx close parentheses space equals space straight x plus straight y

    Solution
    The given differential equation is
                      dy over dx space equals space sin space left parenthesis straight x plus straight y right parenthesis                    ...(1)
    Put x + y = t,                         therefore space space space 1 plus dy over dx space equals space dt over dx space space or space space space dy over dx space equals space dt over dx minus 1
    therefore space space space space space space from space left parenthesis 1 right parenthesis comma space space dt over dx minus 1 space equals space space sin space straight t space space space or space space dt over dx space equals space 1 plus sin space straight t
    Separating the variables, we get,
                                  fraction numerator 1 over denominator 1 plus sin space straight t end fraction dt space equals space dx
    Integrating both sides, we get,
                         integral fraction numerator 1 over denominator 1 plus sin space straight t end fraction dt space equals space integral 1. space dx space space space space or space space space space integral fraction numerator 1 over denominator 1 plus sin space straight t end fraction cross times fraction numerator 1 minus sin space straight t over denominator 1 minus sin space straight t end fraction dt space equals space integral 1. space dx
    or           integral fraction numerator 1 minus sint over denominator 1 minus sin squared straight t end fraction dt space equals space integral 1. space dx space space space space space space space space space space space or space space space space space fraction numerator 1 minus sin space straight t over denominator cos squared straight t end fraction dt space equals space integral 1. space dx
    or          integral open parentheses fraction numerator 1 over denominator cos squared straight t end fraction minus fraction numerator sin space straight t over denominator cos squared straight t end fraction close parentheses dt space equals space integral 1. space dx space space or space space integral open parentheses fraction numerator 1 over denominator cos squared straight t end fraction minus fraction numerator 1 over denominator cos space straight t end fraction. fraction numerator sin space straight t over denominator cos space straight t end fraction close parentheses dt space equals space integral 1. space dx
    or       open parentheses sec squared straight t minus sect space tant close parentheses space dt space equals space 1. space dx
    or        tant space minus sect space equals space straight x plus straight c
    or      tan left parenthesis straight x plus straight y right parenthesis space minus space sec left parenthesis straight x plus straight y right parenthesis space equals space straight x plus straight c
    which is required solution. 


    Question 17
    CBSEENMA12033096

    Solve:  sin (x+y)  dy over dx space equals 1.

    Solution
    The given differential equation is
      sin space left parenthesis straight x plus straight y right parenthesis space dy over dx space equals space 1 space space space space space or space space dy over dx space equals space fraction numerator 1 over denominator sin space left parenthesis straight x plus straight y right parenthesis end fraction                  ...(1)
    Put x+ y = t,      therefore space space space 1 plus dy over dx space equals space dt over dx space space space or space space space dy over dx space equals space dt over dx minus 1
    therefore space space space space space from space left parenthesis 1 right parenthesis comma space dt over dx minus 1 space equals space fraction numerator 1 over denominator sin space straight t end fraction space space rightwards double arrow space space space dt over dx space equals space 1 plus fraction numerator 1 over denominator sin space straight t end fraction
therefore space space space space dt over dx space equals space fraction numerator 1 plus sint over denominator sint end fraction space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space fraction numerator sint over denominator 1 plus sint end fraction dt space equals space dx
therefore space space space space integral fraction numerator sin space straight t over denominator 1 plus sin space straight t end fraction dt space equals space integral 1. space dx space space space space rightwards double arrow space space space space integral fraction numerator left parenthesis 1 plus sin space straight t right parenthesis minus 1 over denominator 1 plus sint end fraction dt space equals space integral 1. space dx
therefore space space space space integral space open parentheses 1 minus fraction numerator 1 over denominator 1 plus sin space straight t end fraction close parentheses dt space equals space integral 1. space dx
rightwards double arrow space space integral open parentheses 1 minus fraction numerator 1 over denominator 1 plus sin space straight t end fraction cross times fraction numerator 1 minus sin space straight t over denominator 1 minus sin space straight t end fraction close parentheses space dt space equals space integral space 1. space dx
rightwards double arrow space space integral open parentheses 1 minus fraction numerator 1 minus sin space straight t over denominator 1 minus sin squared straight t end fraction close parentheses space dt space equals space integral 1 space dx space space space space space space space space space rightwards double arrow space space space space space space space integral open parentheses 1 minus fraction numerator 1 minus sin space straight t over denominator cos squared straight t end fraction close parentheses dt space equals space integral 1. dx
rightwards double arrow space space space integral open parentheses 1 minus fraction numerator 1 over denominator cos squared straight t end fraction plus fraction numerator 1 over denominator cos space straight t end fraction. fraction numerator sin space straight t over denominator cos space straight t end fraction close parentheses space dt space equals space integral space 1 space. space dx
rightwards double arrow space integral left parenthesis 1 minus sec squared straight t space plus space sect space tant right parenthesis space dt space equals space integral 1. space dx
rightwards double arrow space space space straight t minus tan space straight t space plus sec space straight t space equals space straight x space plus straight c
therefore space space space straight x plus straight y minus tan space left parenthesis straight x plus straight y right parenthesis plus sec left parenthesis straight x plus straight y right parenthesis space equals space straight x plus straight c
therefore space space straight y minus tan left parenthesis straight x plus straight y right parenthesis plus sec left parenthesis straight x plus straight y right parenthesis space equals space straight c space is space the space required space solution.

    Sponsor Area

    Question 18
    CBSEENMA12033097

    Solve:
    dy over dx space equals space cos space left parenthesis straight x plus straight y right parenthesis space space or space space cos to the power of negative 1 end exponent open parentheses dy over dx close parentheses space equals space straight x plus straight y

    Solution
    The given differential equation is
               dy over dx space equals cos left parenthesis straight x plus straight y right parenthesis                       ...(1)
    Put x + y = t,       therefore space space space 1 plus dy over dx space equals space dt over dx space space or space space dy over dx space equals dt over dx minus 1
    therefore space space from space left parenthesis 1 right parenthesis comma space space dt over dx minus 1 space equals space cos space straight t space space or space space dt over dx equals space 1 plus space cos space straight t
therefore space space space space fraction numerator 1 over denominator 1 plus cos space straight t end fraction dt space space equals space dx space space space space rightwards double arrow space space space space integral fraction numerator 1 over denominator 1 plus cos space straight t end fraction dt space equals space integral 1. space dx
rightwards double arrow space space space space integral fraction numerator 1 over denominator 1 plus cos space straight t end fraction cross times fraction numerator 1 minus cos space straight t over denominator 1 minus cos space straight t end fraction dt space equals space integral 1. space dx
rightwards double arrow space space space space integral fraction numerator 1 minus cos space straight t over denominator 1 minus cos squared straight t end fraction dt space equals space integral 1. space dx space space space rightwards double arrow space space space space integral fraction numerator 1 minus cos space straight t over denominator sin squared straight t end fraction dt space equals space integral 1. space dx
rightwards double arrow space integral open parentheses fraction numerator 1 over denominator sin squared straight t end fraction minus fraction numerator cos space straight t over denominator sin squared straight t end fraction close parentheses space dt space equals space integral 1. space dx space space space rightwards double arrow space space space space integral left parenthesis cosec squared straight t minus cosect space cot space straight t right parenthesis space dx space equals space integral 1. space dx
rightwards double arrow space space space minus cot space straight t space plus space cosec space straight t space equals straight x plus straight c
rightwards double arrow space space space space space fraction numerator cos space straight t over denominator sin space straight t end fraction plus fraction numerator 1 over denominator sin space straight t end fraction space equals space straight x plus straight c space space space space rightwards double arrow space space space space space fraction numerator 1 minus cos space straight t over denominator sin space straight t end fraction space equals space straight x plus straight c
rightwards double arrow space space space fraction numerator 2 space sin squared begin display style straight t over 2 end style over denominator 2 space sin begin display style straight t over 2 end style space cos begin display style straight t over 2 end style end fraction space equals space straight x plus straight c space space space rightwards double arrow space space space tan straight t over 2 space equals space straight x plus straight c space space space rightwards double arrow space space space tan fraction numerator straight x plus straight y over denominator 2 end fraction space equals straight x plus straight c
space space space which space is space required space solution. space
    Question 19
    CBSEENMA12033098

    Solve:
    cos space left parenthesis straight x plus straight y right parenthesis space dy over dx space equals space 1.

    Solution
    The given differential equation is dy over dx space equals space fraction numerator 1 over denominator cos space left parenthesis straight x plus straight y right parenthesis end fraction             ...(1)
    Put  x+y = t,     therefore space space space 1 plus dy over dx space equals space dt over dx space space or space space dy over dx space equals space dt over dx minus 1
    therefore space space from space left parenthesis 1 right parenthesis comma space space space dt over dx minus 1 space equals space fraction numerator 1 over denominator cos space straight t end fraction space space space space space space space space space rightwards double arrow space space space space space dt over dx space equals space 1 plus fraction numerator 1 over denominator cos space straight t end fraction
therefore space space space space dt over dx equals space fraction numerator 1 plus cos space straight t over denominator cos space straight t end fraction space space space rightwards double arrow space space space space space fraction numerator cos space straight t over denominator 1 plus space cos space straight t end fraction dt space equals space dx
therefore space space space integral fraction numerator cos space straight t over denominator 1 plus space cos space straight t end fraction dt space equals space integral 1. space dx space space space rightwards double arrow space space space integral fraction numerator left parenthesis 1 plus cost right parenthesis minus 1 over denominator 1 plus cost end fraction dt space equals space integral 1. space dx
therefore space space space space integral open parentheses 1 minus fraction numerator 1 over denominator 1 plus cost end fraction close parentheses dt space equals space integral 1. space dx space space space rightwards double arrow space space space integral open parentheses 1 minus fraction numerator 1 over denominator 2 space cos squared begin display style straight t over 2 end style end fraction close parentheses dt space equals space integral 1. space dx
therefore space space space integral open parentheses 1 minus 1 half sec squared straight t over 2 close parentheses space dt space equals space integral 1. space dx space space space space rightwards double arrow space space space straight t minus tan straight t over 2 space equals space straight x plus straight c apostrophe
therefore space space space space straight x plus straight y minus tan fraction numerator straight x plus straight y over denominator 2 end fraction space equals space straight x plus straight c apostrophe space space space space rightwards double arrow space space space tan fraction numerator straight x plus straight y over denominator 2 end fraction space equals space straight y plus straight c comma space which space is space required space solution. comma space
    Question 20
    CBSEENMA12033099

    Solve:
    dy over dx space equals space tan space left parenthesis straight x plus straight y right parenthesis


    Solution
    The given differential equation is
                       dy over dx space equals space tan left parenthesis straight x plus straight y right parenthesis
    Put  straight x plus straight y space equals straight t comma space space space space space space space space space space space space space space space space space therefore space space space 1 plus dy over dx space equals dt over dx space space space or space space space space dy over dx equals space dt over dx minus 1
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space dt over dx minus 1 space equals space tan space straight t space space space space space or space space space space dt over dx space equals space 1 plus tan space straight t
    Separating the variables,  we get,
                 fraction numerator 1 over denominator 1 plus tan space straight t end fraction dt space equals dx space space space or space space space fraction numerator 1 over denominator 1 plus begin display style fraction numerator sin space straight t over denominator cos space straight t end fraction end style end fraction dt space equals space dx
    or         fraction numerator cos space straight t over denominator sin space straight t plus cos space straight t end fraction dt space equals space dx space space space space space rightwards double arrow space space space space integral fraction numerator cos space straight t over denominator sin space straight t space plus space cos space straight t end fraction dt space equals space integral 1 space dx
    rightwards double arrow space space space space 1 half space integral fraction numerator left parenthesis sint space plus space cost right parenthesis space plus space left parenthesis cost space minus space sint right parenthesis over denominator sint plus cost end fraction dt space equals space integral 1 space dx
or space space space 1 half integral open parentheses 1 plus fraction numerator cost space minus sint over denominator sint plus cost end fraction close parentheses dt space equals space integral 1 space dx
or space space space 1 half integral open square brackets straight t space plus space log space open vertical bar sin space straight t space plus space cos space straight t close vertical bar close square brackets space equals space straight x plus straight c
or space space space 1 half open square brackets straight x plus straight y plus log space open vertical bar sin space left parenthesis straight x plus straight y right parenthesis plus cos space left parenthesis straight x plus straight y right parenthesis close vertical bar close square brackets space equals space straight x plus straight c
    which is required solution. 
    Question 21
    CBSEENMA12033100

    Solve the following initial value problem:
    (x + y + 1)2 dy = dx, y ( –1) = 0

    Solution
    The given differential equation is
                      (x + y + 1)dy = dx
    or                  dy over dx space equals space fraction numerator 1 over denominator left parenthesis straight x plus straight y plus 1 right parenthesis squared end fraction
    Put      straight x plus straight y plus 1 space equals space straight t comma space space space space therefore space space space space 1 plus dy over dx space equals dt over dx space space space or space space space dy over dx equals space dt over dx minus 1
    therefore space space space space given space equation space becomes space dt over dx minus 1 space equals 1 over straight t squared
    therefore space space space space space space space space space space space dt over dx equals 1 plus 1 over straight t squared
    or               dt over dx space equals fraction numerator straight t squared plus 1 over denominator straight t squared end fraction
    Separating the variables and integrating, we get,
                       integral fraction numerator straight t squared over denominator straight t squared plus 1 end fraction dt space equals space integral dx space space space space or space space space integral open parentheses 1 minus fraction numerator 1 over denominator 1 plus straight t squared end fraction close parentheses space dt space equals space integral 1. space dx
    therefore space space space space space space straight t minus tan to the power of negative 1 end exponent straight t space equals space straight x plus straight c space space space space or space space space left parenthesis straight x plus straight y plus 1 right parenthesis space minus space tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space straight x plus straight c
therefore space space space space straight y plus 1 minus tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space straight c
    Now          straight y left parenthesis negative 1 right parenthesis space equals space 0 space space space space space space space space rightwards double arrow space space space space straight y space equals space 0 space space space when space straight x space equals space minus 1
    therefore space space space space 0 plus 1 space minus space tan to the power of negative 1 end exponent left parenthesis negative 1 plus 0 plus 1 right parenthesis space equals space straight c space space space space space space rightwards double arrow space space space space 1 minus tan to the power of negative 1 end exponent 0 space equals space straight c
therefore space space space space space space space space space space space space space space 1 minus 0 space equals space straight c space space space space space space space space rightwards double arrow space space space space straight c space equals space 1
therefore space space space space space from space left parenthesis 1 right parenthesis comma space space straight y plus 1 space minus space tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space 1
therefore space space tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space straight y space space space space space or space space space straight x plus straight y plus 1 space equals space tan space straight y
    which is required solution. 
    Question 22
    CBSEENMA12033101

    Solve the following initial value problem
    cos (x + y) dy = dx, y (0) = 0

    Solution
    The given differential equation is
                        cos space left parenthesis straight x plus straight y right parenthesis space dy space equals space dx space space space space or space space space space dy over dx space equals space fraction numerator 1 over denominator cos space left parenthesis straight x plus straight y right parenthesis end fraction               ...(1)
    Put x + y = t,        therefore space space space 1 plus dy over dx equals dt over dx space space or space space dy over dx space equals space dt over dx minus 1
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space dt over dx minus 1 space equals space fraction numerator 1 over denominator cos space straight t end fraction space space space rightwards double arrow space space space space dt over dx space equals space 1 plus fraction numerator 1 over denominator cos space straight t end fraction
therefore space space space space dt over dx space equals space fraction numerator 1 plus cos space straight t over denominator cost end fraction space space space rightwards double arrow space space space fraction numerator cos space straight t over denominator 1 plus cos space straight t end fraction dt space equals space dx
therefore space space space space integral fraction numerator cos space straight t over denominator 1 plus cost space end fraction dt space equals space integral 1. space dx space space space rightwards double arrow space space integral fraction numerator left parenthesis 1 plus cost right parenthesis minus 1 over denominator 1 plus cost end fraction dt space equals space integral 1. space dx
therefore space space space integral open parentheses 1 minus fraction numerator 1 over denominator 1 plus cos space straight t end fraction close parentheses dt space equals space integral 1. space dx space space rightwards double arrow space space integral open parentheses 1 minus fraction numerator 1 over denominator 2 space cos squared begin display style straight t over 2 end style end fraction close parentheses dt space equals space integral 1. space dx
therefore space space space integral space open parentheses 1 minus 1 half sec squared straight t over 2 close parentheses space dt space equals space integral 1. space dx space space space rightwards double arrow space space space 1 minus tan straight t over 2 space equals space straight x plus straight c apostrophe
therefore space space space straight x plus straight y minus tan fraction numerator straight x plus straight y over denominator 2 end fraction space equals space straight x plus straight c apostrophe space space space space space space rightwards double arrow space space space space tan fraction numerator straight x plus straight y over denominator 2 end fraction space equals space straight y plus straight c
Now space space space space space space space space space space space space space space space space space space space straight y left parenthesis 0 right parenthesis space equals space 0 space space space space space space space space space space space space rightwards double arrow space space space space space space space space straight y space equals space 0 space space space space space when space straight x space equals space 0
therefore space space space space space space space space space space space space space space space space space space tan space 0 space equals space 0 plus space straight c space space space space space rightwards double arrow space space space straight c space equals space 0
therefore space space space space space tan space open parentheses fraction numerator straight x plus straight y over denominator 2 end fraction close parentheses space equals space straight y space is space the space required space solution. space
    Question 23
    CBSEENMA12033102

    For the following differential equation, given below, find  particular solution satisfying the given condition:
    open parentheses straight x cubed plus straight x squared plus straight x plus 1 close parentheses dy over dx space equals space 2 straight x squared plus straight x semicolon space space straight y space equals space 1 space space when space straight x space equals space 0

    Solution
    The given differential equation is
                           open parentheses straight x cubed plus straight x squared plus straight x plus 1 close parentheses space dy over dx space equals space 2 straight x squared plus straight x
    or             dy over dx space equals space fraction numerator 2 straight x squared plus straight x over denominator straight x cubed plus straight x squared plus straight x plus 1 end fraction
    or             dy over dx space equals space fraction numerator 2 straight x squared plus 1 over denominator straight x squared left parenthesis straight x plus 1 right parenthesis space plus space 1 left parenthesis straight x plus 1 right parenthesis end fraction
    or              dy over dx space equals space fraction numerator 2 straight x squared plus straight x over denominator left parenthesis straight x plus 1 right parenthesis thin space left parenthesis straight x squared plus 1 right parenthesis end fraction
    Separting the variables, we get,
                    dy space equals fraction numerator 2 straight x squared plus straight x over denominator left parenthesis straight x plus 1 right parenthesis thin space left parenthesis straight x squared plus 1 right parenthesis end fractiondx
    Integrating,  integral dy space equals space integral fraction numerator 2 straight x squared plus straight x over denominator left parenthesis straight x plus 1 right parenthesis thin space left parenthesis straight x squared plus 1 right parenthesis end fraction dx                    ...(1)
    Put    fraction numerator 2 straight x squared plus straight x over denominator left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x squared plus 1 right parenthesis end fraction space equals fraction numerator straight A over denominator straight x plus 1 end fraction plus fraction numerator Bx plus straight C over denominator straight x squared plus 1 end fraction                     ...(2)
    Mutiplying both sides by  open parentheses straight x plus 1 close parentheses space open parentheses straight x squared plus 1 close parentheses comma space space we space get
                             2 straight x squared plus straight x space identical to space straight A space left parenthesis straight x squared plus 1 right parenthesis space plus space left parenthesis Bx plus straight C right parenthesis thin space left parenthesis straight x plus 1 right parenthesis                
    or                      2 straight x squared plus straight x space identical to space straight A left parenthesis straight x squared plus 1 right parenthesis space plus Bx left parenthesis straight x plus 1 right parenthesis space plus space straight C left parenthesis straight x plus 1 right parenthesis           ...(3)
    Put x + 1 = 0  or  x = -1 in (3)
      therefore               2 - 1 = A(1+1)+0+0   rightwards double arrow space space space space space straight I space equals space 2 straight A space space rightwards double arrow space space straight A space equals space 1 half
                straight x squared right parenthesis space 2 space equals space straight A plus straight B space space space rightwards double arrow space 2 space equals space 1 half plus straight B space space space rightwards double arrow space space space straight B space equals space 3 over 2
              straight x right parenthesis space space 1 space equals space straight B plus straight C space space space space rightwards double arrow space space space space 1 space equals space 3 over 2 plus straight C space space space space rightwards double arrow space space space straight C space equals space minus 1 half
    therefore space space space from space left parenthesis 2 right parenthesis comma space space fraction numerator 2 straight x squared plus straight x over denominator left parenthesis straight x plus 1 right parenthesis thin space left parenthesis straight x squared plus 1 right parenthesis end fraction space equals space fraction numerator begin display style 1 half end style over denominator straight x plus 1 end fraction plus fraction numerator begin display style 3 over 2 end style straight x minus begin display style 1 half end style over denominator straight x squared plus 1 end fraction
    or       fraction numerator 2 straight x squared plus straight x over denominator left parenthesis straight x plus 1 right parenthesis thin space left parenthesis straight x squared plus 1 right parenthesis end fraction space identical to space fraction numerator 1 over denominator 2 left parenthesis straight x plus 1 right parenthesis end fraction plus 3 over 2 open parentheses fraction numerator straight x over denominator straight x squared plus 1 end fraction close parentheses space minus space 1 half open parentheses fraction numerator 1 over denominator straight x squared plus 1 end fraction close parentheses
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space integral dy space equals space 1 half integral fraction numerator 1 over denominator straight x plus 1 end fraction dx plus 3 over 2 integral fraction numerator straight x over denominator straight x squared plus 1 end fraction dx minus 1 half integral fraction numerator 1 over denominator straight x squared plus 1 end fraction dx
therefore space space space space integral 1 space dy space equals space 1 half integral fraction numerator 1 over denominator straight x plus 1 end fraction dx plus 3 over 4 integral fraction numerator 2 straight x over denominator straight x squared plus 1 end fraction dx minus 1 half integral fraction numerator 1 over denominator straight x squared plus 1 end fraction dx
therefore space space space space space straight y space equals space 1 half log space open vertical bar straight x plus 1 close vertical bar plus 3 over 4 log space left parenthesis straight x squared plus 1 right parenthesis space minus 1 half tan to the power of negative 1 end exponent straight x plus straight c space space space space space space space space space space... left parenthesis 4 right parenthesis
    Now   y = 1  when x = 0
    therefore space space space space straight I space equals space 1 half log space left parenthesis 1 right parenthesis space plus space 3 over 4 log space 1 space minus space 1 half tan to the power of negative 1 end exponent 0 plus straight c
therefore space space space space straight I space equals space 1 half left parenthesis 0 right parenthesis plus 3 over 4 left parenthesis 0 right parenthesis minus 1 half left parenthesis 0 right parenthesis space plus space straight c space space space space space rightwards double arrow space space space straight c space equals space 1
therefore space space space space from space left parenthesis 4 right parenthesis comma space space straight y space equals space 1 half log space open vertical bar straight x plus 1 close vertical bar plus 3 over 4 log space left parenthesis straight x squared plus 1 right parenthesis minus 1 half tan to the power of negative 1 end exponent straight x plus 1


    Question 24
    CBSEENMA12033103

    For the following differential equation, given below, find  particular solution satisfying the given condition:
    straight x open parentheses straight x squared minus 1 close parentheses space dy over dx space equals space 1 space semicolon space space straight y space equals space 0 space space when space straight x space equals space 2

    Solution
    The given differential equation is
                       straight x open parentheses straight x squared minus 1 close parentheses dy over dx space equals space 1 space space space or space space dy over dx space equals space fraction numerator 1 over denominator straight x left parenthesis straight x squared minus 1 right parenthesis end fraction
    Separating the variables, we get.
                       dy space equals space fraction numerator 1 over denominator straight x left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 1 right parenthesis end fraction dx
    Integrating,         integral space dy space equals space integral fraction numerator 1 over denominator straight x space left parenthesis straight x minus 1 right parenthesis space left parenthesis straight x plus 1 right parenthesis end fraction space dx
    integral dy space equals space integral open square brackets fraction numerator 1 over denominator straight x left parenthesis 0 minus 1 right parenthesis thin space left parenthesis 0 plus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis 1 right parenthesis space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis 1 plus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis negative 1 right parenthesis thin space left parenthesis negative 1 minus 1 right parenthesis space left parenthesis straight x plus 1 right parenthesis end fraction close square brackets dx
therefore space space space space integral space 1 space dy space equals space integral open square brackets negative 1 over straight x plus fraction numerator 1 over denominator 2 left parenthesis straight x minus 1 right parenthesis end fraction plus fraction numerator 1 over denominator 2 left parenthesis straight x plus 1 right parenthesis end fraction close square brackets dx
therefore space space space straight y space equals space minus log space open vertical bar straight x close vertical bar plus 1 half space log space open vertical bar straight x minus 1 close vertical bar space plus space 1 half log space open vertical bar straight x plus 1 close vertical bar plus straight c space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now y = 0  when x = 2
    therefore space space space space 0 space equals space minus log space 2 space plus 1 half log space 1 space plus space 1 half log space 3 space plus straight c
rightwards double arrow space space space space 0 space equals space minus space log space 2 plus 1 half cross times 0 plus 1 half log space 3 space plus straight c
rightwards double arrow space 0 space equals space minus 1 half log space 4 plus 1 half space log 3 space plus straight c
rightwards double arrow space space space straight c space equals space minus 1 half left parenthesis log space 3 space minus space log space 4 right parenthesis space space space space rightwards double arrow space space space straight c space equals space minus 1 half log open parentheses 3 over 4 close parentheses
therefore space space from space left parenthesis 1 right parenthesis comma
space space space space space space space straight y space equals space minus log space open vertical bar straight x close vertical bar plus 1 half log space open vertical bar straight x minus 1 close vertical bar plus 1 half log space open vertical bar straight x plus 1 close vertical bar minus 1 half log space open parentheses 3 over 4 close parentheses
or space space space space straight y space equals space 1 half open square brackets log space open vertical bar straight x minus 1 close vertical bar plus log space open vertical bar straight x plus 1 close vertical bar minus 2 space log open vertical bar straight x close vertical bar space close square brackets minus 1 half log space open parentheses 3 over 4 close parentheses
or space space space space straight y space equals space 1 half open square brackets log space open vertical bar space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 1 right parenthesis close vertical bar minus log space open vertical bar straight x close vertical bar squared close square brackets space minus space 1 half log space 3 over 4
or space space space straight y space equals space 1 half log space open vertical bar fraction numerator straight x squared minus 1 over denominator straight x squared end fraction close vertical bar space minus space 1 half log space 3 over 4 space is space the space required space solution. space
    Question 25
    CBSEENMA12033104

    For the following differential equation, given below, find  particular solution satisfying the given condition:
    cos space open parentheses dy over dx close parentheses space space equals straight a space space space left parenthesis straight a space element of space straight R right parenthesis semicolon space space space straight y space equals space 1 space space when space straight x space equals space 0


    Solution
    The given differential equation is
                         cos space open parentheses dy over dx close parentheses space equals space straight a space space space space or space space space dy over dx space equals space cos to the power of negative 1 end exponent straight a
    therefore space space space space space space space space space dy space equals space cos to the power of negative 1 end exponent straight a. space dx space space space rightwards double arrow space space space space integral space dy space equals space cos to the power of negative 1 end exponent space straight a integral space dx
    therefore space space space space space space space space straight y space equals space left parenthesis cos to the power of negative 1 end exponent straight a right parenthesis. space straight x plus space straight c                             ...(1)
    Now y = 1 when x = 0
    therefore space space space 1 space equals space left parenthesis cos to the power of negative 1 end exponent straight a right parenthesis space. space 0 space plus straight c space rightwards double arrow space space 1 space equals space straight c
therefore space space space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space straight x space cos to the power of negative 1 end exponent straight a plus 1
    Question 26
    CBSEENMA12033105

    For the following differential equation, given below, find  particular solution satisfying the given condition:
    dy over dx equals straight y space tanx space semicolon space space straight y space equals space 1 space space when space straight x space equals space 0


    Solution
    The given differential equation is
                            dy over dx space equals space straight y space tanx
    Separating the variables, we get,
                     1 over straight y dy space equals space tanx space dx
    Integrating,              integral 1 over straight y dy space equals space integral tanx space dx
    therefore space space space space log space open vertical bar straight y close vertical bar space equals space log space open vertical bar cosx close vertical bar space plus space straight c apostrophe space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space log space open vertical bar straight y close vertical bar plus log space open vertical bar cosx close vertical bar space equals space straight c apostrophe
therefore space space space log space open vertical bar straight y space cosx close vertical bar space equals space straight c apostrophe
therefore space space space space open vertical bar straight y space cosx close vertical bar space equals space straight e to the power of straight c apostrophe end exponent
therefore space space space straight y space cosx space equals space plus-or-minus straight e to the power of straight c space space space or space space straight y space cosx space equals space straight c
    Now y = 1 when x = 0
    therefore space space space 1 space space cos space 0 space equals space straight c space space space space rightwards double arrow space space space space 1 cross times 1 space equals space straight c space space space space space rightwards double arrow space space space straight c space equals space 1
therefore space space from space left parenthesis 1 right parenthesis comma space space space straight y space cosx space equals space 1 comma space space which space is space required space solution.
    Question 27
    CBSEENMA12033106

    Solve:   straight x squared dy over dx space equals straight x squared plus 5 xy plus 4 straight y squared.

    Solution
    The given differential equation is
                        straight x squared dy over dx space equals space straight x squared plus 5 xy plus 4 straight y squared
    or                 dy over dx space equals space fraction numerator straight x squared plus 5 xy plus 4 straight y squared over denominator straight x squared end fraction
    Put y = v x so that  dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals fraction numerator straight x squared plus 5 straight x. space straight v space straight x space plus space 4 space straight v squared space straight x squared over denominator straight x squared end fraction
    or      straight v plus straight x dv over dx space equals space 1 plus 5 straight v plus 4 straight v squared
    or      straight x dv over dx space equals space 4 space straight v squared plus 4 space straight v space plus space 1
    Separating the variables, we get,
                            fraction numerator 1 over denominator 4 space straight v squared plus 4 space straight v space plus space 1 end fraction dv space equals space 1 over straight x dx
    Integrating    integral fraction numerator 1 over denominator 4 straight v squared plus 4 straight v plus 1 end fraction straight d space straight v space equals space integral 1 over straight x dx
    or   integral fraction numerator 1 over denominator left parenthesis 2 space straight v space plus space 1 right parenthesis squared end fraction dv space equals space integral 1 over straight x dx space space space space space or space space space space integral left parenthesis 2 straight v plus 1 right parenthesis to the power of negative 2 end exponent space dv space equals space integral 1 over straight x dx
    therefore space space space space fraction numerator left parenthesis 2 space straight v space plus space 1 right parenthesis to the power of negative 1 end exponent over denominator left parenthesis 2 right parenthesis space left parenthesis negative 1 right parenthesis end fraction space equals space log space open vertical bar straight x close vertical bar space plus straight c space space space space space or space space space space minus fraction numerator 1 over denominator 2 space left parenthesis 2 space straight v space plus 1 right parenthesis end fraction log space open vertical bar straight x close vertical bar plus straight c
    or   negative fraction numerator 1 over denominator 2 open parentheses 2 begin display style straight y over straight x end style plus 1 close parentheses end fraction space equals space log space open vertical bar straight x close vertical bar plus straight c space space space space space space space space or space space space space space space space space space minus fraction numerator straight x over denominator 2 space left parenthesis straight x plus 2 space straight y right parenthesis end fraction space equals space log space open vertical bar straight x close vertical bar plus straight c
    or      fraction numerator straight x over denominator 2 space left parenthesis straight x plus 2 space straight y right parenthesis end fraction plus log space open vertical bar straight x close vertical bar plus straight c space equals space 0
    is the required solution. 
                               
    Question 28
    CBSEENMA12033107

    Solve the following differential equation:
    straight x squared dy over dx space equals space 2 xy plus straight y squared

    Solution
    The given differential equation is
                                     straight x squared dy over dx space equals space 2 xy plus straight y squared
    or         dy over dx space equals space fraction numerator 2 xy plus straight y squared over denominator straight x squared end fraction                                ...(1)
    Put         straight y space equals space straight v space straight x space space space space so space that space space space dy over dx equals straight v plus dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator 2 straight x. space vx plus straight v squared straight x squared over denominator straight x squared end fraction
    or    straight v plus straight x space dv over dx space equals space 2 space straight v space plus space straight v squared
    or     straight x dv over dx space equals straight v squared plus straight v                     
    Separating the variables, we get,
                            fraction numerator 1 over denominator straight v squared plus straight v end fraction dv space equals space 1 over straight x dx
    Integrating,   integral fraction numerator 1 over denominator straight v squared plus straight v end fraction dv space equals space integral 1 over straight x dx
    therefore space space space integral fraction numerator 1 over denominator straight v left parenthesis straight v plus 1 right parenthesis end fraction dv space equals space integral 1 over straight x dx
    space therefore space space space space integral open square brackets fraction numerator 1 over denominator straight v left parenthesis 0 plus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis negative 1 right parenthesis thin space left parenthesis straight v plus 1 right parenthesis end fraction close square brackets space dv space equals space integral space 1 over straight x dx
therefore space space space space integral open parentheses 1 over straight v minus fraction numerator 1 over denominator straight v plus 1 end fraction close parentheses space dv space equals space integral 1 over straight x dx
therefore space space space log space open vertical bar straight v close vertical bar space minus space log space open vertical bar straight v plus 1 close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space straight c subscript 1
therefore space space log space open vertical bar fraction numerator straight v over denominator straight v plus 1 end fraction close vertical bar space equals space log space left parenthesis straight c subscript 1 space open vertical bar straight x close vertical bar right parenthesis
therefore space space open vertical bar fraction numerator straight v over denominator straight v plus 1 end fraction close vertical bar space equals space straight c subscript 1 open vertical bar straight x close vertical bar
therefore space space space space space fraction numerator begin display style straight y over straight x end style over denominator begin display style straight y over straight x plus 1 end style end fraction equals space space cx
therefore space space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space straight c space straight x comma space which space is space required space solution. space

    Question 29
    CBSEENMA12033108

    Solve the  differential equation:
    straight x squared dy over dx space equals straight y left parenthesis straight x plus straight y right parenthesis.

    Solution
    The given differential equation is
    straight x squared dy over dx space equals space straight y left parenthesis straight x plus straight y right parenthesis space space space or space space space space dy over dx space equals fraction numerator straight x space straight y space plus space straight y squared over denominator straight x squared end fraction space space space space space space space space... left parenthesis 1 right parenthesis
    Put y = v x so that dy over dx space equals space straight v plus dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight x. space straight v space straight x space plus space straight v squared space straight x squared over denominator straight x squared end fraction
    or       straight v plus straight x dv over dx space equals space straight v plus straight v squared
    or          straight x dv over dx space equals space straight v squared
    Separating the variables, we get,
                         1 over straight v squared dv space equals space 1 over straight x dx space space space space space or space space space straight v to the power of negative 2 end exponent dv space equals space 1 over straight x dx
    Integrating,     integral straight v to the power of negative 2 end exponent space dv space equals space integral 1 over straight x dx
    therefore space space space space space space fraction numerator straight v to the power of negative 1 end exponent over denominator negative 1 end fraction space equals space log space open vertical bar straight x close vertical bar space plus straight c space space space space space space or space space space space minus 1 over straight v space equals space log space open vertical bar straight x close vertical bar space plus space straight c
therefore space space space space space space fraction numerator negative straight x over denominator straight y end fraction space equals space log space open vertical bar straight x close vertical bar space plus straight c comma space space which space is space required space solution. space
    Question 30
    CBSEENMA12033109

    Solve the  differential equation:
    left parenthesis straight y plus straight x right parenthesis space dy over dx space equals space straight y minus straight x.

    Solution
    The given differential equation is
                       left parenthesis straight y plus straight x right parenthesis space dy over dx space equals space straight y minus straight x
    therefore space space space space space space space dy over dx space equals space fraction numerator straight y minus straight x over denominator straight y plus straight x end fraction                             ...(1)
    Put y = v x  so that dy over dx space equals space straight v plus straight x dv over dx
    therefore       from (1),    straight v plus straight x dv over dx space equals space fraction numerator vx minus straight x over denominator vx plus straight x end fraction
    therefore space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v minus 1 over denominator straight v plus 1 end fraction space space space space space space space space space space space space space or space space space space space space space straight x dv over dx equals fraction numerator straight v minus 1 over denominator straight v plus 1 end fraction minus straight v
    or            straight x dv over dx space equals fraction numerator straight v minus 1 minus straight v squared minus straight v over denominator straight v plus 1 end fraction space space space space or space space space space straight x dv over dx space equals space minus fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction
    Separating the variables, we get,
                       fraction numerator 1 plus straight v over denominator 1 plus straight v squared end fraction dv space equals space minus 1 over straight x dx
    Integrating,  integral fraction numerator 1 plus straight v over denominator 1 plus straight v squared end fraction dv equals space minus integral 1 over straight x dx
    therefore space space space space integral fraction numerator 1 over denominator 1 plus straight v squared end fraction dv plus 1 half integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral 1 over straight x dx
    therefore space space space space tan to the power of negative 1 end exponent straight v plus 1 half log space left parenthesis 1 plus straight v squared right parenthesis space equals space minus log space open vertical bar straight x close vertical bar space plus space straight c subscript 1
therefore space space space space space tan to the power of negative 1 end exponent open parentheses straight y over straight x close parentheses plus 1 half log open parentheses 1 plus straight y squared over straight x squared close parentheses space equals space minus log space open vertical bar straight x close vertical bar plus straight c subscript 1
therefore space space space space space 2 space tan to the power of negative 1 end exponent open parentheses straight y over straight x close parentheses plus log space open parentheses fraction numerator straight x squared plus straight y squared over denominator straight x squared end fraction close parentheses space equals space minus log open vertical bar straight x close vertical bar squared plus 2 straight c subscript 1
therefore space space space space space 2 space tan to the power of negative 1 end exponent open parentheses straight y over straight x close parentheses plus log space open parentheses fraction numerator straight x squared plus straight y squared over denominator straight x squared end fraction close parentheses space equals space minus log space straight x squared plus straight c
therefore space space space 2 space tan to the power of negative 1 end exponent open parentheses straight y over straight x close parentheses plus log space open parentheses fraction numerator straight x squared plus straight y squared over denominator straight x squared end fraction close parentheses plus log space straight x squared space equals space straight c
therefore space space space 2 space tan to the power of negative 1 end exponent open parentheses straight y over straight x close parentheses plus log space open parentheses fraction numerator straight x squared plus straight y squared over denominator straight x squared end fraction cross times space straight x squared close parentheses space equals space straight c
therefore space space space 2 space tan to the power of negative 1 end exponent open parentheses straight y over straight x close parentheses plus log space open parentheses straight x squared plus straight y squared close parentheses space equals space straight c
    which is required solution.
    Question 31
    CBSEENMA12033110

    Solve the following differential equation:
    (y2 – x2) dy = 3 x y dx

    Solution
    The given differential equation is
                         open parentheses straight y squared minus straight x squared close parentheses space dy space equals space 3 xy space dx
    or            dy over dx space equals space fraction numerator 3 space straight x space straight y over denominator straight y squared minus straight x squared end fraction                 ...(1)
    Put  y = v x so that dy over dx space equals straight v plus straight x dv over dx.
    therefore space space space space space space space left parenthesis 1 right parenthesis space becomes comma space space straight v plus straight x dv over dx space equals space fraction numerator 3 straight x. space straight v space straight x over denominator straight v squared straight x squared minus straight x squared end fraction
    or                  straight v plus straight x dv over dx space equals space fraction numerator 3 straight v over denominator straight v squared minus 1 end fraction
    therefore space space space space space space straight x space dv over dx space equals space fraction numerator 3 straight v over denominator straight v squared minus 1 end fraction minus straight v space space space space or space space space space straight x space dv over dx space equals space fraction numerator 4 straight v space minus straight v cubed over denominator straight v squared minus 1 end fraction
    Separating the variables, we get,
                                      fraction numerator straight v squared minus 1 over denominator 4 space straight v minus straight v cubed end fraction dv space equals space 1 over straight x dx space space space or space space space fraction numerator straight v squared minus 1 over denominator straight v left parenthesis 4 minus straight v squared right parenthesis end fraction space dv space equals space 1 over straight x dx
    Integrating,        integral fraction numerator straight v squared minus 1 over denominator straight v space left parenthesis 2 minus straight v right parenthesis thin space left parenthesis 2 plus straight v right parenthesis end fraction dv space equals space integral 1 over straight x dx
    therefore space space space space integral open square brackets fraction numerator 0 minus 1 over denominator straight v space left parenthesis 2 minus 0 right parenthesis thin space left parenthesis 2 plus 0 right parenthesis end fraction minus fraction numerator 4 minus 1 over denominator left parenthesis 2 right parenthesis thin space left parenthesis 2 minus straight v right parenthesis thin space left parenthesis 2 plus 2 right parenthesis end fraction plus fraction numerator 4 minus 1 over denominator left parenthesis negative 2 right parenthesis thin space left parenthesis 2 plus 2 right parenthesis thin space left parenthesis 2 plus straight v right parenthesis end fraction close square brackets dv space equals space integral 1 over straight x dx
    therefore space space integral open square brackets negative fraction numerator 1 over denominator 4 straight v end fraction plus fraction numerator 3 over denominator 8 left parenthesis 2 minus straight v right parenthesis end fraction minus fraction numerator 3 over denominator 8 left parenthesis 2 plus straight v right parenthesis end fraction close square brackets space dv space equals space integral 1 over straight x dx
therefore space space space space minus space 1 fourth open vertical bar straight v close vertical bar plus space 3 over 8 fraction numerator log space open vertical bar 2 minus straight v close vertical bar over denominator negative 1 end fraction space minus space 3 over 8 space log space open vertical bar 2 plus straight v close vertical bar space equals space log space straight x space plus straight c
therefore space space space space space minus 1 fourth space log space open vertical bar straight y over straight x close vertical bar space minus space 3 over 8 space log space open vertical bar 2 minus straight y over straight x close vertical bar space minus space 3 over 8 log space open vertical bar 2 plus straight y over straight x close vertical bar space equals space logx plus straight c
    which is required solution. 
    Question 32
    CBSEENMA12033111

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    (x - y) y' = x + 2 y 

    Solution
    The given differential equation is
           left parenthesis straight x minus straight y right parenthesis space dy over dx space equals space straight x plus 2 straight y
    or                  dy over dx equals fraction numerator straight x plus 2 straight y over denominator straight x minus straight y end fraction                                     ...(1)
    Put y = vx so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx equals fraction numerator straight x plus 2 space straight v space straight x over denominator 1 minus straight v space straight x end fraction space space space space space space or space space space space space space straight v plus straight x dv over dx equals fraction numerator 1 plus 2 straight v over denominator 1 minus straight v end fraction
therefore space space space space space space space space space straight x dv over dx equals fraction numerator 1 plus 2 straight v over denominator 1 minus straight v end fraction minus straight v space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight x space dv over dx space equals fraction numerator 1 plus 2 space straight v minus straight v plus straight v squared over denominator 1 minus straight v end fraction
or space space space space space space space space straight x dv over dx equals fraction numerator 1 plus straight v plus straight v squared over denominator 1 minus straight v end fraction
    Separating the variables,  fraction numerator 1 minus straight v over denominator 1 plus straight v plus straight v squared end fraction dv space equals space 1 over straight x dx
    Integrating,      integral fraction numerator 1 minus straight v over denominator 1 plus straight v plus straight v squared end fraction dv space equals space integral 1 over straight x dx
    therefore space space space space integral fraction numerator negative begin display style 1 half end style left parenthesis 2 straight v plus 1 right parenthesis plus begin display style 3 over 2 end style over denominator 1 plus straight v plus straight v squared end fraction dv space equals space integral 1 over straight x dv
    therefore space space space minus 1 half integral fraction numerator 2 straight v plus 1 over denominator 1 plus straight v plus straight v squared end fraction dv plus 3 over 2 integral fraction numerator 1 over denominator 1 plus straight v plus straight v squared end fraction dv space equals space integral 1 over straight x dx
    therefore space space minus 1 half integral fraction numerator 2 straight v plus 1 over denominator 1 plus straight v plus straight v squared end fraction dv plus 3 over 2 integral fraction numerator 1 over denominator open parentheses straight v plus begin display style 1 half end style close parentheses squared plus open parentheses begin display style fraction numerator square root of 3 over denominator 2 end fraction end style close parentheses squared end fraction dv space equals space integral 1 over straight x dx
    therefore space space space space minus 1 half log space open vertical bar 1 plus straight v plus straight v squared close vertical bar plus 3 over 2. space fraction numerator 1 over denominator begin display style fraction numerator square root of 3 over denominator 2 end fraction end style end fraction space tan to the power of negative 1 end exponent open parentheses fraction numerator straight v plus begin display style 1 half end style over denominator begin display style fraction numerator square root of 3 over denominator 2 end fraction end style end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar plus straight c subscript 1
    therefore space space space minus 1 half log space open vertical bar 1 plus straight y over straight x plus straight y squared over straight x squared close vertical bar plus square root of 3 space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight v plus 1 over denominator square root of 3 end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar space plus space straight c subscript 1
therefore space space space space minus 1 half log space open vertical bar fraction numerator straight x squared plus straight x space straight y plus straight y squared over denominator straight x squared end fraction close vertical bar plus square root of 3 space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 begin display style straight y over straight x end style plus 1 over denominator square root of 3 end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar space plus space straight c subscript 1
therefore space space space space 2 square root of 3 space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight y plus straight x over denominator straight x square root of 3 end fraction close parentheses space minus space log space open vertical bar straight x squared plus xy plus straight y squared close vertical bar plus log space straight x squared space equals space log space straight x squared plus straight c
therefore space space space 2 square root of 3 space tan to the power of negative 1 end exponent space open parentheses fraction numerator straight x plus 2 straight y over denominator straight x square root of 3 end fraction close parentheses space minus space log space open vertical bar straight x squared plus straight x space straight y space plus straight y squared close vertical bar space equals space straight c
    Which is required solution. 

    Question 33
    CBSEENMA12033112

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    (x2 + y2) y' = 8 x2 - 3 x y + 2 y2

    Solution
    The given differential equation is
                       left parenthesis straight x squared plus straight y squared right parenthesis space dy over dx space equals space 8 straight x squared minus 3 xy plus 2 straight y squared
    therefore                           dy over dx space equals space fraction numerator 8 straight x squared minus 3 xy plus 2 straight y squared over denominator straight x squared plus straight y squared end fraction
    Put straight y equals vx space so space that space dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space space space straight v plus straight x dv over dx space equals space fraction numerator 8 straight x squared minus 3 straight x cubed straight v plus 2 straight x squared straight v squared over denominator straight x squared plus straight v squared straight x squared end fraction
therefore space space space space space straight v plus straight x dv over dx space equals space fraction numerator 8 minus 3 straight v plus 2 straight v squared over denominator 1 plus straight v squared end fraction
therefore space space space space space space space space space space space straight x dv over dx space equals space fraction numerator 8 minus 3 straight v plus 2 straight v squared over denominator 1 plus straight v squared end fraction minus straight v
therefore space space space space space space space space straight x dv over dx space equals space fraction numerator 8 minus 3 straight v plus 2 straight v squared minus straight v minus straight v cubed over denominator 1 plus straight v squared end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator 8 minus 4 straight v plus 2 straight v squared minus straight v cubed over denominator 1 plus straight v squared end fraction
    Separating the variables, we get,
                    fraction numerator 1 plus straight v squared over denominator 8 minus 4 straight v plus 2 straight v squared minus straight v cubed end fraction dv space equals space 1 over straight x dx
    Integrating,  integral fraction numerator 1 plus straight v squared over denominator 8 minus 4 straight v plus 2 straight v squared minus straight v cubed end fraction dv space equals space integral 1 over straight x dx
    therefore space space space space integral fraction numerator 1 plus straight v squared over denominator left parenthesis 2 minus straight v right parenthesis thin space left parenthesis 4 plus straight v squared right parenthesis end fraction dv space equals space integral 1 over straight x dx
    Put fraction numerator 1 plus straight v squared over denominator left parenthesis 2 minus straight v right parenthesis thin space left parenthesis 4 plus straight v squared right parenthesis end fraction space equals space fraction numerator straight A over denominator 2 minus straight v end fraction plus fraction numerator Bv plus straight c over denominator 4 plus straight v squared end fraction
    therefore          1 plus straight v squared space space identical to space space straight A space left parenthesis 4 plus straight v squared right parenthesis space plus space straight B space straight v thin space left parenthesis 2 minus straight v right parenthesis space plus space straight C left parenthesis 2 minus straight v right parenthesis                ...(1)
    Put             2 minus straight v space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space or space space space space space space straight v space equals space 2 space in space left parenthesis 1 right parenthesis
    therefore space space space space space space space space space space space 1 plus 4 space equals space straight A left parenthesis 4 plus 4 right parenthesis plus 0 plus 0 space space space space space space space space space space space space space space space rightwards double arrow space space 5 space equals space 8 straight A space space space space space space space rightwards double arrow space space straight A space equals space 5 over 8
    (1) can be written as
                                    1 plus straight v squared identical to space straight A left parenthesis 4 plus straight v squared right parenthesis space plus space straight B left parenthesis 2 straight v minus straight v squared right parenthesis space plus straight C left parenthesis 2 minus straight v right parenthesis        ...(2)
    Equating coefficients in (2) of
     V2)              1 =A - B                  rightwards double arrow space space space space 1 space equals space 5 over 8 minus straight B space space space space space space space space rightwards double arrow space space space space straight B space equals space minus 3 over 8
    v)                   0 = 2 B - C             rightwards double arrow space 0 space equals space 3 over 4 minus straight C space space space space space space rightwards double arrow space space space space straight C space equals space minus 3 over 4
    therefore space space space space fraction numerator 1 plus straight v squared over denominator left parenthesis 2 minus straight v right parenthesis thin space left parenthesis 4 plus straight v squared right parenthesis end fraction space identical to space space fraction numerator 5 over denominator 8 space left parenthesis 2 minus straight v right parenthesis end fraction plus fraction numerator negative begin display style 3 over 8 end style straight v minus begin display style 3 over 4 end style over denominator 4 plus straight v end fraction
therefore space space from space left parenthesis 1 right parenthesis comma space space integral open square brackets fraction numerator 5 over denominator 8 left parenthesis 2 minus straight v right parenthesis end fraction plus fraction numerator negative begin display style 3 over 8 end style straight v minus begin display style 3 over 4 end style over denominator straight v squared plus 4 end fraction close square brackets space dv space equals space integral 1 over straight x dx
therefore space space space 5 over 8 integral fraction numerator 1 over denominator 2 minus straight v end fraction dv space minus 3 over 16 integral fraction numerator 2 straight v over denominator straight v squared plus 4 end fraction dv minus 3 over 4 integral fraction numerator 1 over denominator straight v squared plus left parenthesis 2 right parenthesis squared end fraction dv space equals space integral 1 over straight x dx
therefore space space space 5 over 8 fraction numerator log space open vertical bar 2 minus straight v close vertical bar over denominator negative 1 end fraction minus 3 over 16 log space left parenthesis straight v squared plus 4 right parenthesis minus space 3 over 4 space 1 half space tan to the power of negative 1 end exponent straight v over 2 space equals space log space open vertical bar straight x close vertical bar space space plus straight c
therefore space space space minus 5 over 8 log space open vertical bar 2 minus straight y over straight x close vertical bar minus 3 over 16 log space open parentheses straight y squared over straight x squared plus 4 close parentheses space minus space 3 over 8 tan to the power of negative 1 end exponent open parentheses fraction numerator straight y over denominator 2 straight x end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar plus straight c
    which is required primitive.


    Question 34
    CBSEENMA12033113

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    (3 x y + y2) dx = (x2 + x y) dy

    Solution
    The given differential equation is
                        (3 x y + y2) dx = (x2 + x y) dy
    or                                    dy over dx equals fraction numerator 3 xy plus straight y squared over denominator straight x squared plus xy end fraction
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space space straight v plus straight x dv over dx equals fraction numerator 3 straight x squared straight v plus straight v squared straight x squared over denominator straight x squared plus straight x squared straight v end fraction
therefore space space space straight v plus straight x dv over dx space equals space fraction numerator 3 straight v plus straight v squared over denominator 1 plus straight v end fraction
therefore space space space space space space straight x dv over dx space equals space fraction numerator 3 straight v plus straight v squared over denominator 1 plus straight v end fraction minus straight v space space space space space or space space space straight x dv over dx space equals space fraction numerator 3 straight v plus straight v squared minus straight v minus straight v squared over denominator 1 minus straight v end fraction
therefore space space space space space space straight x dv over dx equals fraction numerator 2 straight v over denominator 1 plus straight v end fraction
    Separating the variables, fraction numerator 1 plus straight v over denominator straight v end fraction dv space equals space 2 over straight x dx
    Integrating,  integral open parentheses 1 over straight v plus 1 close parentheses space dv space equals space 2 integral 1 over straight x dx
    therefore space space space space space log space open vertical bar straight v close vertical bar plus straight v space equals space 2 space log space open vertical bar straight x close vertical bar space plus space straight c
therefore space space space space log space open vertical bar straight y over straight x close vertical bar plus straight y over straight x space equals space 2 space log space open vertical bar straight x close vertical bar plus straight c
    is the required solution. 
    Question 35
    CBSEENMA12033114

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    2 x y dx + (x2 + 2 y2) dy = 0

    Solution
    The given differential equation is
    2 x y dx + (x2 + 2 y2) dy = 0    or      left parenthesis straight x squared plus 2 straight y squared right parenthesis space dy space equals space minus 2 xy space dx
    therefore space space space space dy over dx space equals space minus fraction numerator 2 xy over denominator straight x squared plus 2 straight y squared end fraction
    Put  y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space straight v plus straight x dv over dx equals negative fraction numerator 2. straight x. space straight v space straight x over denominator straight x squared plus 2 straight v squared straight x squared end fraction space space space or space space space straight v plus straight x dv over dx space equals space minus fraction numerator 2 straight v over denominator 1 plus 2 straight v squared end fraction
therefore space space space space space space straight x dv over dx equals negative fraction numerator 2 straight v over denominator 1 plus 2 straight v squared end fraction minus straight v space space space space space or space space space space space straight x dv over dx equals space fraction numerator negative 2 straight v minus straight v minus 2 straight v cubed over denominator 1 plus 2 straight v squared end fraction
therefore space space space space space straight x dv over dx space equals fraction numerator negative 3 straight v minus 2 straight v cubed over denominator 1 plus 2 straight v squared end fraction space space space space space space space rightwards double arrow space space space space space space fraction numerator 1 plus 2 straight v squared over denominator 3 straight v plus 2 straight v cubed end fraction dv space equals space minus 1 over straight x dx
    Integrating, 1 third integral fraction numerator 3 plus 6 straight v squared over denominator 3 straight v plus 2 straight v cubed end fraction space equals space minus integral 1 over straight x dx
    therefore space space space 1 third space log space open vertical bar 3 straight v space plus space 2 straight v cubed close vertical bar space equals space minus 3 space log space open vertical bar straight x close vertical bar space plus space 3 space log space open vertical bar straight c subscript 1 close vertical bar
therefore space space space log space open vertical bar 3 straight v plus 2 straight v cubed close vertical bar space plus space log space open vertical bar straight x close vertical bar cubed space equals space log space left parenthesis straight c right parenthesis
therefore space space space space open square brackets left parenthesis 3 space straight v plus space 2 straight v cubed right parenthesis space left parenthesis straight x right parenthesis close square brackets cubed space equals space straight c
therefore space space space open parentheses 3 straight y over straight x plus 2 straight y cubed over straight x cubed close parentheses space left parenthesis straight x cubed right parenthesis space equals straight c
or space space space 3 straight x squared straight y plus 2 straight y cubed space equals space straight c comma space which space is space required space solution. space
    Question 36
    CBSEENMA12033115

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    left parenthesis 2 straight x squared straight y plus straight y cubed right parenthesis space dx plus space left parenthesis xy squared minus 3 straight x cubed right parenthesis space dy space equals space 0

    Solution

    The given differential equation is
       left parenthesis 2 straight x squared straight y plus straight y cubed right parenthesis space dx space plus space left parenthesis straight x space straight y squared minus space 3 space straight x cubed right parenthesis space dy space equals space 0
    or                        dy over dx space equals space minus fraction numerator 2 straight x squared straight y plus straight y cubed over denominator xy squared minus 3 straight x cubed end fraction
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space straight v plus straight x dv over dx space equals space minus fraction numerator 2 straight x cubed straight v plus straight v cubed straight x cubed over denominator straight x cubed straight v squared minus 3 straight x cubed end fraction
therefore space space space space straight v plus straight x dv over dx space equals space fraction numerator 2 straight v plus straight v cubed over denominator 3 minus straight v squared end fraction
therefore space space space space space space straight x dv over dx space equals space fraction numerator 2 straight v cubed minus straight v over denominator 3 minus straight v squared end fraction
therefore space space space space fraction numerator 3 minus straight v squared over denominator 2 straight v cubed minus straight v end fraction dv space space equals space 1 over straight x dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.. left parenthesis 1 right parenthesis
    therefore space space integral fraction numerator 3 minus straight v squared over denominator straight v left parenthesis 2 straight v squared minus 1 right parenthesis end fraction dv space equals space integral 1 over straight x dx
    Put fraction numerator 3 minus straight v squared over denominator straight v left parenthesis 2 straight v squared minus 1 right parenthesis end fraction identical to space straight A over straight v plus fraction numerator Bv plus straight c over denominator 2 straight v squared minus 1 end fraction
    therefore space space space space space space space 3 minus straight v squared space identical to space straight A space left parenthesis 2 straight v squared minus 1 right parenthesis space plus space Bv squared plus straight C space straight v                           ...(2)
    Put v = 0 in (2)
    therefore space space space space space space space 3 minus 0 space equals space straight A left parenthesis 0 minus 1 right parenthesis plus 0 plus 0 space space space space space space rightwards double arrow space space space 3 equals space space minus straight A space space space space space space rightwards double arrow space space space straight A space equals space minus 3
    Equating   coefficients in (2) of
    straight v squared right parenthesis            -1 = 2 A + B        rightwards double arrow space space minus 1 space equals space minus 6 plus straight B space space space space space space space space space space rightwards double arrow space space space straight B space equals space 5
    straight v right parenthesis space space space space space space space space space space 0 space equals space straight c space space space space space space space space space space rightwards double arrow space space space space straight C space equals space 0
    therefore space space fraction numerator 3 minus straight v squared over denominator straight v left parenthesis 2 straight v squared minus 1 right parenthesis end fraction identical to fraction numerator negative 3 over denominator straight v end fraction plus fraction numerator 5 straight v over denominator 2 straight v squared minus 1 end fraction
therefore space space space from space left parenthesis 1 right parenthesis space we space get comma
therefore space space space space minus 3 space integral 1 over straight v plus 5 over 4 integral fraction numerator 4 straight v over denominator 2 straight v squared minus 1 end fraction dv space equals space integral 1 over straight x dx
therefore space space space space minus 3 space log space open vertical bar straight v close vertical bar space plus space 5 over 4 log space open vertical bar 2 space straight v squared minus 1 close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space straight c subscript 1
space space space space space space space space space space minus 12 space log space open vertical bar straight v close vertical bar space plus space 5 space log space open vertical bar 2 straight v squared minus 1 close vertical bar space equals space 4 space log space open vertical bar straight x close vertical bar space space plus space 4 space log space straight c subscript 1
therefore space space space minus 12 space log space open vertical bar straight y over straight x close vertical bar space plus space 5 space log space open vertical bar fraction numerator 2 straight y squared over denominator straight x squared end fraction minus 1 close vertical bar space equals space 4 space log space open vertical bar straight x close vertical bar space plus space space 4 space log space straight c subscript 1
therefore space space space minus 12 space log space open vertical bar straight y close vertical bar space plus space 12 space log space open vertical bar straight x close vertical bar space plus space 5 space log space open vertical bar 2 straight y squared minus straight x squared close vertical bar space minus space 10 space log space open vertical bar straight x close vertical bar space minus space 4 space log space open vertical bar straight x close vertical bar space equals space 4 space log space straight c subscript 1
therefore space space space space minus 12 space log space open vertical bar straight y close vertical bar minus 2 space log space open vertical bar straight x close vertical bar space plus space 5 space log space open vertical bar 2 straight y squared minus straight x squared close vertical bar space equals space log space straight c
therefore space space space log space open vertical bar fraction numerator 2 straight y squared minus straight x squared over denominator straight y to the power of 12 straight x squared end fraction close vertical bar space equals space log space straight c
therefore space space space space space space space space fraction numerator 2 straight y squared minus straight x squared over denominator straight x squared space straight y to the power of 12 end fraction space equals space straight c
therefore space space space space space space space 2 space straight y squared minus straight x squared space equals space straight c space straight x squared space straight y to the power of 12 space is space the space required space solution. space

    Question 37
    CBSEENMA12033116

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    straight x space straight y apostrophe space minus space straight y space plus space straight x space sin space space open parentheses straight y over straight x close parentheses space equals 0

    Solution
    The given differential equation is
                     xy apostrophe space minus space straight y plus space straight x space sin space open parentheses straight y over straight x close parentheses space equals space 0
    therefore space space space space space space space space straight x dy over dx space equals space straight y minus straight x space sin straight y over straight x
therefore space space space space space space space space dy over dx space equals space straight y over straight x minus sin straight y over straight x
    Put straight y space equals space straight v space straight x space so space that space space dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space space straight v plus straight x dv over dx space equals space straight v minus sin space straight v comma space space space space space space space space space space space space space space space space therefore space space space straight x space dv over dx space equals space minus sin space straight v
    or            fraction numerator 1 over denominator sin space straight v end fraction dv space equals space minus 1 over straight x dx
              integral space cosec space straight v space dv space equals space minus integral 1 over straight x dx
    therefore space space space space space space log space space open vertical bar tan space straight v over 2 close vertical bar space equals space minus log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar
    or       log space open vertical bar straight x space tan space straight v over 2 close vertical bar space equals space log space open vertical bar straight c close vertical bar space space space space space space space space space space space space or space space space space straight x space tan straight v over 2 space equals straight c
    or     straight x space tan space open parentheses fraction numerator straight y over denominator 2 straight x end fraction close parentheses space equals space straight c space is space the space required space solution. space
    Question 38
    CBSEENMA12033117

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    left parenthesis straight x plus 2 straight y right parenthesis space dx space minus space left parenthesis 2 straight x minus straight y right parenthesis space dy space equals space 0

    Solution

    The given differential equation is
                        left parenthesis straight x plus 2 straight y right parenthesis space dx space minus space left parenthesis 2 straight x minus straight y right parenthesis space dy space equals space 0
    or                 dy over dx space equals space fraction numerator straight x plus 2 straight y over denominator 2 straight x minus straight y end fraction
    Put y = v x  so that   dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space straight v plus straight x dv over dx space equals fraction numerator straight x plus 2 vx over denominator 2 straight x minus vx end fraction
therefore space space space space straight v plus straight x dv over dx space equals space fraction numerator 1 plus 2 straight v over denominator 2 minus straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator 1 plus 2 straight v over denominator 2 minus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 plus 2 straight v minus 2 straight v plus straight v squared over denominator 2 minus straight v end fraction
therefore space space space space space space straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 2 minus straight v end fraction
therefore space space space fraction numerator 2 minus straight v over denominator 1 plus straight v squared end fraction dv space equals space 1 over straight x dx
therefore space space space space integral fraction numerator 2 minus straight v over denominator 1 plus straight v squared end fraction dv space equals space integral 1 over straight x dx
therefore space space space 2 space integral fraction numerator 1 over denominator 1 plus straight v squared end fraction dv minus 1 half integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space integral 1 over straight x dx
therefore space 2 space tan to the power of negative 1 end exponent straight v space minus space 1 half log space left parenthesis 1 plus straight v squared right parenthesis space equals space log space open vertical bar straight x close vertical bar plus space log space straight c subscript 1
therefore space space 4 space tan to the power of negative 1 end exponent straight v space minus space log space left parenthesis 1 plus straight v squared right parenthesis space equals space 2 space log space open vertical bar straight x close vertical bar space plus space 2 space log space straight c subscript 1
therefore space space 4 space tan to the power of negative 1 end exponent straight y over straight x minus log space open parentheses 1 plus straight y squared over straight x squared close parentheses space equals space log space straight x squared plus space log space straight c
therefore space space space 4 space tan to the power of negative 1 end exponent straight y over straight x minus log space left parenthesis straight x squared plus straight y squared right parenthesis space plus space log space straight x squared space equals space log space straight x squared plus space log space straight c
therefore space space space 4 space tan to the power of negative 1 end exponent straight y over straight x minus log space left parenthesis straight x squared plus straight y squared right parenthesis space equals space log space straight c
    which is the required solution. 

    Question 39
    CBSEENMA12033118

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    1 over straight x cos straight y over straight x dx minus open parentheses straight x over straight y sin straight y over straight x plus cos straight y over straight x close parentheses dy space equals 0

    Solution
    The given differential equation is
                       straight y over straight x cos straight y over straight x dx minus open parentheses straight x over straight y sin straight y over straight x plus cos straight y over straight x close parentheses dy space equals space 0
    or                       dy over dx space equals space fraction numerator begin display style straight y over straight x end style cos begin display style straight y over straight x end style over denominator begin display style straight x over straight y end style sin begin display style straight y over straight x end style plus cos begin display style straight y over straight x end style end fraction
    Put straight y space equals space space straight v space straight x space so space that space dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space space space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v space cos space straight v over denominator begin display style 1 over straight v end style sinv space plus cos space straight v end fraction space space space rightwards double arrow space space space space straight v plus straight x dv over dx space equals fraction numerator straight v squared space cosv over denominator sin space straight v plus straight v space cos space straight v end fraction
therefore space space space space space space space straight x dv over dx space equals space fraction numerator straight v squared space cos space straight v over denominator sin space straight v plus straight v space cos space straight v end fraction minus straight v
therefore space space space space space straight x dv over dx space equals space fraction numerator straight v squared space cos space straight v minus space straight v space sin space straight v space minus space straight v squared space cos space straight v over denominator sin space straight v plus straight v space cos space straight v end fraction
therefore space space space space straight x dv over dx space equals negative fraction numerator straight v space sin space straight v over denominator sin space straight v plus straight v space cos space straight v end fraction
    Separating the variables and integrating ,we get,
                           integral fraction numerator sin space straight v plus space straight v space cosv over denominator straight v space sinv end fraction dv space equals negative integral 1 over straight x dx
    therefore space space log space open vertical bar straight v space sinv close vertical bar space equals space minus space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight A close vertical bar
rightwards double arrow space space space log space open vertical bar straight y over straight x sin space straight y over straight x close vertical bar plus space log space open vertical bar straight x close vertical bar space equals space log space open vertical bar straight A close vertical bar
rightwards double arrow space space log space open vertical bar straight y space sin straight y over straight x close vertical bar space minus space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight x close vertical bar space equals space log space open vertical bar straight A close vertical bar
rightwards double arrow space space log space open vertical bar straight y space sin straight y over straight x close vertical bar space equals space log space open vertical bar straight A close vertical bar
rightwards double arrow space space space space space space straight y space sin space straight y over straight x space equals space straight A comma space space space which space is space required space solution. space

    Sponsor Area

    Question 40
    CBSEENMA12033119

    Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
    2 space straight y space straight e to the power of straight x over 4 end exponent space dx plus open parentheses straight y minus 2 space straight x space straight e to the power of straight x over straight y end exponent close parentheses space dy space equals space 0


    Solution
    The given differential equation is
                              2 ye to the power of straight x over straight y end exponent dx plus open parentheses straight y minus 2 xe to the power of straight x over straight y end exponent close parentheses dy space equals space 0
    therefore space space space space space space space space open parentheses straight y minus 2 xe to the power of straight x over straight y end exponent close parentheses space dy space equals space minus 2 space straight y space straight e to the power of straight x over straight y end exponent dx
therefore space space space space space space dx over dy space equals negative fraction numerator straight y minus 2 xe to the power of begin display style straight x over straight y end style end exponent over denominator 2 ye to the power of begin display style straight x over straight y end style end exponent end fraction
therefore space space space space space space space dx over dy space equals space fraction numerator straight y open parentheses 2 begin display style straight x over straight y end style straight e to the power of begin display style straight x over straight y end style end exponent minus 1 close parentheses over denominator 2 straight y space. straight e to the power of begin display style straight x over straight y end style end exponent end fraction space space space space space space space or space space space space space space space space dx over dy space equals space fraction numerator 2 begin display style straight x over straight y end style straight e to the power of begin display style straight x over straight y end style end exponent minus 1 over denominator 2 straight e to the power of begin display style straight x over straight y end style end exponent end fraction
    Put x = v y so that  dx over dy space equals space straight v plus straight y dv over dy
    therefore space space space straight v plus straight y dv over dy space equals fraction numerator 2 ve to the power of straight v minus 1 over denominator 2 straight e to the power of straight v end fraction. space space space space space space therefore space space straight y space dv over dy space equals space fraction numerator 2 straight v space straight e to the power of straight v minus 1 over denominator 2 straight e to the power of straight v end fraction minus straight v
therefore space space space space space straight y dv over dy space equals space fraction numerator 2 ve to the power of straight v minus 1 minus 2 ve to the power of straight v over denominator 2 straight e to the power of straight v end fraction
therefore space space space straight y dv over dy space equals space minus fraction numerator 1 over denominator 2 straight e to the power of straight v end fraction
therefore space space space space space straight e to the power of straight v space dv space equals space minus fraction numerator 1 over denominator 2 space straight y end fraction dy
therefore space space space 2 space integral straight e to the power of straight v space dv space equals space minus integral 1 over straight y dy
therefore space space space space space space space space 2 space straight e to the power of straight v space equals space minus log space open vertical bar straight y close vertical bar space plus space straight c
therefore space space space space space space 2 space straight e to the power of straight x over straight y end exponent space equals space minus log space open vertical bar straight y close vertical bar plus straight c space is space the space required space solution.
    Question 41
    CBSEENMA12033120
    Question 42
    CBSEENMA12033121

    Show that the given differential equation is homogeneous and solve it:
    left parenthesis straight x squared plus xy right parenthesis space dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx

    Solution
    The given differential equation is
                            open parentheses straight x squared plus straight x space straight y close parentheses dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx
    or                dy over dx space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus xy end fraction                                    ...(1)
    It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
    Here,          straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus straight x space straight y end fraction
    Replacing x by λx space and space straight y space by space λy comma we get
                        straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight x squared plus straight lambda squared straight y squared over denominator straight lambda squared straight x squared plus straight lambda squared xy end fraction space equals space fraction numerator straight lambda squared left parenthesis straight x squared plus straight y squared right parenthesis over denominator straight lambda squared left parenthesis straight x squared plus xy right parenthesis end fraction space equals space straight lambda degree space left square bracket straight F space left parenthesis straight x comma space straight y right parenthesis right square bracket
    therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis is a homogeneous function of degree zero.
    therefore space space spacegiven differential equation is a homogeneous differential equation.
    Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight x squared plus straight v squared straight x squared over denominator straight x squared plus vx squared end fraction
rightwards double arrow space space space straight v plus straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space straight x dv over straight d space equals space fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 minus straight v over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space fraction numerator 1 plus straight v over denominator 1 minus straight v end fraction dv space equals space 1 over straight x dx space space space rightwards double arrow space space space space integral open parentheses negative 1 plus fraction numerator 2 over denominator 1 minus straight v end fraction close parentheses dv space equals space integral 1 over straight x dx
therefore space space space space space minus straight v minus 2 space log space left parenthesis 1 minus straight v right parenthesis space equals space log space straight x space plus straight c
rightwards double arrow space space space minus straight y over straight x minus 2 log space open parentheses 1 minus straight y over straight x close parentheses space equals space log space straight x space plus space straight c
rightwards double arrow space space space space minus straight y minus 2 straight x space log space open parentheses fraction numerator straight x minus straight y over denominator straight x end fraction close parentheses space equals space straight x space log space straight x space plus space straight c space straight x
    which is required solution. 
    Question 43
    CBSEENMA12033122

    Show that the given differential equation is homogeneous and solve it:
    straight y apostrophe space equals space fraction numerator straight x plus straight y over denominator straight x end fraction


    Solution
    The given differential equation is
          straight y apostrophe space equals space fraction numerator straight x plus straight y over denominator straight x end fraction space space or space space space dy over dx space equals space fraction numerator straight x plus straight y over denominator straight x end fraction                            ...(1)
    It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
    Here         straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x plus straight y over denominator straight x end fraction
    Replacing x by λx space and space straight y space by space λy comma we get,
                   straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator λx space plus space λy over denominator λx end fraction space equals space fraction numerator straight lambda left parenthesis straight x plus straight y right parenthesis over denominator λx end fraction space equals space straight lambda degree space left square bracket straight F left parenthesis straight x comma space straight y right parenthesis right square bracket
    therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis space is space straight a space homogeneous function of degree zero.
    therefore space space given differential equation is a homogeneous differential equation.
    Put y = v x,   therefore space space space dy over dx space equals space straight v. space 1 space plus space straight x dv over dx
    therefore space space from space left parenthesis 1 right parenthesis comma space straight v plus straight x dv over dx space equals space fraction numerator straight x plus straight v space straight x over denominator straight x end fraction
    rightwards double arrow space space straight v plus straight x dv over dx space equals space 1 plus space straight v space space space space space rightwards double arrow space space space straight x dv over dx space equals space 1 space space space space space space space space space space space rightwards double arrow space space space space dv space equals space space 1 over straight x dx
    Integrating,  integral space dv space equals space integral 1 over straight x dx comma space space or space space space straight v space equals space log space open vertical bar straight x close vertical bar space plus space straight c
    or            straight y over straight x space equals space space log space open vertical bar straight x close vertical bar space plus space straight c comma space space which space is space required space solution space. space
    Question 44
    CBSEENMA12033123

    Show that the given differential equation is homogeneous and solve it:
    (x-y) dy - (x+y) dx = 0



    Solution
    The given differential equation is
                           (x-y) dy - (x+y) dx = 0   or  (x-y) dy = (x+y) dy
    or                    dy over dx space equals space fraction numerator straight x plus straight y over denominator straight x minus straight y end fraction                               ...(1)
    It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
    Here,     straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x plus straight y over denominator straight x minus straight y end fraction
    Replacing x by λx and y by λx comma space we space get comma
                                    straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator λx plus λy over denominator λx minus λy end fraction space equals space fraction numerator straight lambda left parenthesis straight x plus straight y right parenthesis over denominator straight lambda left parenthesis straight x minus straight y right parenthesis end fraction space equals space straight lambda degree space space left square bracket straight F left parenthesis straight x comma space straight y right parenthesis right square bracket

    ∴       F(x, y) is a homogeneous function of degree zero.
    ∴     given differential equation is a homogeneous differential equation.
    Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space straight v plus straight x dv over dx space equals space fraction numerator straight x plus vx over denominator straight x minus vx end fraction space space or space space space straight x dv over dx equals fraction numerator 1 plus straight v over denominator 1 minus straight v end fraction minus straight v
therefore space space space straight x dv over dx space equals fraction numerator 1 plus straight v minus straight v plus straight v squared over denominator 1 minus straight v end fraction space space or space space space straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 1 minus straight v end fraction
    Separating the variables,   fraction numerator 1 minus straight v over denominator 1 plus straight v squared end fraction dv space equals space 1 over straight x dx
    Integrating ,  integral fraction numerator 1 minus straight v over denominator 1 plus straight v squared end fraction dv space equals space integral 1 over straight x dx
    or   integral fraction numerator 1 over denominator 1 plus straight v squared end fraction dv space minus space 1 half integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space integral 1 over straight x dx space space or space space tan to the power of negative 1 end exponent straight v minus 1 half log space left parenthesis 1 plus straight v squared right parenthesis space equals space log space open vertical bar straight x close vertical bar plus straight c
    or  tan to the power of negative 1 end exponent straight y over straight x minus 1 half log space open parentheses 1 plus straight y squared over straight x squared close parentheses space equals space log space open vertical bar straight x close vertical bar plus straight c
    or   tan to the power of negative 1 end exponent straight y over straight x minus 1 half log space open parentheses fraction numerator straight x squared plus straight y squared over denominator straight x squared end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar space plus space straight c space is space the space required space solution. space

    Question 45
    CBSEENMA12033124

    Show that the given differential equation is homogeneous and solve it:
    open parentheses straight x squared minus straight y squared close parentheses space dx space plus space 2 xy space dy space equals space 0




    Solution

    The given differential equation is
                      open parentheses straight x squared minus straight y squared close parentheses dx plus 2 xy space dy space equals space 0 space space or space space space 2 xy space dy space equals space left parenthesis straight y squared minus straight x squared right parenthesis space dx
    or                    dy over dx space equals fraction numerator straight y squared minus straight x squared over denominator 2 xy end fraction                 
    It is a differential equation of the form dy over dx space equals straight F left parenthesis straight x comma space straight y right parenthesis
    Here,       straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight y squared minus straight x squared over denominator 2 space straight x space straight y end fraction
    Replacing x by λx and y by λy comma we get,
               straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight y squared minus straight lambda squared straight x squared over denominator 2 space straight lambda squared space straight x space straight y end fraction space equals space fraction numerator straight lambda squared space left parenthesis straight y squared minus straight x squared right parenthesis over denominator straight lambda squared space left parenthesis 2 xy right parenthesis end fraction space equals space straight lambda degree space space left square bracket straight F left parenthesis straight x comma space straight y right parenthesis right square bracket
    ∴    F(x, y) is a homogeneous function of degree zero.
    ∴   given differential equation is a homogeneous differential equation.
    Put y = vx so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space straight v plus straight x dv over dx equals fraction numerator straight v squared straight x squared minus straight x squared over denominator 2 space straight v space straight x squared end fraction space space or space space space straight v plus straight x dv over dx space equals space fraction numerator straight v squared minus 1 over denominator 2 straight v end fraction
therefore space space space space space space space space space straight x dv over dx space equals space fraction numerator straight v squared minus 1 over denominator 2 straight v end fraction minus straight v space space space or space space space straight x dv over dx space equals fraction numerator straight v squared minus 1 minus 2 straight v squared over denominator 2 straight v end fraction
therefore space space space space space space straight x dv over dx space equals fraction numerator negative 1 minus straight v squared over denominator 2 straight v end fraction space space space space rightwards double arrow space space space space space space fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus 1 over straight x space dx
therefore space space space space space integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space space log space open vertical bar 1 plus straight v squared close vertical bar space equals space minus log space open vertical bar straight x close vertical bar plus straight c apostrophe
therefore space space space space log space open vertical bar 1 plus straight v squared close vertical bar space plus space log space open vertical bar straight x close vertical bar space equals space space straight c apostrophe
therefore space space log space open vertical bar left parenthesis 1 plus straight v squared right parenthesis thin space left parenthesis straight x right parenthesis close vertical bar space equals space straight c apostrophe
therefore space space space space space space space space straight x left parenthesis 1 plus straight v squared right parenthesis space equals space straight e to the power of straight c apostrophe end exponent space space space space space space space space rightwards double arrow space space space space space space space space straight x open parentheses 1 plus straight y squared over straight x squared close parentheses space equals space straight c
therefore space space space space straight x squared plus straight y squared space equals space straight c space straight x space
    is the required solution. 

    Question 46
    CBSEENMA12033125

    Show that the given differential equation is homogeneous and solve it:
    straight x squared dy over dx space equals space straight x squared minus 2 straight y squared plus straight x space straight y





    Solution
    The given differential equation is
                space straight x squared dy over dx space equals space straight x squared minus 2 straight y squared plus xy
    or     dy over dx space equals fraction numerator straight x squared minus 2 straight y squared plus straight x space straight y over denominator straight x squared end fraction                            ...(1)
    It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
    Here,       straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x squared minus 2 straight y squared plus straight x space straight y over denominator straight x squared end fraction
    Replacing x by λx and y by λy, we get.
                    straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight x squared minus 2 straight lambda squared straight y squared plus straight lambda squared straight x space straight y over denominator straight lambda squared straight x squared end fraction space equals space fraction numerator straight lambda squared left parenthesis straight x squared minus 2 straight y squared plus xy right parenthesis over denominator straight lambda squared straight x squared end fraction space equals space straight lambda degree space left square bracket straight F left parenthesis straight x comma space straight y right parenthesis right square bracket               

    ∴ F(x, y) is a homogeneous function of degree zero.
    ∴      given differential equation is a homogeneous differential equation.
    Put   y = vx   rightwards double arrow space space dy over dx space equals space straight v. space 1 space space plus straight x space dv over dx
    Substituting these values of y and dy over dx in the given equation, we get
                      straight v plus straight x dv over dx space equals space fraction numerator straight x squared minus 2 straight v squared straight x squared plus vx squared over denominator straight x squared end fraction      
    or                  straight v plus straight x dv over dx equals 1 minus 2 straight v squared plus straight v space space space space space rightwards double arrow space space space space space straight x dv over dx equals 1 minus 2 straight v squared
    rightwards double arrow space space space space space space space space 1 over straight x dx space equals space fraction numerator 1 over denominator 1 minus 2 straight v squared end fraction dv
    Integrating, integral 1 over straight x dx space equals space integral fraction numerator 1 over denominator 1 minus 2 straight v squared end fraction dv
    therefore space space space space space integral 1 over straight x dx space equals space 1 half integral fraction numerator dv over denominator open parentheses begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses squared minus straight v squared end fraction
therefore space space space space space log space open vertical bar straight x close vertical bar space space equals 1 half. space fraction numerator 1 over denominator 2. space begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction log space open vertical bar fraction numerator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style plus straight v over denominator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style minus straight v end fraction close vertical bar plus straight c
rightwards double arrow space space space space space space space log space open vertical bar straight x close vertical bar space equals space fraction numerator 1 over denominator 2 square root of 2 end fraction space log space space open vertical bar fraction numerator 1 plus square root of 2 space straight v over denominator 1 minus square root of 2 straight v end fraction close vertical bar plus straight c
rightwards double arrow space space space log space open vertical bar straight x close vertical bar space equals space fraction numerator 1 over denominator 2 square root of 2 end fraction log space open vertical bar fraction numerator 1 plus square root of 2. space begin display style straight y over straight x end style over denominator 1 minus square root of 2. begin display style straight y over straight x end style end fraction close vertical bar plus straight c
rightwards double arrow space space space space log space open vertical bar straight x close vertical bar space equals space fraction numerator 1 over denominator 2 square root of 2 end fraction log space open vertical bar fraction numerator straight x plus square root of 2 straight y over denominator straight x minus square root of 2 straight y end fraction close vertical bar plus straight c

    Question 47
    CBSEENMA12033126

    Show that the given differential equation is homogeneous and solve it:
    open curly brackets straight x space cos space open parentheses straight y over straight x close parentheses plus straight y space sin space open parentheses straight y over straight x close parentheses close curly brackets straight y space dx space equals space open curly brackets straight y space sin space open parentheses straight y over straight x close parentheses minus straight x space cos space open parentheses straight y over straight x close parentheses close curly brackets space straight x space dy






    Solution

    The given differential equation is
                  open curly brackets straight x space cos space open parentheses straight y over straight x close parentheses space plus space straight y space sin space open parentheses straight y over straight x close parentheses close curly brackets straight y space dy space equals space open curly brackets straight y space sin space open parentheses straight y over straight x close parentheses minus straight x space cos space open parentheses straight y over straight x close parentheses close curly brackets straight x space dy
    or      dy over dx space equals space fraction numerator straight x space straight y space open curly brackets cos space begin display style straight y over straight x end style plus begin display style straight y over straight x end style sin space begin display style straight y over straight x end style close curly brackets over denominator straight x squared open curly brackets begin display style straight y over straight x end style sin begin display style straight y over straight x end style minus cos space begin display style straight y over straight x end style close curly brackets end fraction
    or         dy over dx space equals space fraction numerator begin display style straight y over straight x end style open curly brackets cos space begin display style straight y over straight x end style plus begin display style straight y over straight x end style sin begin display style straight y over straight x end style close curly brackets over denominator begin display style straight y over straight x end style sin space begin display style straight y over straight x end style minus cos begin display style straight y over straight x end style end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Since R.H.S. of (1) is of the form  straight F open parentheses straight y over straight x close parentheses comma therefore, it is a homogeneous differential equation.
     Put y=  v x so that dy over dx space equals space straight v plus straight x space dv over dx
    therefore space space space space left parenthesis 1 right parenthesis space space becomes comma space space space straight v plus straight x dv over dx space equals space fraction numerator straight v left parenthesis cos space straight v space plus space straight v space sin space straight v right parenthesis space over denominator straight v space sin space straight v space minus space cos space straight v end fraction
    or               straight x dv over dx space equals space fraction numerator straight v space cosv plus straight v squared space sin space straight v over denominator straight v space sin space straight v space minus space cos space straight v end fraction minus straight v
    or            straight x dv over dx space equals space fraction numerator 2 space straight v space cos space straight v over denominator straight v space sin space straight v space minus space cos space straight v end fraction
    Separating the variables, 
                          open parentheses fraction numerator straight v space sin space straight v space minus space cos space straight v over denominator straight v space cos space straight v end fraction close parentheses space dv space equals space 2 over straight x dx space space or space space space open parentheses tan space straight v minus space 1 over straight v close parentheses dv space equals space 2 over straight x dx
    Integrating,      integral open parentheses tan space straight v minus 1 over straight v close parentheses space dv space equals space 2 space integral 1 over straight x dx
    therefore space space space minus log space open vertical bar cos space straight v close vertical bar minus log space open vertical bar straight v close vertical bar space equals space 2 space log space open vertical bar straight x close vertical bar plus straight c
rightwards double arrow space space space space log space open vertical bar straight v space cos space straight v close vertical bar space plus space 2 space log open vertical bar straight x close vertical bar space equals space minus straight c
rightwards double arrow space space space log space left parenthesis open vertical bar straight v space cos space straight v close vertical bar space open vertical bar straight x squared close vertical bar right parenthesis space equals space minus straight c
rightwards double arrow space space space space space open vertical bar straight v space cos space straight v close vertical bar space open vertical bar straight x close vertical bar squared space equals space straight e to the power of negative straight c end exponent
rightwards double arrow space space straight x squared straight v space cos space straight v space equals space plus-or-minus straight e to the power of negative straight c end exponent
rightwards double arrow space space space space straight x squared straight y over straight x cos space open parentheses straight y over straight x close parentheses space equals straight A comma space space where space straight A space space equals space plus-or-minus space straight e to the power of negative straight c end exponent
rightwards double arrow space space space straight x space straight y space cos space straight y over straight x space equals straight A comma space which space is space the space required space general space solution. space

    Question 48
    CBSEENMA12033127

    Solve straight x space dy space minus space straight y space dx space equals space square root of straight x squared plus straight y squared end root space dx.






    Solution
    The given differential equation is
                     straight x space dy minus space straight y space dx space equals space square root of straight x squared plus straight y squared end root space dx
    or                         straight x space dy space equals space open parentheses straight y plus square root of straight x squared plus straight y squared end root close parentheses dx
    or                    dy over dx space equals space fraction numerator straight y plus square root of straight x squared plus straight y squared end root over denominator straight x end fraction
    Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space left parenthesis 1 right parenthesis space becomes comma space space space space space straight v plus straight x dv over dx space equals space fraction numerator vx plus square root of straight x squared plus straight v squared straight x squared end root over denominator straight x end fraction
    or          straight x dv over dx space equals straight v plus square root of 1 plus straight v squared end root minus straight v comma space space space or space space space space straight x dv over dx space equals space square root of 1 plus straight v squared end root
    Separating the variables, fraction numerator 1 over denominator square root of 1 plus straight v squared end root end fraction dv space equals space 1 over straight x dx
    Integrating integral fraction numerator 1 over denominator square root of 1 plus straight v squared end root end fraction dv space equals space integral 1 over straight x dx space space space space space space space space space space space space space space space space rightwards double arrow space space space space log space open vertical bar straight v plus square root of 1 plus straight v squared end root close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space straight c
    or      open vertical bar straight v plus square root of 1 plus straight v squared end root close vertical bar space equals space straight c open vertical bar straight x close vertical bar space space space space space space space space space space space space space space space space space space space space space space space space space space space or space space space space space open vertical bar straight y over straight x plus square root of 1 plus straight y squared over straight x squared end root close vertical bar space equals space straight c open vertical bar straight x close vertical bar
    or     open vertical bar straight y plus square root of straight x squared plus straight y squared end root space close vertical bar space equals space straight c open vertical bar straight x close vertical bar squared comma space space or space space space space open vertical bar straight y plus square root of straight x squared plus straight y squared end root close vertical bar space equals space straight c space straight x squared
    therefore space space straight y plus square root of straight x squared plus straight y squared end root space equals space plus-or-minus space straight c space straight x squared space space space or space space space straight y plus square root of straight x squared plus straight y squared end root space equals space straight A space straight x squared space space where space straight A space equals space plus-or-minus straight c
    which is required solution. 
    Question 49
    CBSEENMA12033128

    Find a one parameter family of solutions of each of the following differential equation:
    y2 + x2 y' = x y y'

    Solution
    The given differential equation is
                       straight y squared plus straight x squared dy over dx equals space straight x. space straight y space dy over dx
    or         left parenthesis straight x space straight y space minus space straight x squared right parenthesis space dy over dx space equals straight y squared
    therefore space space space space space space space space space dy over dx space equals space fraction numerator straight y squared over denominator xy minus straight y squared end fraction
    Put straight y space equals space straight v space straight x space so space that space dy over dx space equals straight v plus straight x dv over dx
    therefore space space space space straight v plus straight x dv over dx equals space fraction numerator straight v squared minus straight x squared over denominator straight x squared straight v minus straight x squared end fraction
therefore space space straight v plus straight x dv over dx space equals space fraction numerator straight v squared over denominator straight v minus 1 end fraction
therefore space space space space space space space space straight x dv over dx space equals fraction numerator straight v squared over denominator straight v minus 1 end fraction minus straight v
therefore space space space space space space straight x dv over dx space equals space fraction numerator straight v over denominator straight v minus 1 end fraction
therefore space space space space space fraction numerator straight v minus 1 over denominator straight v end fraction dv space equals space 1 over straight x dx
therefore space space space space integral open parentheses 1 minus 1 over straight v close parentheses space dv space equals space integral 1 over straight x dx
therefore space space space space space straight v minus log space straight v space equals space logx plus log space straight c
therefore space space space space straight y over straight x minus log space straight y over straight x space equals space log space straight x space plus space log space straight c
therefore space space space space straight y over straight x minus log space straight y space equals space log space straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight y over straight x space equals space log space straight c space straight y
therefore space space space space space space space space space straight c space straight y space equals space straight e to the power of straight y over straight x end exponent space is space the space required space solution. space
    Question 50
    CBSEENMA12033129

    Find a one parameter family of solutions of each of the following differential equation:
    (y2 – 2xy) dx = (x2 – 2xy) dy

    Solution
    The given differential equation is
                           (y2 – 2xy) dx = (x2 – 2xy) dy
    or               dy over dx space equals fraction numerator straight y squared minus 2 xy over denominator straight x squared minus 2 xy end fraction
    Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v squared straight x squared minus 2 vx squared over denominator straight x squared minus 2 vx squared end fraction
therefore space space space space space space space straight v plus straight x dv over dx space equals fraction numerator straight v squared minus 2 straight v over denominator 1 minus 2 straight v end fraction
therefore space space space space space space space space space space straight x dv over dx space equals space fraction numerator straight v squared minus 2 straight v over denominator 1 minus 2 straight v end fraction minus straight v space equals space fraction numerator straight v squared minus 2 straight v minus straight v plus 2 straight v squared over denominator 1 minus 2 straight v end fraction
therefore space space space space space space space straight x dv over dx space equals space fraction numerator 3 straight v squared minus 3 straight v over denominator 1 minus 2 straight v end fraction
    Separating the variables and integrating, we get,
                       integral fraction numerator 1 minus 2 straight v over denominator 3 straight v squared minus 3 straight v end fraction equals space space integral 1 over straight x dx space space or space space 1 third integral fraction numerator 1 minus 2 straight v over denominator straight v squared minus straight v end fraction dv space equals integral 1 over straight x dx
    therefore space space space space minus 1 third space log space left parenthesis straight v squared minus straight v right parenthesis space equals space log space straight x plus space log space straight c
therefore space space space space log space left parenthesis straight v squared minus straight v right parenthesis to the power of fraction numerator negative 1 over denominator 3 end fraction end exponent space equals space log space cx space
therefore space space space space space space space space space space space left parenthesis straight v squared minus straight v right parenthesis to the power of negative 1 third end exponent space equals space straight c space straight x
therefore space space space space space space space open parentheses straight y squared over straight x squared minus straight y over straight x close parentheses to the power of negative 1 third end exponent space equals space space straight c space straight x
therefore space space space space space space open parentheses straight y squared minus straight x space straight y close parentheses to the power of negative 1 third end exponent space equals space cx space cross times space straight x to the power of fraction numerator negative 2 over denominator 3 end fraction end exponent
therefore space space space space space space space space left parenthesis straight y squared minus straight x space straight y right parenthesis to the power of fraction numerator negative 1 over denominator 3 end fraction end exponent space equals space straight c space straight x to the power of 1 third end exponent
therefore space space space space space space space space space left parenthesis straight y squared minus straight x space straight y right parenthesis to the power of negative 1 end exponent space equals space Ax
therefore space space space space space space fraction numerator 1 over denominator straight y squared minus xy end fraction space equals space Ax
or space space space xy squared minus straight x squared straight y space equals space straight c comma space which space is space required space solution. space      
    Question 51
    CBSEENMA12033130

    Find a one parameter family of solutions of each of the following differential equation:
    y2 dx + (x2 – x y + y2) dy = 0

    Solution
    The given differential equation is
                  y2 dx + (x2 – x y + y2) dy = 0      or      (x2 – x y + y2) dy = -  y2 dx
    therefore space space space space space space space space space space space space space space space space space space space space dy over dx equals negative fraction numerator straight y squared over denominator straight x squared minus xy plus straight y squared end fraction
    Put y = vx so that  dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space space straight v plus straight x dv over dx equals negative fraction numerator straight v squared straight x squared over denominator straight x squared minus vx squared plus straight v squared straight x squared end fraction
therefore space space space space space straight v plus straight x dv over dx equals negative fraction numerator straight v squared over denominator 1 minus straight v plus straight v squared end fraction
therefore space space space space space space straight x dv over dx space equals space minus fraction numerator straight v squared over denominator 1 minus straight v plus straight v squared end fraction minus straight v
therefore space space space space space straight x dv over dx equals fraction numerator negative straight v squared minus straight v plus straight v squared minus straight v cubed over denominator 1 minus straight v plus straight v squared end fraction
therefore space space space space space space straight x dv over dx equals fraction numerator negative straight v minus straight v cubed over denominator 1 minus straight v plus straight v squared end fraction
therefore space space fraction numerator 1 minus straight v plus straight v squared over denominator straight v plus straight v cubed end fraction dv space equals space minus 1 over straight x dx
therefore space space space space space integral fraction numerator 1 minus straight v plus straight v squared over denominator straight v left parenthesis 1 plus straight v squared right parenthesis end fraction space identical to space straight A over straight v plus fraction numerator Bv plus straight c over denominator 1 plus straight v squared end fraction
         Multiplying both sides by v (1 + v2), we get.
                            1 minus straight v plus straight v squared space equals space straight A thin space left parenthesis 1 plus straight v squared right parenthesis space plus space Bv squared plus Cv                  ...(1)
    Put                       v = 0 in (1)
    therefore space space space space space space 1 minus 0 plus 0 space equals space straight A space left parenthesis 1 plus 0 right parenthesis space plus space 0 space plus space 0. space space space space space space rightwards double arrow space space space straight A space equals space 1
    Equating coefficients in (1) of
    straight v squared right parenthesis               1 = A + B                 rightwards double arrow 1 space equals 1 space plus space straight B space space space space space space space space space space space space space space space space rightwards double arrow space space space straight B space equals space 0
    v)                 -1 = C                       rightwards double arrow space straight C space equals space minus 1
    therefore space space space space space fraction numerator 1 minus straight v plus straight v squared over denominator straight v left parenthesis 1 plus straight v squared right parenthesis end fraction identical to 1 over straight v plus fraction numerator negative 1 over denominator 1 plus straight v squared end fraction
    therefore space space space space space from space left parenthesis 1 right parenthesis comma space we space get
                 integral open parentheses 1 over straight v minus fraction numerator 1 over denominator 1 plus straight v squared end fraction close parentheses space dv space equals space minus integral 1 over straight x dx
    therefore space space log space open vertical bar straight v close vertical bar space minus space tan to the power of negative 1 end exponent straight v space equals space space minus space log space open vertical bar straight x close vertical bar space plus space straight c
therefore space space space log space open vertical bar straight y over straight x close vertical bar space minus space tan to the power of negative 1 end exponent straight y over straight x space equals space minus log space open vertical bar straight x close vertical bar space plus space log space straight A
therefore space space space log space open vertical bar straight y close vertical bar space minus space log space open vertical bar straight x close vertical bar space minus space tan to the power of negative 1 end exponent straight y over straight x space equals space minus log space open vertical bar straight x close vertical bar plus space space log space straight A
therefore space space space log space open vertical bar straight y close vertical bar minus log space straight A space equals space space tan to the power of negative 1 end exponent straight y over straight x
therefore space space space log space open vertical bar fraction numerator open vertical bar straight y close vertical bar over denominator straight A end fraction close vertical bar space equals tan to the power of negative 1 end exponent straight y over straight x space space space space rightwards double arrow space space space space fraction numerator open vertical bar straight y close vertical bar over denominator straight A end fraction space equals space straight e to the power of tan to the power of negative 1 end exponent straight y over straight x end exponent
therefore space space space space space space space space space space space space space space space space space space open vertical bar straight y close vertical bar space equals space Ae to the power of tan to the power of negative 1 end exponent straight y over straight x end exponent
therefore space space space space space space space space space space space space space space space space space space straight y squared space equals space space straight c space straight e space to the power of 2 space tan to the power of negative 1 end exponent straight y over straight x end exponent
    is the required solution. 
    Question 52
    CBSEENMA12033131

    Find a one parameter family of solutions of each of the following differential equation:
     (x2 + x y) dy = (x2 + y2) dx  

    Solution
    The given differential equation is
                                          (x2 + x y) dy = (x2 + y2) dx  
    or                     dy over dx space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus xy end fraction                                   ...(1)
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space space straight v plus straight x dv over dx equals fraction numerator straight x squared plus straight v squared space straight x squared over denominator straight x squared plus straight v space straight x squared end fraction
rightwards double arrow space space space space straight v plus straight x dv over dx equals fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction space space space space space space space rightwards double arrow space space space straight x dv over dx space equals fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 minus straight v over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space space fraction numerator 1 plus straight v over denominator 1 minus straight v end fraction dv space equals space 1 over straight x dx space space space space rightwards double arrow space space integral open parentheses negative 1 plus fraction numerator 2 over denominator 1 minus straight v end fraction close parentheses dv space equals integral 1 over straight x dx
therefore space space minus straight v minus 2 space log space left parenthesis 1 minus straight v right parenthesis space equals space log space straight x space plus straight c space space space space rightwards double arrow space space space space space minus straight y over straight x minus 2 space log space open parentheses 1 minus straight y over straight x close parentheses space equals space log space straight x plus straight c
therefore space space space space space straight y minus 2 straight x space log space open parentheses fraction numerator straight x minus straight y over denominator straight x end fraction close parentheses space equals space straight x space logx plus space cx
    which is required solution. 
    Question 53
    CBSEENMA12033132

    Solve the following differential equation:
    open parentheses 1 plus straight e to the power of straight x over straight y end exponent close parentheses space dx space plus space straight e to the power of straight x over straight y end exponent space open parentheses 1 minus straight x over straight y close parentheses dy space equals space 0.

    Solution
    The given differential equation is
                       open parentheses 1 plus straight e to the power of straight x over straight y end exponent close parentheses space dx space plus space straight e to the power of straight x over straight y end exponent open parentheses 1 minus straight x over straight y close parentheses dy space equals space 0 space space space space space or space space space dy over dx equals fraction numerator 1 plus straight e to the power of begin display style straight x over straight y end style end exponent over denominator straight e to the power of begin display style straight x over straight y end style end exponent open parentheses begin display style straight x over straight y minus 1 end style close parentheses end fraction space space space space space space space... left parenthesis 1 right parenthesis
      Put  straight x space equals space straight v space straight y space space space space or space space dx over dy equals straight v plus straight y dv over dy
     therefore space space from space left parenthesis 1 right parenthesis comma space space fraction numerator 1 over denominator straight v plus straight y begin display style dv over dy end style end fraction equals space fraction numerator 1 plus straight e to the power of straight v over denominator straight e to the power of straight v left parenthesis straight v minus 1 right parenthesis end fraction space space space or space space space space straight v plus straight y dv over dy space equals fraction numerator straight e to the power of straight v left parenthesis straight v minus 1 right parenthesis over denominator 1 plus straight e to the power of straight v end fraction
    or      straight y dv over dy space equals fraction numerator straight e to the power of straight v left parenthesis straight v minus 1 right parenthesis over denominator 1 plus straight e to the power of straight v end fraction minus straight v space space equals space fraction numerator ve to the power of straight v minus straight e to the power of straight v minus straight v minus straight v space straight e to the power of straight v over denominator 1 plus straight e to the power of straight v end fraction
    or       straight y dv over dy equals space fraction numerator negative left parenthesis straight e to the power of straight v plus straight v right parenthesis over denominator 1 plus straight e to the power of straight v end fraction space space space or space space space fraction numerator 1 plus straight e to the power of straight v over denominator straight v plus straight e to the power of straight v end fraction dv space equals space minus dy over straight y
    or       integral fraction numerator 1 plus straight e to the power of straight v over denominator straight v plus straight e to the power of straight v end fraction dv space equals space minus integral 1 over straight y dy space space space space space or space space space space log space open vertical bar straight v plus straight e to the power of straight v close vertical bar space equals space minus log space open vertical bar straight y close vertical bar space plus space log space open vertical bar straight c close vertical bar
    therefore space space log space open vertical bar straight v plus straight e to the power of straight v close vertical bar space equals space log space open vertical bar straight c over straight y close vertical bar space space space or space space left parenthesis straight v plus straight e to the power of straight v right parenthesis space straight y space equals space straight c space space space space or space space space space open parentheses straight x over straight y plus straight e to the power of straight x over straight y end exponent close parentheses straight y space equals space straight c
    or     straight x plus straight y space straight e to the power of straight x over straight y end exponent equals space straight c space is space the space required space solution. space
    Question 54
    CBSEENMA12033133

    Solve open parentheses straight x space sin space straight y over straight x close parentheses dy space equals open parentheses straight y space sin space straight y over straight x minus straight x close parentheses dx

    Solution
    The given differential equation is
                        open parentheses straight x space sin space straight y over straight x close parentheses dy space equals space open parentheses ysin straight y over straight x minus straight x close parentheses dx space space space space space space or space space space space dy over dx equals fraction numerator ysin begin display style straight y over straight x end style minus straight x over denominator straight x space sin begin display style straight y over straight x end style end fraction space space space space space... left parenthesis 1 right parenthesis
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space left parenthesis 1 right parenthesis space becomes comma space space straight v plus straight x dv over dx equals fraction numerator straight v space straight x space sin space straight v space minus space straight x over denominator straight x space sin space straight v end fraction
    or       straight v plus straight x dv over dx equals fraction numerator straight v space sinv minus 1 over denominator sin space straight v end fraction space space space or space space space straight x dv over dx equals fraction numerator straight v space sinv minus 1 over denominator sin space straight v end fraction minus straight v space space space or space space straight x dv over dx equals negative fraction numerator 1 over denominator sin space straight v end fraction
    Separating the variables, sin space straight v space dv space equals space minus 1 over straight x dx
    Integrating,   negative cos space straight v space equals space minus log space open vertical bar straight x close vertical bar space minus space straight c space space space or space cos space open parentheses straight y over straight x close parentheses space equals space log space open vertical bar straight x close vertical bar space plus straight c
    which is required solution. 
    Question 55
    CBSEENMA12033134

    Show that the differential equation straight x space cos space open parentheses straight y over straight x close parentheses dy over dx space equals straight y space cos space open parentheses straight y over straight x close parentheses plus straight x is homogeneous and solve it. 

    Solution
    The given differential equation is
                     space straight x space cos space open parentheses straight y over straight x close parentheses space dy over dx space equals space straight y space cos space open parentheses straight y over straight x close parentheses plus space straight x space space space or space space space space dy over dx space equals fraction numerator straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction      ...(1)
    It is differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis.
    Here,  straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction
    Replacing x by straight lambda space straight x  and y by λy comma we get
       space straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda space open square brackets straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x close square brackets over denominator straight lambda space open parentheses straight x space cos space begin display style straight y over straight x end style close parentheses end fraction space equals space straight lambda degree space space left square bracket straight F space left parenthesis straight x comma space straight y right parenthesis right square bracket
    therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis is a homogeneous function of degree zero. 
    therefore space the given differential equation is a homogeneous differential equation
    Put y = vx that dy over dx equals straight v plus straight x dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space cos space open parentheses begin display style vx over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style vx over straight x end style close parentheses end fraction
    therefore space space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space cos space straight v space plus space straight x over denominator straight x space cos space straight v end fraction
    or     straight v plus straight x dv over dx space equals fraction numerator straight v space cos space straight v plus 1 over denominator cos space straight v end fraction space space or space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v space plus space 1 over denominator cos space straight v end fraction minus straight v
    therefore space space space space space space space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v plus 1 minus straight v space cos space straight v over denominator cos space straight v end fraction
therefore space space space space straight x dv over dx equals fraction numerator 1 over denominator cos space straight v end fraction
    Separating the variables, we get,
                         cosv space dv space equals space 1 over straight x dx
    Integrating,   integral space cos space straight v space dv space equals space integral 1 over straight x dx
    therefore                   sin space straight v space equals space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar
    or           sin space straight y over straight x space equals space log space open vertical bar straight c space straight x close vertical bar space which space is space required space solution. space
    Question 56
    CBSEENMA12033135

    Show that the differential equation:
    left parenthesis straight x space dy space minus space straight y space dx right parenthesis space straight y space sin space open parentheses straight y over straight x close parentheses space equals space left parenthesis straight y space dx space plus space straight x space dy right parenthesis space straight x space cos space open parentheses straight y over straight x close parentheses 

    Solution
    The given differential equation is
                         left parenthesis straight x space dy space minus space straight y space dx right parenthesis space straight y space sin space straight y over straight x space equals space left parenthesis straight y space dx plus space straight x space dy right parenthesis straight x space cos straight y over straight x
    or           straight x space straight y space sin space straight y over straight x space dy space minus space straight y squared space sin space straight y over straight x dx space equals space xy space sin space straight y over straight x dx space plus space straight x squared space cos space straight y over straight x dy
    or         open square brackets straight x space straight y space sin space open parentheses straight y over straight x close parentheses minus space straight x squared space cos space open parentheses straight y over straight x close parentheses close square brackets dy space equals space open square brackets straight x space straight y space cos space open parentheses straight y over straight x close parentheses plus straight y squared space sin space open parentheses straight y over straight x close parentheses close square brackets dx
    or                    dy over dx space equals fraction numerator straight x space straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight y squared space sin space open parentheses begin display style straight y over straight x end style close parentheses over denominator space straight x space straight y space sin space open parentheses begin display style straight y over straight x end style close parentheses minus straight x squared space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction
    Dividing numerator and denominator on R.H.S. by straight x squared comma we get
                                dy over dx space equals space fraction numerator begin display style straight y over straight x end style cos space open parentheses begin display style straight y over straight x end style close parentheses plus open parentheses begin display style straight y squared over straight x squared end style close parentheses space sin space open parentheses begin display style straight y over straight x end style close parentheses over denominator begin display style straight y over straight x end style sin space open parentheses begin display style straight y over straight x end style close parentheses minus cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    which is a homogeneous differential equation of the form dy over dx space equals space straight F open parentheses straight y over straight x close parentheses.
    Put y = v x so that dy over dx space equals space straight v plus space straight x dv over dx
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight v space cos space straight v plus space straight v squared space sin space straight v over denominator straight v space sin space straight v minus cos space straight v end fraction
or space space space space space space space straight x dv over dx equals space fraction numerator straight v space cos space straight v plus space straight v squared space sinx over denominator straight v space sin space straight v space minus space cos space straight v end fraction minus straight v
or space space space space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v plus space straight v squared space sin space straight v space minus straight v squared space sin space space straight v space plus space straight v space cos space straight v over denominator straight v space sin space straight v minus space cos space straight v end fraction
or space space space space straight x dv over dx space equals space fraction numerator 2 straight v space cos space straight v over denominator straight v space sin space straight v space minus space cos space straight v end fraction
                             
    Separating the variables, we get,
                            open parentheses fraction numerator straight v space sin space straight v space minus space cos space straight v over denominator straight v space cos space straight v end fraction close parentheses dv space equals space fraction numerator 2 dx over denominator straight x end fraction
    Integrating,   integral open parentheses fraction numerator straight v space sin space straight v space minus space cos space straight v over denominator straight v space cos space straight v end fraction close parentheses space equals space 2 space integral 1 over straight x dx
    or         integral tan space straight v space dv space minus space integral 1 over straight v dv space equals space 2 space integral 1 over straight x dx
    or     log space open vertical bar sec space straight v close vertical bar space minus space log space open vertical bar straight v close vertical bar space equals space 2 space log space open vertical bar straight x close vertical bar plus log space open vertical bar straight c subscript 1 close vertical bar
    or      log space open vertical bar sec space straight v close vertical bar space minus space log space open vertical bar straight v close vertical bar space minus space log space open vertical bar straight x close vertical bar squared space equals space log space open vertical bar straight c subscript 1 close vertical bar
    or       log space open vertical bar fraction numerator sec space straight v over denominator straight v space straight x squared end fraction close vertical bar space equals space log space open vertical bar straight c subscript 1 close vertical bar
    or        fraction numerator sec space straight v over denominator straight v space straight x squared end fraction space equals plus-or-minus straight c subscript 1                                                                   ...(2)
    Now,   straight y space equals space straight v space straight x space space space or space space straight v space equals space straight y over straight x
    therefore space space space space space space space fraction numerator sec open parentheses begin display style straight y over straight x end style close parentheses over denominator open parentheses begin display style straight y over straight x end style close parentheses space left parenthesis straight x squared right parenthesis end fraction space equals space straight c comma space space space space where space straight c space equals space plus-or-minus space straight c subscript 1
    or     sec space open parentheses straight y over straight x close parentheses space equals space straight c space straight x space straight y
    which is the general solution of the given differential equation.
    Question 57
    CBSEENMA12033136

    Solve:
    straight y space straight e to the power of straight x over straight y end exponent dx space equals open parentheses xe to the power of straight x over straight y end exponent plus straight y squared close parentheses space space dy comma space space space straight y not equal to 0

    Solution

    The given differential equation is
                  straight y space straight e to the power of straight x over straight y end exponent space dx space equals space open parentheses xe to the power of straight x over straight y end exponent plus straight y squared close parentheses space dy
    or                dx over dy space equals space fraction numerator xe to the power of begin display style straight x over straight y end style end exponent plus straight y squared over denominator ye to the power of begin display style straight x over straight y end style end exponent end fraction
    or                dx over dy space equals fraction numerator xe to the power of begin display style straight x over straight y end style end exponent plus straight y squared over denominator ye to the power of begin display style straight x over straight y end style end exponent end fraction
    or                 dx over dy space equals space straight x over straight y plus straight y over straight e to the power of begin display style straight x over straight y end style end exponent                
    Put y = v y  so that dx over dy equals straight v plus straight y dv over dx
    therefore space space space space space space space space space straight v plus straight y dv over dy space equals space straight v plus ye to the power of negative straight v end exponent
therefore space space space space space space space space straight y dv over dy space equals space straight y space straight e to the power of negative straight v end exponent space space space space space space space space space space space or space space space space space space dv over dy space equals straight e to the power of negative straight v end exponent
    Separting the variables and integration, we get,
                      integral straight e to the power of straight v dv space equals space integral dy space space space space space space space space space or space space space space space straight e to the power of straight v space equals space straight y plus straight c
    or                          straight e to the power of straight x over straight y end exponent space equals space straight y plus straight c

    Question 58
    CBSEENMA12033137

    Solve:
    straight x dy over dx minus straight y plus straight x space tan straight y over straight x equals 0

    Solution
    The given differential equation is
                    straight x dy over dx minus straight y plus straight x space tan straight y over straight x space equals space 0
    or                                    straight x dy over dx space equals space straight y minus straight x space tan straight y over straight x
    or                                   dy over dx space equals space straight y over straight x minus tan straight y over straight x
    Put y = v x so that      dy over dx space equals straight v plus straight x dv over dx
    therefore space space space space space space space space straight v plus straight x dv over dx space equals straight v minus tan space straight v
therefore space space space space space straight x dv over dx space equals space minus tan space straight v
or space space space space space space space space space space space space space space fraction numerator 1 over denominator tan space straight v end fraction dv space equals space minus 1 over straight x dx
therefore space space space space space space space space space space integral fraction numerator 1 over denominator tan space straight v end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space space space space space space space log space open vertical bar sin space straight v close vertical bar space equals space minus log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar
or space space space space space space space space space space space space log space open vertical bar straight x space space sinv close vertical bar space equals space log space open vertical bar straight c close vertical bar
therefore space space space space space space space space space space space space space straight x space space sin space straight v space equals space straight c
or space space space space space space space space space space space space space space space space straight x space sin space straight y over straight x space equals space straight c space is space the space required space solution. space
    Question 59
    CBSEENMA12033138

    Solve:
    straight y apostrophe space equals space straight y over straight x plus sin straight y over straight x

    Solution
    The given differential equation is
    dy over dx space equals space straight y over straight x plus sin space straight y over straight x
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx equals straight v plus sin space straight v space space space or space space space straight x dv over dx space equals space sin space straight v
    or        fraction numerator 1 over denominator sin space straight v end fraction dv space equals space dx over straight x
    or         integral cosec space straight v space dv space equals space integral dx over straight x
    or         log space open vertical bar tan space straight v over 2 close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar space space or space space space log space open vertical bar tan space straight v over 2 close vertical bar space equals space log space open vertical bar cx close vertical bar space space or space space tan space straight v over 2 space equals space cx
    or     tan space fraction numerator straight y over denominator 2 straight x end fraction space equals space cx space space is space the space required space solution.
    Question 60
    CBSEENMA12033139

    Solve:
    dy over dx space equals straight y over straight x plus tan straight y over straight x open parentheses 0 less than straight y over straight x less than straight pi over 2 close parentheses

    Solution

    The given differential equation is
                       dy over dx space equals space straight y over straight x plus tan straight y over straight x space space space space space space space space space space space space open parentheses 0 less than straight y over straight x less than straight pi over 2 close parentheses                ...(1)
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space straight v plus tan space straight v space space or space space space straight x dv over dx space equals space tan space straight v space space or space space space fraction numerator 1 over denominator tan space straight v end fraction dv space equals space dx over straight x
    or      integral cot space straight v space dv space equals space integral dx over straight x
    or     log space open vertical bar sin space straight v close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar space space or space space space log space open vertical bar sin space straight v close vertical bar space equals space log space open vertical bar cx close vertical bar
    or       sin space straight v space equals space cx space space space space or space space space space space sin straight y over straight x space equals space space straight c space straight x space is space the space required space solution. space

    Question 61
    CBSEENMA12033140

    For the given differential equations, find the particular solution satisfying the given condition:
    left parenthesis straight x plus straight y right parenthesis space dy space plus space left parenthesis straight x minus straight y right parenthesis dx space equals space 0 space semicolon space space straight y space equals space 1 space space space when space straight x space equals space 1

    Solution
    The given differential equation is
                 left parenthesis straight x plus straight y right parenthesis space dy space plus space left parenthesis straight x minus straight y right parenthesis space dx space equals space 0 comma space space space or space space space left parenthesis straight x plus straight y right parenthesis space dy space equals space minus left parenthesis straight x minus straight y right parenthesis space dx
    therefore space space space space space dy over dx space equals space minus fraction numerator straight x minus straight y over denominator straight x plus straight y end fraction space space space or space space space dy over dx space equals space fraction numerator straight y minus straight x over denominator straight y plus straight x end fraction                        ...(1)
    Put y = v  x,  so that dy over dx space equals straight v plus straight x dv over dx
    therefore space space space space space from space left parenthesis 1 right parenthesis comma space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space minus straight x over denominator vx plus straight x end fraction space space or space space straight v plus straight x dv over dx space equals space fraction numerator straight v minus 1 over denominator straight v plus 1 end fraction
    or       straight x dy over dx space equals fraction numerator straight v minus 1 over denominator straight v plus 1 end fraction minus straight v space equals space fraction numerator negative 1 minus straight v squared over denominator straight v plus 1 end fraction space equals space fraction numerator negative left parenthesis 1 plus straight v squared right parenthesis over denominator 1 plus straight v end fraction space space or space space fraction numerator 1 plus straight v over denominator 1 plus straight v squared end fraction dv space equals negative dx over straight x
    or      integral fraction numerator 1 plus straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral dx over straight x
    or     integral fraction numerator 1 over denominator 1 plus straight v squared end fraction dv plus 1 half integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral 1 over straight x dx
    or               tan to the power of negative 1 end exponent straight v space plus space 1 half log space open vertical bar 1 plus straight v squared close vertical bar plus log space open vertical bar straight x close vertical bar space equals space straight c
    or               tan to the power of negative 1 end exponent straight v plus 1 half left square bracket log space open vertical bar 1 plus straight v squared close vertical bar space plus space 2 space log space open vertical bar straight x close vertical bar right square bracket space equals space straight c
    or           tan to the power of negative 1 end exponent straight v plus 1 half log space open vertical bar straight x squared close vertical bar space space open vertical bar 1 plus straight v squared close vertical bar space equals space straight c
    or space space tan space to the power of negative 1 end exponent straight y over straight x space plus space 1 half space log space open vertical bar straight x squared plus open parentheses 1 plus straight y squared over straight x squared close parentheses close vertical bar space equals space straight c
or space space space tan space to the power of negative 1 end exponent straight y over straight x plus 1 half log space open vertical bar straight x squared plus straight y squared close vertical bar space equals space straight c
therefore space space space space tan to the power of negative 1 end exponent straight y over straight x plus 1 half log space left parenthesis straight x squared plus straight y squared right parenthesis space equals space straight c space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
                     Now y = 1  when x = 1
    therefore space space space space space space tan to the power of negative 1 end exponent 1 plus 1 half log 2 space equals space straight c space space space space space rightwards double arrow space space space space space straight c space equals space straight pi over 4 plus 1 half log space 2
therefore space space space space from space left parenthesis 2 right parenthesis comma space space tan to the power of negative 1 end exponent straight y over straight x plus 1 half log space left parenthesis straight x squared plus straight y squared right parenthesis space equals space straight pi over 4 plus 1 half log space 2
                                  is the required solution. 
    Question 62
    CBSEENMA12033141

    For the given differential equation, find the particular solution satisfying the given condition:
    straight x squared dy plus left parenthesis xy plus straight y squared right parenthesis dx space equals space 0 semicolon space space space straight y space equals space 1 space when space straight x space equals space 1

    Solution
    The given differential equation is
                 straight x squared dy space plus straight y left parenthesis straight x plus straight y right parenthesis space dx space equals space 0 comma space space space or space space space straight x squared space dy space equals space minus straight y left parenthesis straight x plus straight y right parenthesis space dx
     therefore space space space space space dy over dx space equals space minus fraction numerator straight y left parenthesis straight x plus straight y right parenthesis over denominator straight x squared end fraction                                ...(1)
    Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space straight v plus straight x dv over dx space equals space minus fraction numerator straight v space straight x left parenthesis straight x plus vx right parenthesis over denominator straight x squared end fraction space space space space space rightwards double arrow space space space space straight v plus straight x dv over dx equals negative straight v minus straight v squared
    rightwards double arrow space space space space straight x space dv over dx space equals space straight v squared minus 2 straight v
    therefore space space space space space fraction numerator 1 over denominator straight v squared plus 2 straight v end fraction dv space equals space minus 1 over straight x dx space space space space space rightwards double arrow space space space integral fraction numerator 1 over denominator straight v left parenthesis straight v plus 2 right parenthesis end fraction dv space equals space minus integral 1 over straight x dx
rightwards double arrow space space space space integral open square brackets fraction numerator 1 over denominator straight v left parenthesis 0 plus 2 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis negative 2 right parenthesis thin space left parenthesis straight v plus 2 right parenthesis end fraction close square brackets dv space equals space minus integral 1 over straight x dx
rightwards double arrow space space space space 1 half integral open parentheses 1 over straight v minus fraction numerator 1 over denominator straight v plus 2 end fraction close parentheses space dv space equals space minus integral 1 over straight x dx
therefore space space space space space 1 half open square brackets log space straight v space minus space log space left parenthesis straight v plus 2 right parenthesis close square brackets space equals space minus log space straight x space plus space log space straight c
rightwards double arrow space space space space space 1 half log space open parentheses fraction numerator straight v over denominator straight v plus 2 end fraction close parentheses space equals space log space open parentheses straight c over straight x close parentheses
therefore space space space space space fraction numerator begin display style straight y over straight x end style over denominator begin display style straight y over straight x end style plus 2 end fraction space equals space straight c squared over straight x squared space space space space rightwards double arrow space space space space space fraction numerator straight y over denominator 2 straight x plus straight y end fraction space equals space straight c squared over straight x squared
rightwards double arrow space space space space space space space straight x squared straight y space equals space straight k space left parenthesis 2 straight x plus straight y right parenthesis comma space where space straight k space equals space straight c squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space space space space space space space space space space space space space space space space Now space straight y space equals space 1 space when space straight x space equals space 1 space space space space space space rightwards double arrow space space space space space 1 space equals space straight k left parenthesis 2 plus 1 right parenthesis space space space rightwards double arrow space space space straight k space equals space 1 third
    therefore space space space space from space left parenthesis 2 right parenthesis comma space space straight x squared straight y space equals space 1 third left parenthesis 2 straight x plus straight y right parenthesis space which space is space required space solution. space
    Question 63
    CBSEENMA12033142

    For the given differential equation, find the particular solution satisfying the given condition:
    open square brackets straight x space sin squared open parentheses straight y over straight x close parentheses minus straight y close square brackets space dx plus space straight x space dy space equals space 0 colon space space space straight y space equals straight pi over 4 space space when space straight x space equals space 1


    Solution
    The given differential equation is
                               open square brackets straight x space sin squared space open parentheses straight y over straight x close parentheses minus straight y close square brackets space dx plus straight x space dy space equals space 0
    or       sin squared open parentheses straight y over straight x close parentheses minus straight y over straight x plus dy over dx space equals 0
    or                     dy over dx space equals straight y over straight x minus sin squared space open parentheses straight y over straight x close parentheses                                ...(1)
    Put y = v x so that  dy over dx equals straight v plus straight x dv over dx
    therefore space space space space space space left parenthesis 1 right parenthesis space becomes comma space space space straight v plus straight x dv over dx equals straight v minus sin squared straight v
or space space space space space space space space space straight x dv over dx equals negative sin squared straight v
    Separating the variables,   fraction numerator 1 over denominator sin squared straight v end fraction dv space equals space minus dx over straight x
    Integrating,    integral cosec squared straight v space dv space equals space minus integral dx over straight x
    rightwards double arrow space space space log space open vertical bar straight x close vertical bar minus cot space straight v space equals space straight c
rightwards double arrow space space space log space open vertical bar straight x close vertical bar minus cot space open parentheses straight y over straight x close parentheses space equals space straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Now,     x = 1,   when   straight y space equals space straight pi over 4
                  log space open vertical bar 1 close vertical bar space minus space cot space open parentheses straight pi over 4 close parentheses space equals straight c
    rightwards double arrow space space space space straight c space equals space 0 minus 1 space equals space minus 1
    <pre>uncaught exception: <b>file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/82/ca/84e88ce2958b2682b8d13fde5bb5.ini): failed to open stream: Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php at line #12file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/82/ca/84e88ce2958b2682b8d13fde5bb5.ini): failed to open stream: Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php line 12<br />#0 [internal function]: _hx_error_handler(2, 'file_put_conten...', '/home/config_ad...', 12, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php(12): file_put_contents('/home/config_ad...', 'mml=<math xmlns...')
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(48): sys_io_File::saveContent('/home/config_ad...', 'mml=<math xmlns...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(112): com_wiris_util_sys_Store->write('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#6 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#7 {main}</pre>
    or    log space open vertical bar straight x close vertical bar space minus space cot space straight y over straight x space equals space space minus space log space straight e
    or    log space open vertical bar straight e space straight x close vertical bar space equals space cot space open parentheses straight y over straight x close parentheses.
    which is the required particular solution. 
    Question 64
    CBSEENMA12033143

    For the given differential equation, find the particular solution satisfying the given condition:
    dy over dx minus straight y over straight x plus cosec space open parentheses straight y over straight x close parentheses space equals space 0 space semicolon space space space straight y space equals space 0 space space space when space straight x space equals space 1




    Solution
    The given differential equation is
                                                 dy over dx space equals space straight y over straight x minus cosec space straight y over straight x
    Put y = v x  so that dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space space space space straight v plus straight x dv over dx space equals space straight v minus cosec space straight v
therefore space space space space space space space space space space space space space straight x dv over dx space equals space minus cosec space straight v comma space space space space space space space space space space space space space space space space therefore space space space space minus fraction numerator 1 over denominator cosec space straight v end fraction dv space equals space 1 over straight x dx
therefore space space space space space minus integral sin space straight v space dv space equals space integral 1 over straight x dx
therefore space space space space space space space cos space straight v space space equals space log space open vertical bar straight x close vertical bar plus straight c
therefore space space space space space cos space straight y over straight x space equals space log space open vertical bar straight x close vertical bar plus straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space Now space straight y space equals space 0 space space space space when space straight x space space equals space 1
therefore space space space space space space space cos space 0 space equals space log space open vertical bar 1 close vertical bar space plus space straight c space space space space space space rightwards double arrow space space space space space 1 space equals space 0 plus space straight c space rightwards double arrow space space space straight c space space equals 1
therefore space space from space left parenthesis 1 right parenthesis comma space space cos space straight y over straight x space equals space log space open vertical bar straight x close vertical bar plus 1 space is space the space required space solution. space
    Question 65
    CBSEENMA12033144

    For the given differential equation, find the particular solution satisfying the given condition:
           2 xy plus straight y squared minus 2 straight x squared dy over dx equals 0 semicolon space space space straight y space equals 2 space space when space straight x space equals space 1.





    Solution
    The given differential equation is
                       2 xy plus straight y minus 2 straight x squared dy over dx space equals space 0 space space space space space space space space space or space space space space space space 2 straight x squared dy over dx space equals space 2 xy plus straight y squared
    therefore space space space space space space space space space space dy over dx space space equals fraction numerator 2 xy plus straight y squared over denominator 2 straight x squared end fraction
    Put    straight y equals space straight v space straight x space space so space that space dy over dx space equals space straight v plus straight x dv over dx
    therefore                    straight v plus straight x dv over dx equals fraction numerator 2 straight x squared straight v plus straight v squared straight x squared over denominator 2 straight x squared end fraction
    therefore space space space space space space straight v plus straight x dv over dx space equals fraction numerator 2 straight v plus straight v squared over denominator 2 end fraction
therefore space space space space space space space space space space straight x dv over dx space equals space fraction numerator 2 straight v plus straight v squared over denominator 2 end fraction minus straight v space space space space or space space space straight x dv over dx equals straight v squared over 2
therefore space space space space space space 2 space 1 over straight v squared dv space equals space 1 over straight x dx
    Integrating,    2 integral straight v to the power of negative 2 end exponent space dv space equals space integral 1 over straight x dx
    therefore space space space space space 2 fraction numerator straight v to the power of negative 1 end exponent over denominator negative 1 end fraction space equals space log space open vertical bar straight x close vertical bar plus space straight c space space space space space or space space space space fraction numerator negative 2 over denominator straight v end fraction space equals space log space open vertical bar straight x close vertical bar plus straight c
therefore space space space space space minus 2 straight x over straight y space equals log space open vertical bar straight x close vertical bar space plus space straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now v = 2 when x = 1
    therefore space space space space space space space space space space space space space space minus 2. space 1 half minus log space 1 space plus space straight c space space space space space space space rightwards double arrow space space space minus 1 space equals space 0 plus straight c space space space space rightwards double arrow space space space straight c space equals space minus 1
therefore space space space space space from space left parenthesis 1 right parenthesis comma space space space minus fraction numerator 2 straight x over denominator straight y end fraction space equals space log space open vertical bar straight x close vertical bar minus 1 space space space space space or space space space space straight y space equals space fraction numerator 2 straight x over denominator 1 minus log space open vertical bar straight x close vertical bar end fraction
is space the space required space solution. space
    Question 66
    CBSEENMA12033145

    For the given differential equation, find the particular solution satisfying the given condition:
              2 straight x squared straight y apostrophe space minus space 2 xy plus straight y squared space equals space 0 comma space space space space straight y left parenthesis straight e right parenthesis space equals space straight e
           





    Solution

    The given differential equation is
                 2 straight x squared straight y apostrophe space minus space 2 xy plus straight y squared space equals space 0
    or        2 straight x squared dy over dx space equals space 2 xy minus straight y squared space space space space space or space space space space dy over dx space equals space fraction numerator 2 xy minus straight y squared over denominator 2 straight x squared end fraction
    Put y = v x so that dy over dx space equals straight v plus straight x dv over dx
    therefore space space space space space straight v plus straight x dv over dx space equals space fraction numerator 2 straight x squared straight v minus straight v squared straight x squared over denominator 2 straight x squared end fraction
    therefore space space space space straight v plus straight x dv over dx equals fraction numerator 2 straight v minus straight v squared over denominator 2 end fraction
therefore space space space space space space straight x dv over dx space equals space fraction numerator 2 straight v minus straight v squared over denominator 2 end fraction minus straight v space space space space space or space space space straight x dv over dx space equals negative straight v squared over 2
therefore space space space space space space minus 2 over straight v squared dv space equals space 1 over straight x dx
    Integrating  2 integral straight v to the power of negative 2 end exponent dv space equals space integral 1 over straight x dx
    therefore space space space minus 2 fraction numerator straight v to the power of negative 1 end exponent over denominator negative 1 end fraction space equals space log space open vertical bar straight x close vertical bar space plus space straight c space space space space space or space space space space fraction numerator negative 2 over denominator straight v end fraction equals log space open vertical bar straight x close vertical bar plus straight c
therefore space space space space space space fraction numerator 2 straight x over denominator straight y end fraction space equals space log space open vertical bar straight x close vertical bar space plus space straight c
    Now     straight y left parenthesis straight e right parenthesis space equals straight e                       rightwards double arrow space space space straight y space equals space straight e space space space when space straight x space equals space straight e
    therefore space space space 2 straight e over straight e equals log space straight e plus straight c space space space space space space space space space space rightwards double arrow space space space space 2 space equals space 1 plus straight c space space space space space space space rightwards double arrow space space space straight c space equals space 1
    therefore space space space solution space is space space fraction numerator 2 straight x over denominator straight y end fraction space equals space log space open vertical bar straight x close vertical bar plus 1.
              

    Question 67
    CBSEENMA12033146

    For the given differential equation, find the particular solution satisfying the given condition:
                          2 xy plus straight y squared minus 2 straight x squared straight y apostrophe space equals space 0 space space space space space space space space space space space space space straight y left parenthesis 1 right parenthesis space equals space 2
              
           





    Solution
    The given differential equation is
                     2 xy plus straight y squared minus 2 straight x squared straight y apostrophe space equals space 0 space space space space space space space or space space space space space 2 straight x squared straight y apostrophe space equals space 2 xy plus straight y squared
    therefore space space space space space space space space space dy over dx space equals space fraction numerator 2 xy plus straight y squared over denominator 2 straight x squared end fraction
    Put   y - v x    so that   dy over dx equals straight v plus straight x dv over dx
     therefore space space space space space space straight v plus straight x dv over dx equals fraction numerator 2 straight x squared straight v plus straight v squared straight x squared over denominator 2 straight x squared end fraction
therefore space space space space space straight v plus straight x dv over dx equals fraction numerator 2 straight v plus straight v squared over denominator 2 end fraction
therefore space space space space space space space space straight x dv over dx equals fraction numerator 2 straight v plus straight v squared over denominator 2 end fraction minus straight v space space space space space or space space space straight x dv over dx equals straight v squared over 2
therefore space space space space space 2 1 over straight v squared dv space equals space 1 over straight x dx
    Integration,  2 space integral straight v to the power of negative 2 end exponent space dv space equals space integral 1 over straight x dx
    therefore space space space space space 2 fraction numerator straight v to the power of negative 1 end exponent over denominator negative 1 end fraction space equals space log space open vertical bar straight x close vertical bar plus straight c space space space space space or space space space space fraction numerator negative 2 over denominator straight v end fraction equals log space open vertical bar straight x close vertical bar plus straight c
therefore space space space space minus 2 straight x over straight y space equals space log space open vertical bar straight x close vertical bar plus straight c
    Now,       straight y left parenthesis 1 right parenthesis space equals space 2 space space space space space space space space space space space space space space rightwards double arrow space space space space straight y space equals space 2 space space space when space straight x space equals space 1
    therefore space space space space minus 2. space 1 half space equals space log space 1 plus straight c space space space space space space space space space space rightwards double arrow space space space space minus 1 space equals space 0 space plus straight c space space space space rightwards double arrow space space space space straight c space equals space minus 1
therefore space space solution space is space minus fraction numerator 2 straight x over denominator straight y end fraction space equals space log space open vertical bar straight x close vertical bar minus 1 space space space space space or space space space straight y space equals space fraction numerator 2 straight x over denominator 1 minus log space open vertical bar straight x close vertical bar end fraction.
    Question 68
    CBSEENMA12033147

    Find a particular solution of the differential equation
    (x – y) (dx + dy) = dx – dy. given that y = – 1, when x = 0.

    Solution
    The given differential equation is
                  (x – y) (dx + dy) = dx – dy                          ...(1)
    or             dx plus dy space equals space fraction numerator dx minus dy over denominator straight x minus straight y end fraction
    Integrating, we get
                          integral left parenthesis dx plus dy right parenthesis space equals space integral fraction numerator straight d space left parenthesis straight x minus straight y right parenthesis over denominator straight x minus straight y end fraction plus straight c
    rightwards double arrow space space space space space space space space space space space space straight x plus straight y space equals space log space open vertical bar straight x minus straight y close vertical bar plus straight c                        ....(2)
    Now x = 0,  y = -1
    therefore space space space space space space space 0 plus left parenthesis negative 1 right parenthesis space equals space log space open vertical bar 0 plus 1 close vertical bar space plus space straight c
rightwards double arrow space space space space space space space space space space space straight c space equals space minus 1
therefore space space space from space left parenthesis 2 right parenthesis comma space space space straight x plus straight y space equals space log space open vertical bar straight x minus straight y close vertical bar space minus space 1
    which is required solution.
    Question 69
    CBSEENMA12033148

    Solve the following differential equation:
    dy over dx equals fraction numerator straight x left parenthesis 2 straight y minus straight x right parenthesis over denominator straight x left parenthesis 2 straight y plus straight x right parenthesis end fraction comma space space if space space straight y space equals space 1 space space when space straight x space equals space 1.

    Solution

    The given differential equation is
                             dy over dx equals fraction numerator straight x left parenthesis 2 straight y minus straight x right parenthesis over denominator straight x left parenthesis 2 straight y plus straight x right parenthesis end fraction space space space or space space space dy over dx equals fraction numerator 2 straight y minus straight x over denominator 2 straight y plus straight x end fraction
    Put straight y space equals space straight v space straight x space space so space that space space dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space straight v plus straight x dv over dx space equals space fraction numerator 2 space straight v space straight x space minus straight x over denominator 2 space straight v space straight x space plus 1 end fraction space space space or space space straight v plus straight x dv over dx equals fraction numerator 2 straight v minus 1 over denominator 2 straight v plus 1 end fraction
therefore space space space space space space space space space straight x dv over dx equals fraction numerator 2 straight v minus 1 over denominator 2 straight v plus 1 end fraction minus straight v space space space or space space space straight x dv over dx equals fraction numerator 2 straight v minus 1 minus 2 straight v squared minus straight v over denominator 2 straight v plus 1 end fraction
therefore space space space space straight x dv over dx space equals space fraction numerator negative 2 straight v squared plus straight v minus 1 over denominator 2 straight v plus 1 end fraction
    Separating the variables, we get,
                              fraction numerator 2 straight v plus 1 over denominator negative 2 straight v squared plus straight v minus 1 end fraction dv space equals space 1 over straight x dx
    Integrating,    integral fraction numerator 2 straight v plus 1 over denominator negative 2 straight v squared plus straight v minus 1 end fraction dv space equals space 1 over straight x dx
    therefore space space space space space space space integral fraction numerator begin display style 1 half left parenthesis 4 straight v minus 1 right parenthesis plus 3 over 2 end style over denominator 2 straight v squared minus straight v plus 1 end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space 1 half integral fraction numerator 4 straight v minus 1 over denominator 2 straight v squared minus straight v plus 1 end fraction dv plus 3 over 2 integral fraction numerator 1 over denominator 2 straight v squared minus straight v plus 1 end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space 1 half integral fraction numerator 4 straight v minus 1 over denominator 2 straight v squared minus straight v plus 1 end fraction dv plus 3 over 4 integral fraction numerator 1 over denominator straight v squared minus begin display style 1 half end style straight v plus begin display style 1 half end style end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space space 1 half space integral fraction numerator 4 straight v minus 1 over denominator 2 straight v squared minus straight v plus 1 end fraction dv plus 3 over 4 integral fraction numerator 1 over denominator open parentheses straight v squared minus begin display style 1 half end style straight v plus begin display style 1 over 16 end style close parentheses plus begin display style 7 over 16 end style end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space space space 1 half integral fraction numerator 4 straight v minus 1 over denominator 2 straight v squared minus straight v plus 1 end fraction dv plus 3 over 4 integral fraction numerator 1 over denominator open parentheses straight v squared minus begin display style 1 fourth end style close parentheses squared plus open parentheses begin display style fraction numerator square root of 7 over denominator 4 end fraction end style close parentheses squared end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space space space 1 half log space open vertical bar 2 straight v squared minus straight v plus 1 close vertical bar plus 3 over 4. fraction numerator 1 over denominator begin display style fraction numerator square root of 7 over denominator 4 end fraction end style end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator straight v minus begin display style 1 fourth end style over denominator begin display style fraction numerator square root of 7 over denominator 4 end fraction end style end fraction close parentheses equals negative log space open vertical bar straight x close vertical bar plus straight c
therefore space space 1 half log space open vertical bar 2 straight v squared minus straight v plus 1 close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight v minus 1 over denominator square root of 7 end fraction close parentheses space equals space minus log space open vertical bar straight x close vertical bar plus straight c
therefore space space 1 half log space open vertical bar fraction numerator 2 straight y squared over denominator straight x squared end fraction minus straight y over straight x plus 1 close vertical bar plus space fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style fraction numerator 4 straight y over denominator straight x end fraction minus 1 end style over denominator square root of 7 end fraction close parentheses space equals space minus log space open vertical bar straight x close vertical bar plus straight c space space space
therefore space space space 1 half log space open vertical bar fraction numerator 2 straight y squared minus xy plus straight x squared over denominator straight x squared end fraction close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight y minus straight x over denominator square root of 7 straight x end fraction close parentheses space equals space minus log space open vertical bar straight x close vertical bar plus straight c space space space space... left parenthesis 1 right parenthesis
    Now y = 1, when x = 1
    therefore space space space space 1 half log space open vertical bar fraction numerator 2 minus 1 plus 1 over denominator 1 end fraction close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 minus 1 over denominator square root of 7 end fraction close parentheses space equals space log space open vertical bar 1 close vertical bar plus straight c
therefore space space space 1 half log space 2 space plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 3 over denominator square root of 7 end fraction close parentheses space equals space straight c
    Putting this value of c in (1), we get,
                     space space space space space space space space space 1 half log space open vertical bar fraction numerator 2 straight y squared minus xy plus straight x squared over denominator straight x squared end fraction close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight y minus straight x over denominator square root of 7 straight x end fraction close parentheses space equals space minus log open vertical bar straight x close vertical bar plus 1 half log 2 plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 3 over denominator square root of 7 end fraction close parentheses

or space space space 1 half log space open vertical bar 2 straight y squared minus xy plus straight x squared close vertical bar minus 1 half log open vertical bar straight x squared close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight y minus straight x over denominator square root of 7 straight x end fraction close parentheses space equals space minus log space open vertical bar straight x close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus space 1 half log space 2 plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 3 over denominator square root of 7 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
therefore space space space space 1 half log space open vertical bar 2 straight y squared minus xy plus straight x squared close vertical bar minus log space open vertical bar straight x close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight y minus straight x over denominator square root of 7 straight x end fraction close parentheses space equals space minus log space open vertical bar straight x close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus 1 half log space 2 plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 3 over denominator square root of 7 end fraction close parentheses
therefore space space space space 1 half log space open vertical bar 2 straight y squared minus xy plus straight x squared close vertical bar plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight y minus straight x over denominator square root of 7 straight x end fraction close parentheses space equals 1 half log space 2 plus fraction numerator 3 over denominator square root of 7 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator 3 over denominator square root of 7 end fraction close parentheses
    which is required solution. 
       

    Question 70
    CBSEENMA12033149

    Solve the following initial value problem:
    dy over dx space equals space fraction numerator straight y left parenthesis straight x plus 2 straight y right parenthesis over denominator straight x left parenthesis 2 straight x plus straight y right parenthesis end fraction. space space space straight y left parenthesis 1 right parenthesis space equals space 2

    Solution
    The given differential equation is
                                         dy over dx space equals space fraction numerator straight y left parenthesis straight x plus 2 straight y right parenthesis over denominator straight x left parenthesis 2 straight x plus straight y right parenthesis end fraction
    Put y = vx so that dy over dx space equals space straight v plus straight x dv over dx
    therefore space space space space space space space straight v plus straight x dv over dx space equals space fraction numerator vx left parenthesis straight x plus 2 vx right parenthesis over denominator straight x left parenthesis 2 straight x plus vx right parenthesis end fraction
    therefore space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v left parenthesis 1 plus 2 straight v right parenthesis over denominator 2 plus straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator straight v left parenthesis 1 plus 2 straight v right parenthesis over denominator 2 plus straight v end fraction minus straight v space equals space space fraction numerator straight v plus 2 straight v squared minus 2 straight v minus straight v squared over denominator 2 plus straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator straight v squared minus straight v over denominator straight v plus 2 end fraction
    Separating the variables and integrating, we get,
     integral fraction numerator straight v plus 2 over denominator straight v squared minus straight v end fraction dv space equals space integral 1 over straight x dx
    therefore space space space integral open square brackets fraction numerator straight v plus 2 over denominator straight v left parenthesis straight v minus 1 right parenthesis end fraction close square brackets dv space equals space integral 1 over straight x dx
therefore space space space space integral open square brackets fraction numerator 0 plus 2 over denominator straight v left parenthesis 0 minus 1 right parenthesis end fraction plus fraction numerator 1 plus 2 over denominator left parenthesis 1 right parenthesis thin space left parenthesis straight v minus 1 right parenthesis end fraction close square brackets dv space equals space integral 1 over straight x dx
therefore space space space minus integral 2 over straight v dv plus integral fraction numerator 3 over denominator straight v minus 1 end fraction dv space equals space integral 1 over straight x dx
therefore space space space minus 2 space logv plus space 3 space log space left parenthesis straight v minus 1 right parenthesis space equals space log space straight x space plus straight c
therefore space space space minus 2 log space straight y over straight x plus 3 space log space open parentheses straight y over straight x minus 1 close parentheses space equals space logx plus space straight c
    Now,     straight y left parenthesis 1 right parenthesis space equals space 2 space space space space space space space space rightwards double arrow space space space space straight y space equals space 2 space space space space space space when space space space space straight x space equals space 1
    therefore space space space space space space minus 2 space log space 2 over 1 plus 3 space log space open parentheses 2 over 1 minus 1 close parentheses space equals space log space 1 space plus space straight c comma space space space space space space therefore space space space minus 2 space log space 2 space plus space 3 space log space 1 space equals space log space 1 space plus straight c
therefore space space space space minus 2 space log space 2 space plus space 0 space equals space 0 plus space straight c space space space space space space space space space space space rightwards double arrow space space space space straight c space equals space minus 2 space log space 2
therefore space space space solution space is space space minus 2 space log space straight y over straight x plus 3 space log space open parentheses fraction numerator straight y minus straight x over denominator straight x end fraction close parentheses space equals space log space straight x space plus space 2 space log space 2
    Question 71
    CBSEENMA12033150

    Show that the family of curves for which the slope of the tangent at any point (x, y) on it is fraction numerator straight x squared plus straight y squared over denominator 2 xy end fraction comma is given by straight x squared minus straight y squared space equals space straight c space straight x.

    Solution

    We know that dy over dx is slope of tangent to the curve at point (x, y).
    therefore space space space space space space space space space dy over dx space equals space fraction numerator straight x squared plus straight y squared over denominator 2 xy end fraction
      Put y = v x so that dy over dx equals straight v plus straight x dv over dx
    therefore space space space space straight v plus straight x dv over dx equals fraction numerator straight x squared plus straight v squared straight x squared over denominator 2 vx squared end fraction
therefore space space space space straight v plus straight x dv over dx space equals fraction numerator 1 plus straight v squared over denominator 2 straight v end fraction
therefore space space space space space space space space space straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 2 straight v end fraction minus straight v space space space space space space or space space space space space straight x dv over dx equals space fraction numerator 1 minus straight v squared over denominator 2 straight v end fraction
    Separating the variables and integrating, we get,
                 integral fraction numerator 2 straight v over denominator 1 minus straight v squared end fraction dv space equals space integral 1 over straight x dx space space space space or space space space integral fraction numerator 2 straight v over denominator straight v squared minus 1 end fraction dv space equals space minus integral 1 over straight x dx
    therefore space space space log space open vertical bar straight v squared minus 1 close vertical bar space equals space minus log space open vertical bar straight x close vertical bar plus log space open vertical bar straight c subscript 1 close vertical bar space space space or space space space log space open vertical bar left parenthesis straight v squared minus 1 right parenthesis thin space left parenthesis straight x right parenthesis close vertical bar space equals space log space open vertical bar straight c subscript 1 close vertical bar
or space space space space space space space left parenthesis straight v squared minus 1 right parenthesis space straight x space equals space plus-or-minus space space straight c subscript 1
    Replacing v by  straight y over straight x comma space we get
                            open parentheses straight y squared over straight x squared minus 1 close parentheses space straight x space equals space plus-or-minus space straight c subscript 1 space space space or space space space space left parenthesis straight y squared minus straight x squared right parenthesis space equals space space plus-or-minus space straight c subscript 1 straight x space space space or space space space straight x squared minus straight y squared space equals space cx.

    Question 72
    CBSEENMA12033151

    The general solution of the differential equation fraction numerator straight y space dx space minus space straight x space dy over denominator straight y end fraction space equals space 0 is 
    • xy = C

    • x = Cy2 
    • y = Cx
    • y = Cx2

    Solution

    C.

    y = Cx The given differential equation is
                                fraction numerator straight y space dx minus space straight x space dy over denominator straight y end fraction space equals space 0
    or                 fraction numerator straight y space dx space minus space straight x space dy over denominator straight x squared end fraction space equals space 0 space space space space space or space space straight d open parentheses straight x over straight y close parentheses space equals space 0
    therefore space space space space space space space space space space straight x over straight y space equals space constant.
therefore space space space space space space space space space straight y over straight x space equals space straight C space space or space space space space straight y space equals space Cx
therefore space space space space left parenthesis straight C right parenthesis space is space correct space answer.
    Question 73
    CBSEENMA12033152

    A homogeneous differential equation of the from  dx over dy space equals space straight h open parentheses straight x over straight y close parentheses can be solved by making the substitution. 

    • y = vx  
    • v = yx
    • x = vy

    • x = v

    Solution

    C.

    x = vy

    A homogeneous differential equation of the from dy over dx space equals space straight h space open parentheses straight x over straight y close parentheses can be solved by making the substitution straight v space equals straight x over straight y space space straight i. straight e. comma space space space straight x space equals space vy
    ∴ (C) is correct answer.
    Question 74
    CBSEENMA12033153

    Which of the following is a homogeneous differential equation?
    • (4x + 6y + 5) dy – (3y + 2x + 4) dx = 0

    • (xy) dx – (x3 + y3) dy = 0

    • (x3 + 2 y2) dx + 2xy dy = 0

    • y2 dx + (x2 – x y – y2) dy =0

    Solution

    D.

    y2 dx + (x2 – x y – y2) dy =0

    The equation y2dx + (x2 – xy – y2) dy = 0. which can be written as
    dy over dx equals negative fraction numerator straight y squared over denominator straight x squared minus xy minus straight y squared end fraction space equals space minus fraction numerator open parentheses begin display style straight y over straight x end style close parentheses squared over denominator 1 minus open parentheses begin display style straight y over straight x end style close parentheses minus open parentheses begin display style straight y over straight x end style close parentheses squared end fraction comma space is space homogeneous space as space straight R. straight H. straight S. space is space of space form space straight F open parentheses straight y over straight x close parentheses
    as R.H.S. is of form straight F open parentheses straight y over straight x close parentheses
    therefore space space space left parenthesis straight D right parenthesis space is space correct space answer.
    Question 75
    CBSEENMA12033154

    Solve :  dy over dx plus straight y space equals space sin space straight x comma space space left parenthesis straight x space element of space straight R right parenthesis

    Solution

    The given differential equation is dy over dx plus straight y space equals space sin space straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space space we space get comma space space space straight P space equals space 1 comma space space straight Q space equals space sin space straight x
    therefore space space space integral straight P space dx space equals space integral 1 space dx space equals space straight x. space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of straight x
    therefore space space space solution of differential equation is
                         straight y space. straight e to the power of straight x space equals space integral space sinx. space straight e to the power of straight x space dx space plus space straight c space or space space straight y space. straight e to the power of straight x space equals space fraction numerator 1 over denominator square root of 1 plus 1 end root end fraction straight e to the power of straight x space sin space open parentheses straight x minus tan to the power of negative 1 end exponent 1 over 1 close parentheses plus straight c
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space integral straight e to the power of ax space sin space bx space equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction straight e to the power of ax space sin space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
or space space space straight y space equals space fraction numerator 1 over denominator square root of 2 end fraction sin space open parentheses straight x minus straight pi over 4 close parentheses plus space straight c space straight e to the power of negative straight x end exponent

    Question 76
    CBSEENMA12033155

    Solve the differential equation:
    straight x dy over dx minus straight y minus 2 straight x cubed space equals space 0.

    Solution
    The given differential equation is
    straight x dy over dx minus straight y minus 2 straight x cubed space equals space 0
    or       straight x dy over dx minus straight y space equals space 2 straight x cubed
    or        dy over dx minus 1 over straight x. space straight y space equals space 2 straight x squared
    Comparing it with  dy over dx plus Py space equals straight Q comma space space we space get comma space straight P space equals space minus 1 over straight x comma space space straight Q space equals space 2 straight x squared
                integral Pdx space equals space minus integral 1 over straight x dx space equals space minus log space straight x space equals space log space straight x to the power of negative 1 end exponent
    therefore space space space straight e to the power of integral Pdx end exponent space equals space straight e to the power of log space straight x to the power of negative 1 end exponent end exponent space equals space straight x to the power of negative 1 end exponent space equals space 1 over straight x
    therefore    solution of differential equation is
                            straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or       straight y.1 over straight x space equals space integral 2 space straight x squared. space 1 over straight x dx space plus space straight c space space space space space space or space space space straight y over straight x space equals space 2 integral straight x space dx space plus space straight c
    or      straight y over straight x space equals space straight x squared plus straight c       or        straight y space equals space straight x cubed plus cx
                    
    Question 77
    CBSEENMA12033156

    Solve the differential equation:
    dy over dx minus 2 straight y space equals space 3 straight x.

    Solution
    The given differential equation is
                     dy over dx minus 2 straight y space equals space 3 straight x
    Comparing it with   dy over dx plus space straight P space straight y space equals space straight Q comma space space we space get comma
                          P =  -2,   Q = 3x
        integral straight P space dx space equals space minus 2 space integral space dx space equals space minus 2 straight x
space space space straight I. straight F. space equals space straight e to the power of integral Pdx end exponent space equals space straight e to the power of negative 2 straight x end exponent
    Solution of given differential equation is
                       straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx space plus space straight c
    or        straight y space straight e to the power of negative 2 straight x end exponent space equals space integral space 3 space straight x space straight e to the power of negative 2 straight x end exponent space dx plus straight c
    or        ye to the power of negative 2 straight x end exponent space equals space 3 space integral space xe to the power of negative 2 straight x end exponent dx plus straight c
    or       ye to the power of negative 2 straight x end exponent space equals space 3 space open square brackets straight x fraction numerator straight e to the power of negative 2 straight x end exponent over denominator negative 2 end fraction minus integral 1. space fraction numerator straight e to the power of negative 2 straight x end exponent over denominator negative 2 end fraction dx close square brackets plus straight c      
    or         ye to the power of negative 2 straight x end exponent space equals negative 3 over 2 xe to the power of negative 2 straight x end exponent plus 3 over 2 integral straight e to the power of negative 2 end exponent dx plus straight c
    or        ye to the power of negative 2 straight x end exponent space equals space minus 3 over 2 xe to the power of negative 2 straight x end exponent plus 3 over 2 fraction numerator straight e to the power of negative 2 straight x end exponent over denominator negative 2 end fraction plus straight c
    or                             straight y equals negative 3 over 2 straight x minus 3 over 4 plus ce to the power of 2 straight x end exponent
    which is required solution. 
    Question 78
    CBSEENMA12033157

    Solve dy over dx plus straight y over straight x space equals space straight e to the power of straight x comma space space left parenthesis straight x greater than 0 right parenthesis.

    Solution
    The given differential equation is
                         dy over dx plus straight y over straight x space equals space straight e to the power of straight x
    Comparing it with  dy over dx plus Py space equals space straight Q comma we get,  straight P space equals space 1 over straight x comma space space straight Q space equals space straight e to the power of straight x
                                  integral Pdx space equals integral 1 over straight x dx space equals space log space straight x comma space space space space space straight e to the power of integral straight p space dx end exponent space equals space straight e to the power of logx space equals space straight x
    therefore space space space solution space of space differential space equation space is
                      straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx space plus space straight c space space space or space space space straight y. space straight x space equals space integral straight e to the power of straight x. space straight x space dx plus straight c
    or                   straight x space straight y space equals space straight x space straight e to the power of straight x space space minus space integral 1. space straight e to the power of straight x space dx plus space straight c space or space straight x space straight y space equals space straight x space straight e to the power of straight x minus straight e to the power of straight x plus straight c
    or                     straight y equals fraction numerator left parenthesis straight x minus 1 right parenthesis space straight e to the power of straight x over denominator straight x end fraction plus straight c over straight x
    Question 79
    CBSEENMA12033158

    Solve the differential equation:
    straight x dy over dx plus 2 straight y space equals straight x squared.

    Solution
    The given differential equation is
                   straight x dy over dx plus 2 straight y space equals straight x squared space space or space space dy over dx plus 2 over straight x straight y space equals space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space space we space get comma space straight P space equals space 2 over straight x comma space space straight Q space equals space straight x
    therefore space space space space integral straight P space dx space equals space integral 2 over straight x dx space equals space 2 space log space straight x space equals space log space straight x squared
    therefore space space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space straight x squared end exponent space equals space straight x squared space                                             open square brackets because space space straight e to the power of log space straight x end exponent space equals space straight x close square brackets
    therefore space space space solution space of space given space differential space equation space is
                 straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral space straight Q. space space straight e to the power of integral space straight P space dx end exponent dx space plus straight c
    or     straight y. space straight x squared space equals space integral straight x. space straight x squared space dx plus straight c space space space space or space space space space straight x squared straight y space equals space integral straight x cubed space dx plus straight c
    or      straight x squared straight y space equals space straight x to the power of 4 over 4 plus straight c space space or space space straight y space equals space 1 fourth straight x squared plus cx squared

    Sponsor Area

    Question 80
    CBSEENMA12033159

    Solve:
    straight v plus 2 straight y space equals 4 straight x

    Solution

    The given differential equation is dy over dx plus 2 straight y space equals space 4 straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get.
               P = 2,  Q = 4 x
    therefore space space space integral straight P space dx space equals space integral 2 space dx space equals space 2 space straight x
therefore space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e squared
therefore space space space solution space of space differential space equation space is
                    straight y. space straight e to the power of 2 straight x end exponent space space space integral space 4 straight x. space straight e to the power of 2 straight x end exponent space dx plus straight c space space or space space space straight y space straight e to the power of 2 straight x end exponent space equals space 4 space integral straight x space straight e to the power of 2 straight x end exponent space dx
    or         straight y. straight e to the power of 2 straight x end exponent space equals space 4 open square brackets straight x straight e to the power of 2 straight x end exponent over 2 minus integral 1. space straight e to the power of 2 straight x end exponent over 2 dx close square brackets plus straight c
    or          straight y. straight e to the power of 2 straight x end exponent space equals space 2 space straight x space straight e to the power of 2 straight x end exponent minus 2 integral straight e to the power of 2 straight x end exponent dx plus straight c space space or space space straight y space straight e to the power of 2 straight x end exponent space equals space 2 straight x space straight e to the power of 2 straight x end exponent minus 2. straight e to the power of 2 straight x end exponent over 2 plus straight c
    or           straight y. space straight e to the power of 2 straight x end exponent space equals space 2 space straight x space straight e to the power of 2 straight x end exponent space space space space comma space space space straight e to the power of 2 straight x end exponent plus straight c space space space or space space straight y space equals space 2 straight x minus 1 space plus space straight c space straight e to the power of 2 straight x end exponent

    Question 81
    CBSEENMA12033160

    Solve:
    dy over dx plus straight y over straight x equals straight x squared.

    Solution
    The given differential equation is dy over dx plus straight y over straight x equals straight x squared
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma space space straight P space equals 1 over straight x. space space straight Q space equals straight x squared
                           integral straight P space dx space equals space integral 1 over straight x dx space equals space log space straight x
    therefore space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of logx space equals straight x
    therefore space space space solution space of space given space differential space equation space is
                          straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent space dx plus straight c space space space or space space space straight y space. straight x space equals space integral straight x squared. space straight x space dx plus straight c
    or            straight x space straight y space equals space integral straight x cubed dx plus straight c space space space space or space space space straight x space straight y space equals space straight x to the power of 4 over 4 plus straight c space space space space space or space space space straight y space equals space straight x cubed over 4 plus straight c over straight x
    Question 82
    CBSEENMA12033161

    Solve:
    dy over dx plus 4 straight y space equals space 5 straight x

    Solution
    The given differential equation is
                     dy over dx plus 4 straight y space equals space 5 straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma we get,
                        P = 4,   Q = 5x
    integral straight P space dx space equals space integral 4 space dx space equals space 4 straight x
          straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 4 straight x end exponent
    Solution of given differential equation is
                      ye to the power of integral straight P space dx end exponent space equals space integral space straight Q space straight e to the power of integral space straight P space dx end exponent dx space plus space straight c
    or          ye to the power of 4 straight x end exponent space equals space integral 5 space straight x space straight e to the power of 4 straight x end exponent dx space plus straight c
    or space space space space space straight y space straight e to the power of 4 straight x end exponent space equals space 5 space integral straight x space straight e to the power of 4 straight x end exponent dx plus straight c
or space space space space straight y space straight e to the power of 4 straight x end exponent space equals space 5 space open square brackets straight x space straight e to the power of 4 straight x end exponent over 4 minus space integral 1. space straight e to the power of 4 straight x end exponent over 4 dx close square brackets plus straight c
or space space space space straight y space straight e to the power of 4 straight x end exponent space equals space 5 over 4 straight x space straight e to the power of 4 straight x end exponent minus 5 over 4 integral straight e to the power of 4 straight x end exponent dx space plus space straight c
or space space space straight y space straight e to the power of 4 straight x end exponent space equals space 5 over 4 straight x space straight e to the power of 4 straight x end exponent space minus space 5 over 4. space straight e to the power of 4 straight x end exponent over 4 plus straight c
therefore space space space space space space space space straight y space equals space 5 over 4 straight x minus 5 over 16 plus ce to the power of negative 4 straight x end exponent
    is required solution. 
    Question 83
    CBSEENMA12033162

    Solve:
    dy over dx plus straight y space equals space 1


    Solution

    The given differential equation is dy over dx plus straight y space equals space 1
    Comparing it with dy over dx plus space straight P space straight y space equals space straight Q comma space we space get comma space space space straight P space equals space 1 comma space space straight Q space equals space 1
    therefore space space space space integral straight P space dx space equals space integral 1. space dx space equals space straight x
therefore space space space straight I. space straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of straight x
therefore space space space solution space of space differential space equation comma space is space straight y. space straight e to the power of straight x space equals space integral 1. space straight e to the power of straight x space dx space plus straight c
or space space space straight y space straight e to the power of straight x space equals space straight e to the power of straight x plus straight c space space space or space space space straight y space equals space 1 plus straight c space straight e to the power of negative straight x end exponent

    Question 84
    CBSEENMA12033163

    Solve:
    fraction numerator dy apostrophe over denominator dx end fraction minus straight y over straight x equals space 2 straight x squared



    Solution

    The given differential equation is dy over dx minus straight y over straight x space equals space 2 straight x squared
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space we space get comma space straight P space equals negative 1 over straight x comma space space straight Q space equals space 2 straight x squared.
                               integral straight P space dx space equals space minus integral 1 over straight x dx space equals space minus log space straight x space equals space log space straight x to the power of negative 1 end exponent
    therefore space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of logx to the power of negative 1 end exponent end exponent space equals space straight x to the power of negative 1 end exponent space equals space 1 over straight x
    therefore   solution of differential equation is,
                            straight y space. straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx space plus space straight c
    or           straight y.1 over straight x space equals space integral 2 space straight x squared. space 1 over straight x dx plus straight c space space space space or space space space straight y over straight x space equals space 2 integral straight x space dx plus straight c space space or space space straight y over straight x equals straight x squared plus straight c space space or space space straight y space equals space straight x cubed plus cx

    Question 85
    CBSEENMA12033164

    Solve:
    2 straight x dy over dx plus straight y space equals space 6 straight x cubed space space or space space space dy over dx plus fraction numerator straight y over denominator 2 straight x end fraction equals 3 straight x squared.




    Solution
    The given differential equation is
                             2 straight x dy over dx plus straight y space equals space 6 straight x cubed
    or       dy over dx plus fraction numerator 1 over denominator 2 straight x end fraction straight y space equals space 3 straight x squared
    Comparing it with dy over dx plus straight P space straight y space space equals space straight Q comma space we space get comma
                   straight P space equals space fraction numerator 1 over denominator 2 straight x end fraction comma space space space straight Q space equals space 3 straight x squared
    integral straight P space dx space equals space 1 half integral 1 over straight x dx space equals space 1 half log space straight x space equals space log space square root of straight x
therefore space space space straight e to the power of integral space straight P space dx end exponent space equals space straight e to the power of log space square root of straight x end exponent space equals space square root of straight x
therefore space space space solution space is space
space space space space space space space space straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral space straight Q. space straight e to the power of integral straight P space dx end exponent dx space plus straight c
    or    straight y. space square root of straight x space equals space integral 3 space straight x squared. space square root of straight x space dx space plus space straight c
    therefore space space space square root of straight x space space straight y space equals space 3 space integral straight x to the power of 5 over 2 end exponent dx plus straight c space space space space or space space space straight y square root of straight x space equals space 3 fraction numerator straight x to the power of begin display style 7 over 2 end style end exponent over denominator begin display style 7 over 2 end style end fraction plus straight c
    or      straight y square root of straight x space equals space 6 over 7 space straight x to the power of 7 over 2 end exponent plus straight c
    which is required solution. 
    Question 86
    CBSEENMA12033165

    Solve dy over dx plus fraction numerator 1 over denominator straight x space logx end fraction straight y space equals space 1 over straight x.

    Solution

    The given differential equation is dy over dx plus fraction numerator 1 over denominator straight x space logx end fraction. straight y space equals space 1 over straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma space space straight P space equals space fraction numerator 1 over denominator straight x space logx end fraction comma space straight Q space equals 1 over straight x
                     integral straight P space dx space equals space integral fraction numerator 1 over denominator straight x space logx end fraction dx space equals space integral fraction numerator begin display style 1 over straight x end style dx over denominator log space straight x end fraction space equals space log space left parenthesis log space straight x right parenthesis
    therefore space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis log space straight x right parenthesis end exponent space equals space log space straight x
therefore space space space space solution space of space differential space equation space is
space space space space space space space space space space space space space straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent space dx space plus space straight c apostrophe space space or space straight y. space log space straight x space equals space integral 1 over straight x. space log space straight x space dx space plus space straight c apostrophe
    or     straight y space log space straight x space equals space integral left parenthesis log space straight x right parenthesis. space 1 over straight x dx plus straight c apostrophe space space or space space straight y space log space straight x space equals space fraction numerator left parenthesis log space straight x right parenthesis squared over denominator 2 end fraction plus straight c apostrophe
    or     2 space straight y space log space straight x space equals space left parenthesis log space straight x right parenthesis squared plus straight c

    Question 87
    CBSEENMA12033166

    Solve:
    straight x dy over dx plus straight y space equals space straight x space log space straight x

    Solution

    The given differential equation is straight x dy over dx plus straight y space equals space straight x space log space straight x.
    or     dy over dx plus 1 over straight x straight y space equals space log space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space space we space get comma space space straight P space equals space 1 over straight x comma space space straight Q space equals space log space straight x
                             integral straight P space dx space equals space integral 1 over straight x dx space equals space log space straight x comma space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of logx space equals straight x
    therefore space space spacesolution of differential equation is
                            straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral space straight Q. space straight e to the power of integral straight P space dx end exponent space dx space plus straight c apostrophe space space or space space straight y. space straight x space equals space integral left parenthesis log space straight x right parenthesis. space straight x space dx space plus space straight c space
    or        straight y. straight x space equals left parenthesis log space straight x right parenthesis. space straight x squared over 2 minus integral 1 over straight x. straight x squared over 2 dx plus straight c apostrophe space space space or space space straight x space straight y space equals space straight x squared over 2 log space straight x space minus space 1 half integral straight x space dx plus straight c apostrophe
    or       straight x space straight y space equals space straight x squared over 2 log space straight x space minus straight x squared over 4 plus straight c apostrophe space space or space space 4 xy space equals space 2 straight x squared logx space minus space straight x squared plus straight c

    Question 88
    CBSEENMA12033167

    Solve:
    straight x dy over dx plus 2 straight y space equals space straight x squared log space straight x

    Solution
    The given differential equation is
               straight x dy over dx plus 2 straight y space equals space straight x squared space logx
    or      dy over dx plus 2 over straight x straight y space equals space straight x space logx
    Comparing it with dy over dx plus Py space equals space straight Q comma space space we space get comma space space straight P space equals space 2 over straight x comma space space straight Q space equals space straight x space log space straight x
    therefore space space space integral straight P space dx space equals space 2 space integral 1 over straight x dx space equals space 2 space log space straight x. space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 2 space log space straight x end exponent space equals space straight e to the power of log space straight x squared end exponent space equals space straight x squared
    Solution of given differential equation is
                        straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or             straight y. straight x squared space equals space integral straight x space log space straight x. space straight x squared space dx plus straight c
    or space space straight x squared. straight y space equals space integral left parenthesis log space straight x right parenthesis. space straight x cubed space dx space plus straight c
or space space straight x squared straight y space equals space left parenthesis log space straight x right parenthesis. space straight x to the power of 4 over 4 minus integral 1 over straight x. straight x to the power of 4 over 4 dx plus straight c
or space space space straight x squared straight y space equals space straight x to the power of 4 over 4 log space straight x space minus space 1 fourth integral straight x cubed space dx plus straight c
or space space space straight x squared straight y space equals space straight x to the power of 4 over 4 log space straight x minus space 1 fourth. space straight x to the power of 4 over 4 plus straight c
or space space space straight y space equals straight x squared over 4 log space straight x space minus space 1 over 16 straight x squared plus straight c space straight x to the power of negative 2 end exponent space is space the space required space solution. space
    Question 89
    CBSEENMA12033168

    Solve:
    straight x space log space straight x space dy over dx plus straight y space equals space 2 over straight x log space straight x

    Solution
    The given differential equation is
    straight x space log space straight x space dy over dx plus straight y space equals space 2 over straight x log space straight x space space space or space space space dy over dx plus space fraction numerator 1 over denominator straight x space log space straight x end fraction straight y space equals space 2 over straight x squared
    Comparing it with dy over dx plus Py space equals straight Q comma space we space get comma space space straight P space equals fraction numerator 1 over denominator straight x space log space straight x end fraction comma space straight Q space equals 2 over straight x squared
    therefore space space space space space space integral straight P space dx space equals space integral fraction numerator 1 over denominator straight x space log space straight x end fraction dx space equals integral fraction numerator begin display style 1 over straight x end style over denominator log space straight x end fraction dx space equals space log space left parenthesis log space straight x right parenthesis
therefore space space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis log space straight x right parenthesis end exponent space equals space log space straight x.
    therefore   solution of given differential equation is
                          straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx space plus straight c
    or             straight y space log space straight x space equals space integral 2 over straight x squared log space straight x space dx space plus space straight c
    or           straight y space log space straight x space equals space 2 space integral left parenthesis log space straight x right parenthesis. space straight x squared space dx space plus straight c
    or space space space straight y space log space straight x space equals space 2 open square brackets left parenthesis log space straight x right parenthesis. space fraction numerator straight x to the power of negative 1 end exponent over denominator negative 1 end fraction minus integral 1 over straight x. fraction numerator straight x to the power of negative 1 end exponent over denominator negative 1 end fraction dx close square brackets plus straight c
or space space straight y space log space straight x space equals space minus fraction numerator 2 space log space straight x over denominator straight x end fraction plus 2 space integral straight x to the power of negative 2 end exponent space dx plus straight c
or space space straight y space logx space space equals space minus fraction numerator 2 space log space straight x over denominator straight x end fraction plus 2 fraction numerator straight x to the power of negative 1 end exponent over denominator negative 1 end fraction plus straight c
or space space space straight y space logx space equals negative 2 over straight x left parenthesis 1 plus log space straight x right parenthesis space plus space straight c comma space which space is space required space solution.
    Question 90
    CBSEENMA12033169

    Find one-parameter families of solution curves of the following differential equations:
    straight y apostrophe plus 3 straight y space equals straight e to the power of negative 2 straight x end exponent

    Solution
    The given differential equation is
                          straight y apostrophe plus 3 straight y space equals space straight e to the power of negative 2 straight x end exponent
    or     dy over dx plus 3 straight y space equals space straight e to the power of negative 2 straight x end exponent
    Comparing it with dy over dx plus Py space equals straight Q comma space we space get comma space straight P space equals space 3 comma space straight Q space equals space straight e to the power of negative 2 straight x end exponent
    therefore space space space space space integral straight P space dx space equals space 3 space integral space 1 space dx space equals space 3 space straight x. space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 3 straight x end exponent
    Solution of given differential equation is
                      straight y space straight e to the power of integral straight P space dx end exponent space equals space integral space straight Q space straight e to the power of integral straight P space dx end exponent dx plus space straight c
    or       straight y space straight e to the power of 3 straight x end exponent space equals space integral space straight e to the power of negative 2 straight x end exponent. space straight e to the power of 3 straight x end exponent space dx plus straight c
    or space space space straight y space straight e to the power of 3 straight x end exponent space equals space integral straight e to the power of straight x space dx plus straight c
or space space space space straight y space straight e to the power of 3 straight x end exponent space equals space straight e to the power of straight x plus straight c
or space space space space space space space straight y space space equals space straight e to the power of negative 2 straight x end exponent plus straight c space straight e to the power of negative 3 straight x end exponent space is space required space solution.
    Question 91
    CBSEENMA12033170

    Find one-parameter families of solution curves of the following differential equation:
     straight y apostrophe space minus space straight y space equals space cos space straight x

    Solution
    The given differential equation is
                   straight y apostrophe minus straight y space equals space cos space straight x space space space space space space or space space space space space dy over dx minus straight y space equals space cos space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space space we space space get space comma space space straight P space equals space minus 1 comma space space space straight Q space equals space cos space straight x space
               integral space thin space straight P space dx space equals space minus integral 1 space dx space equals space minus straight x comma space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative straight x end exponent 
    solution is
                      space straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral space straight P space dx end exponent space dx plus straight c
    or         straight y space straight e to the power of negative straight x end exponent space equals space integral space left parenthesis cosx right parenthesis. space straight e to the power of negative straight x end exponent dx plus straight c
    therefore space space space space space space space space space space straight y space straight e to the power of negative straight x end exponent space equals space fraction numerator 1 over denominator 1 plus 1 end fraction straight e to the power of negative straight x end exponent space left parenthesis sin space straight x minus space cos space straight x right parenthesis space plus space straight c
therefore space space space space space space space space space space space space space space straight y space space equals 1 half left parenthesis sin space straight x space minus space cos space straight x right parenthesis space plus space ce to the power of straight x
    which is required solution. 
    Question 92
    CBSEENMA12033171

    Find one-parameter families of solution curves of the following differential equation:
     y'+3 y = emx (m: a given real number)

    Solution
    The given differential equation is
                      dy over dx plus 3 straight y space equals space straight e to the power of mx
    Comparing it with dy over dx plus Py space equals space straight Q comma space space we space get space straight P space equals space 3 comma space space straight Q space equals space straight e to the power of mx
    therefore space space space space space space space space space straight e to the power of integral space straight p space dx end exponent space equals straight e to the power of 3 space integral space dx end exponent space space equals space straight e to the power of 3 straight x end exponent
therefore space space space space solution space is
                      straight y space straight e to the power of integral straight P space dx end exponent space equals integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or                straight y space straight e to the power of 3 straight x end exponent space equals space integral straight e to the power of mx. space straight e to the power of 3 straight x end exponent dx plus straight c
    or              straight y space straight e to the power of 3 straight x end exponent space equals space integral straight e to the power of left parenthesis straight m plus 3 right parenthesis straight x end exponent dx space equals space straight c
    or           straight y space straight e to the power of 3 straight x end exponent space equals space fraction numerator straight e to the power of left parenthesis straight m plus 3 right parenthesis straight x end exponent over denominator straight m plus 3 end fraction plus straight c comma space space space if space straight m space plus space 3 space not equal to space 0
    If   straight m plus 3 space equals space 0 comma space space space space space straight i. straight e. comma space straight m space equals negative 3 comma space then space solution space is space   
                                   space space space straight y space straight e to the power of 3 straight x end exponent space equals space integral 1 space dx plus straight c
    or                             straight y space straight e to the power of 3 straight x end exponent space equals space straight x plus straight c
    Question 93
    CBSEENMA12033172

    Find one-parameter families of solution curves of the following differential equation:
     y' - y = cos 2x

    Solution
    The given differential equation is
                        straight y apostrophe minus straight y space equals space cos space 2 straight x space space space space space space space space space space space space space space space space space space space space space space space space space space or space space space dy over dx minus straight y space equals space cos space 2 straight x
    Comparing it with dy over dx plus straight P space straight y space equals straight Q comma space we space get comma space space straight P equals space minus 1 comma space space straight Q space equals space cos space 2 straight x
                                integral straight P space dx space equals space minus integral 1 space dx space equals space minus straight x comma space space space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of straight x
    therefore space space space solution space of space differential space equation space is
                     straight y. space straight e to the power of straight x space equals space integral cos space 2 straight x. space straight e to the power of negative straight x end exponent space dx plus straight c space space or space space space straight y space straight e to the power of negative straight x end exponent space equals space integral straight e to the power of negative straight x end exponent space cos space 2 straight x space dx plus straight c
    or        straight y space straight e to the power of straight x space equals space fraction numerator 1 over denominator square root of left parenthesis negative 1 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root end fraction straight e to the power of negative straight x end exponent space cos space open square brackets 2 straight x minus tan to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator space space space space space space space space space minus 1 end fraction close parentheses close square brackets plus straight c
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space integral straight e to the power of ax cos space bx space dx space equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction straight e to the power of ax space cos space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses plus straight c close square brackets
space space space space space space
or space space space space space straight y space straight e to the power of negative straight x end exponent space equals space fraction numerator 1 over denominator square root of 5 end fraction straight e to the power of negative straight x end exponent space cos space left square bracket 2 straight x space minus space tan to the power of negative 1 end exponent left parenthesis negative 2 right parenthesis right square bracket space plus space straight c
or space space space space space space space straight y space equals space fraction numerator 1 over denominator square root of 5 end fraction cos space left square bracket 2 straight x space minus tan to the power of negative 1 end exponent left parenthesis negative 2 right parenthesis right square bracket space plus space straight c space straight e to the power of straight x
    Question 94
    CBSEENMA12033173

    Find one-parameter families of solution curves of the following differential equation:
    x y' - y = (x+1) e-x

    Solution
    The given differential equation is
                          x y' - y = (x+1) e-x     or     dy over dx minus 1 over straight x straight y space equals open parentheses 1 plus 1 over straight x close parentheses straight e to the power of negative straight x end exponent
    Comparing with dy over dx plus straight P space straight y space equals space straight Q comma space we space get space straight P space equals space minus 1 over straight x comma space space straight Q space equals space open parentheses 1 plus 1 over straight x close parentheses straight e to the power of negative straight x end exponent
                     integral straight P space dx space equals negative integral 1 over straight x dx space equals negative log space straight x comma space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space straight x end exponent space equals space straight e to the power of log space straight x to the power of negative 1 end exponent end exponent space equals space straight x to the power of negative 1 end exponent space equals space 1 over straight x
    Solution of differential equation is
                          straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of Pdx space end exponent dx plus straight c
    or         straight y.1 over straight x space equals space integral open parentheses 1 plus 1 over straight x close parentheses straight e to the power of negative straight x end exponent. space 1 over straight x dx plus straight c
    or          straight y over straight x equals integral open parentheses 1 over straight x plus 1 over straight x squared close parentheses space straight e to the power of negative straight x end exponent dx plus straight c
    or space space straight y over straight x equals integral 1 over straight x. straight e to the power of negative straight x end exponent space dx plus integral 1 over straight x squared straight e to the power of negative straight x end exponent. space dx plus straight c
or space space space space straight y over straight x equals 1 over straight x. space fraction numerator straight e to the power of negative straight x end exponent over denominator negative 1 end fraction minus space integral fraction numerator negative 1 over denominator straight x squared end fraction. space fraction numerator straight e to the power of negative straight x end exponent over denominator negative 1 end fraction dx plus integral 1 over straight x squared straight e to the power of negative straight x end exponent dx plus straight c
or space space space space straight y over straight x equals negative 1 over xe to the power of straight x minus integral fraction numerator 1 over denominator straight x squared straight e to the power of straight x end fraction dx plus integral fraction numerator 1 over denominator straight x squared straight e to the power of straight x end fraction dx plus straight c
or space space space space straight y over straight x equals negative 1 over xe to the power of straight x plus straight c
or space space space space space straight y space equals negative straight e to the power of negative straight x end exponent plus cx
    Question 95
    CBSEENMA12033174

    Find one-parameter families of solution curves of the following differential equation:
    x y' + y = x4

    Solution
    The given differential equation is
                 x y' + y = x4   or     dy over dx plus 1 over straight x straight y space equals space straight x cubed
    Comparing it with dy over dx plus Py space equals straight Q comma space we space get space straight P space equals 1 over straight x. straight Q space equals space straight x cubed
                         straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of integral 1 over straight x dx end exponent space equals space straight e to the power of log space straight x end exponent space equals space straight x
    Solution of differential equation is
                         straight y space straight e to the power of integral space straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or              straight y. space straight e space equals space integral straight x cubed. space straight x space dx plus straight c space space space space space space or space space space straight x space straight y space equals space integral straight x to the power of 4 dx plus straight c
    or                xy space equals straight x to the power of 5 over 5 plus straight c space space space space space space space space space space space space space space space space space space space or space space space space space straight y space equals space straight x to the power of 4 over 5 plus straight c over straight x
    Question 96
    CBSEENMA12033175

    Find one-parameter families of solution curves of the following differential equation:
    x y' log x + y = log x

    Solution
    The given differential equation is
             left parenthesis straight x space logx right parenthesis dy over dx plus straight y space equals space log space straight x space space or space space dy over dx plus fraction numerator 1 over denominator straight x space log space straight x end fraction straight y space equals space 1 over straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space we space get comma space straight P space equals space fraction numerator 1 over denominator straight x space logx end fraction comma space space straight Q space equals space 1 over straight x
                  integral straight P space dx space equals space integral fraction numerator 1 over denominator straight x space log space straight x end fraction dx space equals space integral fraction numerator begin display style 1 over straight x end style dx over denominator log space straight x end fraction space equals space log space left parenthesis log space straight x right parenthesis
    therefore space space straight e to the power of integral straight P space dx end exponent space equals straight e to the power of log space left parenthesis log space straight x right parenthesis end exponent space equals space log space straight x
    therefore    solution of differential equation is
                    straight y space straight e to the power of integral Pdx end exponent space equals space integral straight Q. space straight e to the power of integral straight P end exponent dx space plus space straight c apostrophe space space space or space space straight y. space log space straight x space equals space integral 1 over straight x. space log space straight x space dx plus space straight c apostrophe
    or    straight y space log space straight x space equals integral left parenthesis log space straight x right parenthesis. space 1 over straight x dx plus straight c apostrophe space space or space space straight y space log space straight x space equals space fraction numerator left parenthesis log space straight x right parenthesis squared over denominator 2 end fraction plus straight c apostrophe
    or         2 straight y space log space straight x space equals space left parenthesis log space straight x right parenthesis squared plus straight c
    Question 97
    CBSEENMA12033176

    Find one-parameter families of solution curves of the following differential equation:
    dy over dx minus fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction comma space space straight y space equals space straight x squared plus 2

    Solution
    The given differential equation is
                    dy over dx minus fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction straight y space equals space straight x squared plus 2
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma space straight P space equals negative fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction comma space space straight Q space equals straight x squared plus 2
    therefore space space space space space integral straight P space dx space equals space minus integral fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction dx equals negative log space left parenthesis 1 plus straight x squared right parenthesis
therefore space space space space space straight e to the power of integral space Pdx end exponent space equals space straight e to the power of negative log space left parenthesis 1 plus straight x squared right parenthesis end exponent space equals space straight e to the power of log space left parenthesis 1 plus straight x squared right parenthesis to the power of negative 1 end exponent end exponent space equals space fraction numerator 1 over denominator 1 plus straight x squared end fraction
    therefore  solution of differential equation is                                straight y space straight e to the power of integral straight P space dx end exponent space equals integral straight Q. space straight e to the power of integral straight P space dx end exponent dx space plus space straight c space space space or space space straight y. space fraction numerator 1 over denominator 1 plus straight x squared end fraction space equals space integral left parenthesis straight x squared plus 2 right parenthesis. space fraction numerator 1 over denominator straight x squared plus 1 end fraction dx plus straight c
    or       fraction numerator straight y over denominator 1 plus straight x squared end fraction space equals integral fraction numerator straight x squared plus 2 over denominator straight x squared plus 1 end fraction dx plus straight c    or    fraction numerator straight y over denominator 1 plus straight x squared end fraction space equals space integral open parentheses 1 plus fraction numerator 1 over denominator straight x squared plus 1 end fraction close parentheses dx plus straight c
    or              fraction numerator straight y over denominator 1 plus straight x squared end fraction space equals space straight x plus tan to the power of negative 1 end exponent straight x plus straight c
    Question 98
    CBSEENMA12033177

    Find one-parameter families of solution curves of the following differential equation:
      straight y apostrophe plus straight y space cosx space equals space straight e to the power of sin space straight x end exponent space cos space straight x

    Solution
    The given differential equation is
         straight y apostrophe plus straight y space cosx space equals space straight e to the power of sinx space cos space straight x space space space space space space space or space space space space space dy over dx plus left parenthesis cos space straight x right parenthesis. space straight y space equals space straight e to the power of sin space straight x end exponent space space cosx space
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space we space get space straight P space equals cosx comma space straight Q space equals space straight e to the power of sinx. space cosx
    therefore space space space space space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of integral space cosx space dx end exponent space equals straight e to the power of sin space straight x end exponent
    Solution of given differential equation is
                 straight y space. straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or       straight y space straight e to the power of sinx space equals space integral straight e to the power of sinx space cosx. space straight e to the power of sinx dx plus straight c
    or         straight y space straight e to the power of sinx space equals space integral straight e to the power of 2 space sinx end exponent space cosx space dx plus straight c                        ...(1)
    Let I = integral straight e to the power of 2 sinx end exponent space cos space straight x space dx
    Put          sinx = t,                          therefore space space space cos space straight x space dx space equals dt
    therefore                     I = integral straight e to the power of 2 straight t end exponent dt space equals space straight e to the power of 2 straight t end exponent over 2 space equals 1 half straight e to the power of 2 sinx end exponent
    therefore space space from space left parenthesis 1 right parenthesis comma space space space ye to the power of sinx space equals space 1 half straight e to the power of 2 sinx end exponent plus straight c comma space which space is space required space solution.
    Question 99
    CBSEENMA12033178

    Find one-parameter families of solution curves of the following differential equation:
    left parenthesis 1 plus straight x squared right parenthesis space dy space plus space 2 xy space dx space equals space cot space straight x space dx space space space space left parenthesis straight x not equal to 0 right parenthesis
      

    Solution
    The given differential equation is
                       left parenthesis 1 plus straight x squared right parenthesis space dy plus space 2 xy space dx space equals space cot space straight x space dx
    or   open parentheses 1 plus straight x squared close parentheses dy over dx plus 2 space straight x space straight y space equals space space cot space straight x
    or   dy over dx plus fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction. space straight y space equals space fraction numerator cot space straight x over denominator 1 plus straight x squared end fraction
    Comparing it with dy over dx plus Py space equals straight Q comma space we space get comma space straight P equals space fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction comma space space straight Q space equals space fraction numerator cot space straight x over denominator 1 plus straight x squared end fraction
    integral straight P space dx space equals space integral fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction dx space equals space log space left parenthesis 1 plus straight x squared right parenthesis. space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis 1 plus straight x right parenthesis end exponent space equals space 1 plus straight x squared
    Solution of given differential equation is
                         ye to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or          straight y left parenthesis 1 plus straight x squared right parenthesis space equals space integral open parentheses fraction numerator cot space straight x over denominator 1 plus straight x squared end fraction close parentheses. space left parenthesis 1 plus straight x squared right parenthesis space dx plus straight c
    or space space space straight y left parenthesis 1 plus straight x squared right parenthesis space equals space integral cot space straight x space dx plus straight c
or space space straight y left parenthesis 1 plus straight x squared right parenthesis space equals space log space open vertical bar sin space straight x close vertical bar space plus straight c space
or space space space space space space space space space space straight y space equals space left parenthesis 1 plus straight x squared right parenthesis to the power of negative 1 end exponent space log space open vertical bar sin space straight x close vertical bar space plus space straight c space left parenthesis 1 plus straight x squared right parenthesis to the power of negative 1 end exponent
which space is space required space solution. space
    Question 100
    CBSEENMA12033179

    Find one-parameter families of solution curves of the following differential equation:
               straight x dy over dx plus straight y minus straight x plus straight x space straight y space cot space straight x space equals space 0 space space space left parenthesis straight x not equal to 0 right parenthesis

      

    Solution

    The given differential equation is
                                  straight x dy over dx plus straight y minus straight x plus straight x space straight y space cot space straight x space equals space 0
    or            straight x dy over dx plus left parenthesis 1 plus space straight x space cot space straight x right parenthesis space straight y space equals straight x
    or         dy over dx plus open parentheses 1 over straight x plus cot space straight x close parentheses. straight y space equals space 1
    Comparing it with dy over dx plus Py space equals straight Q comma space space we space get comma space space space straight P space equals space 1 over straight x plus cot space straight x comma space space straight Q space equals space 1
                   integral straight P space dx space equals space integral open parentheses 1 over straight x plus cot space straight x close parentheses space dx space equals space log space straight x plus space log space sinx space equals space log space left parenthesis straight x space sin space straight x right parenthesis
    therefore space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis straight x space sinx right parenthesis end exponent space equals space space straight x space sin space straight x
    Solution of given differential equation is
                                 straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or      straight y. space left parenthesis straight x space sin space straight x right parenthesis space equals space integral space 1. space straight x space sinx space dx space plus straight c
    or       straight x space straight y space sin space straight x space equals integral space straight x space sin space straight x space dx space plus space straight c
    or      straight x space straight y space sin space straight x space equals straight x. space left parenthesis negative cos space straight x right parenthesis minus space integral 1. space left parenthesis negative cos space straight x right parenthesis space dx plus space straight c
    or     straight x space straight y space sin space straight x space equals space minus straight x space cos space straight x space space plus space integral space cosx space dx plus straight c
    or     straight x space straight y space sin space straight x space equals space minus straight x space cos space straight x space plus space sin space straight x space plus straight c
    or         straight y equals negative cot space straight x plus 1 over straight x plus fraction numerator straight c over denominator straight x space sin space straight x end fraction
    which is required solution. 

    Question 101
    CBSEENMA12033180

    Solve:  open parentheses fraction numerator straight e to the power of negative 2 square root of straight x end exponent over denominator square root of straight x end fraction minus fraction numerator straight y over denominator square root of straight x end fraction close parentheses dx over dy equals 1 comma space space space straight x not equal to space 0.

    Solution
    The given differential equation is
                     open parentheses fraction numerator straight e to the power of negative 2 square root of straight x end exponent over denominator square root of straight x end fraction minus fraction numerator straight y over denominator square root of straight x end fraction close parentheses space dx over dy space equals 1 space space space space space space space space space or space space space space space dy over dx space equals fraction numerator straight e to the power of negative 2 square root of straight x end exponent over denominator square root of straight x end fraction minus fraction numerator straight y over denominator square root of straight x end fraction
    or      dy over dx plus fraction numerator 1 over denominator square root of straight x end fraction straight y space equals space fraction numerator straight e to the power of negative 2 square root of straight x end exponent over denominator square root of straight x end fraction
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma
                              straight P space equals fraction numerator 1 over denominator square root of straight x end fraction space space straight Q space equals space fraction numerator straight e to the power of negative 2 square root of straight x end exponent over denominator square root of straight x end fraction
    therefore space space space space space integral straight P space dx space equals space integral fraction numerator 1 over denominator square root of straight x end fraction dx space equals space integral straight x to the power of negative 1 half end exponent dx space equals space fraction numerator straight x to the power of begin display style 1 half end style end exponent over denominator begin display style 1 half end style end fraction space equals space 2 square root of straight x
    therefore space space space space space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 2 square root of straight x end exponent
    therefore space space space space solution space of space differential space equation space is
                                straight y. space straight e to the power of integral Pdx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or                straight y space straight e to the power of 2 square root of straight x end exponent space equals integral fraction numerator straight e to the power of negative 2 square root of straight x end exponent over denominator square root of straight x end fraction space straight e to the power of 2 square root of straight x end exponent dx plus straight c
    or               straight y space straight e to the power of 2 square root of straight x end exponent space equals space integral straight x to the power of negative 1 half end exponent dx plus straight c
    or              ye to the power of 2 square root of straight x end exponent space equals space fraction numerator straight x to the power of begin display style 1 half end style end exponent over denominator begin display style 1 half end style end fraction plus straight c space space space space space space space or space space space space straight y space straight e to the power of 2 square root of straight x end exponent space space equals space 2 square root of straight x plus straight c
    Question 102
    CBSEENMA12033181

    Solve the following differential equation:
    dy over dx space plus 2 space straight y space tan space straight x space equals space sin space straight x

    Solution
    The given differential equation is
                     dy over dx plus 2 space straight y space tanx space equals space sin space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma we get,
                       straight P space equals space 2 space tanx space space space straight Q space equals space sin space straight x
    therefore space space space space integral straight P space dx space equals space 2 space integral space tan space straight x space dx space equals space minus 2 space log space cosx space space equals space log space left parenthesis cosx right parenthesis squared
    therefore space space space space space space space space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis cosx space right parenthesis to the power of negative 2 end exponent end exponent space equals space left parenthesis cos space straight x right parenthesis to the power of negative 2 end exponent space equals space fraction numerator 1 over denominator cos squared straight x end fraction
    therefore space space space space space space solution space of space differential space equation space is
                               straight y. space fraction numerator 1 over denominator cos squared straight x end fraction space equals space integral sin space straight x. space space fraction numerator 1 over denominator cos squared straight x end fraction dx plus straight c
                                              open square brackets therefore space space space straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c close square brackets
    or                 fraction numerator straight y over denominator cos squared straight x end fraction space equals space integral space tanx space secx space dx plus straight c
    or           fraction numerator straight y over denominator cos squared straight x end fraction space equals space secx plus straight c
    or           straight y equals cosx plus straight c space cos squared straight x
    which is required solution. 
    Question 103
    CBSEENMA12033182

    For the differential equation, find the general solution:
    dy over dx plus 2 straight y space equals sin space straight x

    Solution
    The given different equation is
                        dy over dx plus 2 straight y space equals space sin space straight x
    Comparing it with dy over dx plus straight P space straight y space space equals space straight Q comma space we space get comma space
    P = 2,   Q = sin x                       rightwards double arrow space     integral straight P space dx space equals space integral space 2 space dx space equals space 2 straight x
    straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 2 straight x end exponent
    therefore    solution of differential equation is
               straight y. space straight e to the power of 2 straight x end exponent space equals space integral space sinx. space straight e to the power of 2 straight x end exponent space dx plus straight c space space space space space space space space space space open square brackets because space space space straight y space straight e to the power of integral Pdx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c close square brackets
    or       straight y. space straight e to the power of 2 straight x end exponent space equals space fraction numerator 1 over denominator square root of 4 plus 1 end root end fraction straight e to the power of 2 straight x end exponent space sin space open parentheses straight x minus tan to the power of negative 1 end exponent 1 half close parentheses plus straight c
                                  open square brackets because space space integral space space straight e space to the power of ax space sin space bx space dx space equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction space straight e to the power of ax. space sin space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
    or    straight y equals space fraction numerator 1 over denominator square root of 5 end fraction sin space open parentheses straight x minus tan to the power of negative 1 end exponent 1 half close parentheses plus ce to the power of negative 2 straight x end exponent
    Question 104
    CBSEENMA12033183

    Solve the following differential equation:
    sin space straight x space dy over dx plus straight y space cosx space equals space cos space straight x space sin squared straight x

    Solution
    The given differential equations is 
                              sinx dy over dx plus straight y space cosx space equals space cosx space sin squared straight x
    or              dy over dx plus straight y space cotx space equals space cos space straight x space sinx
    Comparing it with dy over dx plus Py space equals space straight Q comma we get.
                     straight P space equals cot space straight x comma space space space straight Q space equals space space cosx space sinx
    therefore space space space space integral space straight P space dx space equals space integral space cot space straight x space dx space equals space log space sinx
    therefore space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space sinx end exponent space equals space sin space straight x
    therefore space space space solution space of space differential space equation space is
                             straight y. space sinx space space equals space integral space cosx. space sinx. space sinx space dx space plus space straight c space space space space open square brackets because space space straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c close square brackets
    or     straight y space sinx space equals space integral sin squared straight x space cosx space dx plus straight c
    or      straight y space sinx space equals space fraction numerator sin cubed straight x over denominator 3 end fraction plus straight c
    or            straight y equals 1 third sin squared straight x plus straight c space cosec space straight x.
    Question 105
    CBSEENMA12033184

    Find a one parameter family of solutions of each of the following differential equation:
    straight y apostrophe cos squared straight x space equals space tanx minus space straight y

    Solution
    The given differential equation is
                        dy over dx. space cos squared straight x space equals space tanx minus straight y space space space space space space space or space space space dy over dx equals tan space straight x space sec squared straight x space minus space straight y space sec squared straight x
    or       dy over dx plus left parenthesis sec squared straight x right parenthesis. space straight y space equals space tan space straight x space sec squared straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma space straight P space equals space sec squared straight x comma space space straight Q space equals tan space straight x space sec squared straight x
                             integral straight P space dx space equals space integral sec squared straight x space dx space equals space tan space straight x comma space space space space space therefore space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of tanx
    therefore solution of differential equation is
                        straight y space straight e to the power of integral Pdx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or                 straight y space straight e to the power of tanx space equals space integral tanx space sec squared straight x space. space straight e to the power of tanx dx plus straight c            ...(1)
    Let                 straight I space equals space integral tanx space sec squared straight x. space space straight e to the power of tanx dx
      Put  tanx = t,   sec squared dx space equals space dt
    therefore space space space space space space space space space space space space space space straight I space equals space integral straight t. space straight e to the power of straight t space dt space equals space straight t space straight e to the power of straight t space minus space integral 1. space straight e to the power of straight t space dt space equals space straight t space straight e to the power of straight t space minus space straight e to the power of straight t space equals space left parenthesis straight t minus 1 right parenthesis space straight e to the power of straight t space equals space left parenthesis tanx space minus space 1 right parenthesis straight e to the power of tanx
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space straight y space straight e to the power of tanx space equals space left parenthesis tanx minus 1 right parenthesis space straight e to the power of tanx plus straight c
    or                         straight y equals tan space straight x minus 1 space plus space straight c space straight e to the power of negative tanx end exponent
            which is required solution. 
                  
    Question 106
    CBSEENMA12033185

    Find a one parameter family of solutions of each of the following differential equation:
                                 dy over dx equals negative fraction numerator straight x plus straight y space cosx over denominator 1 plus sinx end fraction

    Solution
    The given differential equation is
                                dy over dx equals negative fraction numerator straight x plus straight y space cosx over denominator 1 plus sinx end fraction space space space space space or space space space dy over dx space equals negative fraction numerator straight x over denominator 1 plus sinx end fraction minus straight y fraction numerator cosx over denominator 1 plus sinx end fraction
    or    dy over dx plus open parentheses fraction numerator cos space straight x over denominator 1 plus sinx end fraction close parentheses straight y space equals space minus fraction numerator straight x over denominator 1 plus sinx end fraction
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma
                                straight P space equals space fraction numerator cosx over denominator 1 plus sinx end fraction comma space space space straight Q space equals negative fraction numerator straight x over denominator 1 plus sinx end fraction
                       integral straight P space dx space equals space integral fraction numerator cosx over denominator 1 plus sinx end fraction dx space equals space log space left parenthesis 1 plus sinx right parenthesis
    therefore space space space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis 1 plus space sinx right parenthesis end exponent space equals space log space left parenthesis 1 plus sin space straight x right parenthesis
    therefore  solution of differential equation is
                             straight y space straight e to the power of integral Pdx space end exponent space equals space integral straight Q space straight e to the power of integral Pdx end exponent plus straight c
    or        straight y left parenthesis 1 plus sin space straight x right parenthesis space equals space integral fraction numerator negative straight x over denominator 1 plus sinx end fraction left parenthesis 1 plus sinx right parenthesis space dx plus straight c
    or        straight y space straight y left parenthesis 1 plus sinx right parenthesis space equals space minus integral straight x space dx plus straight c.
    or         straight y left parenthesis 1 plus sinx right parenthesis space equals space minus straight x squared over 2 plus straight c.
    Question 107
    CBSEENMA12033186

    Solve:
    straight y apostrophe minus 2 straight y space equals space cos space 3 straight x

    Solution

    The given differential equation is dy over dx minus 2 straight y space equals space cos space 3 straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma space space straight P space equals space minus 2 comma space space straight Q space equals space cos space 3 straight x
    therefore space space space space space space space integral space straight P space dx space equals space integral left parenthesis negative 2 right parenthesis space dx space equals space minus 2 space straight x comma space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative 2 straight x end exponent
    therefore solution of differential equation is
                   straight y. space straight e to the power of negative 2 straight x end exponent space equals space integral cos space 3 straight x. space straight e to the power of negative 2 straight x end exponent space dx plus straight c                     ...(1)
    Let I = integral straight e to the power of negative 2 straight x end exponent space cos space 3 straight x space dx space equals space straight e to the power of negative 2 straight x end exponent. space fraction numerator sin space 3 straight x over denominator 3 end fraction minus integral straight e to the power of negative 2 straight x end exponent left parenthesis negative 2 right parenthesis. space space fraction numerator sin space 3 straight x over denominator 3 end fraction dx
                                                                                             (Integrating by parts)
             equals space 1 third straight e to the power of negative 2 straight x end exponent space sin space 3 straight x space plus space 2 over 3 integral straight e to the power of negative 2 straight x end exponent space sin space 3 straight x space dx
equals space 1 third straight e to the power of negative 2 straight x end exponent space sin space 3 straight x space plus space 2 over 3 space open square brackets straight e to the power of negative 2 straight x end exponent space space open parentheses fraction numerator negative cos space 3 straight x over denominator 3 end fraction close parentheses minus space integral straight e to the power of negative 2 straight x end exponent space left parenthesis negative 2 right parenthesis. space open parentheses fraction numerator negative cos space 3 straight x over denominator 3 end fraction close parentheses close square brackets dx
equals space 1 third straight e to the power of negative 2 straight x end exponent space sin space space 3 straight x space minus space 2 over 9 straight e to the power of negative 2 straight x end exponent space cos space 3 straight x space minus 4 over 9 space integral straight e to the power of negative 2 straight x end exponent space cos space 3 straight x space dx
    therefore space space space straight I space equals space 1 over 9 straight e to the power of negative 2 straight x end exponent left parenthesis space 3 space sin space 3 straight x space space minus 2 space cos space 3 straight x right parenthesis space minus space 4 over 9 straight I space space or space space 13 over 9 straight I space equals space 1 over 9 straight e to the power of negative 2 straight x end exponent left parenthesis 3 space sin space 3 straight x space minus space 2 space cos space 3 straight x right parenthesis
    rightwards double arrow space space space space space straight I space equals space space 1 over 13 straight e to the power of negative 2 straight x end exponent left parenthesis 3 space sin space 3 straight x minus space 2 space cos space 3 straight x right parenthesis
    therefore space space space space from space left parenthesis 1 right parenthesis comma space solution space is
                        ye to the power of negative 2 straight x end exponent minus 1 over 13 straight e to the power of negative 2 straight x end exponent left parenthesis 3 space sin space 3 straight x minus space 2 space cos space 3 straight x right parenthesis space plus straight c
    or          straight y equals ee to the power of 2 straight x end exponent space plus space 1 over 13 left parenthesis 3 space sin space 3 straight x space minus space 2 space cos space 3 straight x right parenthesis

    Question 108
    CBSEENMA12033187

    Solve:
    straight y apostrophe plus straight y space equals space sin space straight x

    Solution

    The given differential equation is dy over dx plus straight y space equals space sin space straight x
    Comparing it with dy over dx plus straight P space straight y space space equals straight Q comma space space we space get space comma space straight P space equals space 1 comma space straight Q equals space sin space straight x
    therefore space space space space space space space integral straight P space dx space equals space integral 1 space dx space equals space straight x comma space space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of straight x
     therefore space       solution of differential equation is
               straight y. space straight e to the power of straight x space equals integral sinx. space straight e to the power of straight x space dx plus straight c space space space or space space space straight y. space straight e to the power of straight x space equals space fraction numerator 1 over denominator square root of 1 plus 1 end root end fraction straight e to the power of straight x sin space open parentheses straight x minus tan to the power of negative 1 end exponent 1 over 1 close parentheses plus straight c
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space integral straight e to the power of ax space sin space bx space equals space minus fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction straight e to the power of ax space sin space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
or space space space space straight y space equals fraction numerator 1 over denominator square root of 2 end fraction sin space open parentheses straight x minus straight pi over 4 close parentheses plus space ce to the power of negative straight x end exponent space space space space space space space
             

    Question 109
    CBSEENMA12033188

    Solve:
    dy over dx plus 2 straight y space equals space sin space 3 straight x

    Solution
    The given differential equation is
                  dy over dx plus 2 straight y space equals sin space 3 straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma
                         P = 2,    Q = sin 3x
         integral straight P space dx space equals space integral 2 space dx space equals space 2 straight x
                straight I. straight F. space equals space straight e to the power of integral Pdx end exponent space equals space straight e to the power of 2 straight x end exponent
    therefore space space space solution space of space differential space equation space is
                    straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c space space space space space or space space space straight y space straight e to the power of 2 straight x end exponent space equals space integral straight e to the power of 2 straight x end exponent space sin space 3 straight x space dx space plus straight c
    therefore space space space space ye to the power of 2 straight x end exponent space equals space fraction numerator 1 over denominator square root of 4 plus 9 end root end fraction space straight e to the power of 2 straight x end exponent space sin space open parentheses 3 straight x minus tan to the power of negative 1 end exponent 3 over 2 close parentheses space plus straight c
                                                  open square brackets because space space space integral straight e to the power of ax space sin space bx space dx space equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction straight e to the power of ax space sin open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
    or               straight y equals space fraction numerator 1 over denominator square root of 13 end fraction sin space open parentheses 3 straight x minus tan to the power of negative 1 end exponent 3 over 2 close parentheses plus space ce to the power of negative 2 straight x end exponent
    which is required solution.
    Question 110
    CBSEENMA12033189

    Solve:
    dy over dx plus 2 straight y space equals space sin space 5 straight x

    Solution
    The given differential equation is 
                        dy over dx plus 2 straight y space equals space sin space 5 straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma
                           P = 2,   Q = sin 5x
             integral straight P space dx space equals space integral 2 space dx space equals 2 straight x
                straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 2 straight x end exponent
    therefore solution of differential equation is
                              straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or                 straight y space straight e to the power of 2 straight x end exponent space equals space integral space sin space 5 straight x. space straight e to the power of 2 straight x end exponent plus straight c
    or                 ye to the power of 2 straight x end exponent space equals space fraction numerator 1 over denominator square root of 4 plus 25 end root end fraction straight e to the power of 2 straight x end exponent space sin space open parentheses 5 straight x minus tan to the power of negative 1 end exponent 5 over 2 close parentheses plus straight c space space space space space space space space space space space space space space space space space
                                   open square brackets because space space integral straight e to the power of ax sin space bx space dx space equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction space straight e to the power of ax space sin space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
    or               straight y space equals space fraction numerator 1 over denominator square root of 29 end fraction sin space open parentheses 5 straight x minus space tan to the power of negative 1 end exponent 5 over 2 close parentheses plus space straight c space straight e to the power of negative 2 straight x end exponent
    Question 111
    CBSEENMA12033190

    Solve:
    dy over dx plus 2 straight y space equals space cos space 3 straight x

    Solution
    The given differential equation is
           dy over dx plus 2 straight y space equals space cos space 3 straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma we get,
                     straight P space equals 2 comma space space straight Q space equals space cos space 3 straight x
            integral straight P space dx space equals space integral space 2 space dx space equals 2 straight x
          straight I. straight F. space equals straight e to the power of integral straight P space dx end exponent space equals straight e to the power of 2 straight x end exponent
    Solution of given differential equation is
                  ye to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or      ye to the power of 2 straight x end exponent space equals space integral straight e to the power of 2 straight x end exponent space cos space 3 straight x space dx space plus straight c
    or    ye to the power of 2 straight x end exponent space equals space fraction numerator 1 over denominator square root of 4 plus 9 end root end fraction straight e to the power of 2 straight x end exponent space cos space open parentheses 3 straight x minus tan to the power of negative 1 end exponent 3 over 2 close parentheses plus straight c
                                                  open square brackets because space space space integral straight e to the power of ax cos space bxdx space equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction straight e to the power of ax cos space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
    therefore space space space space space space space straight y space equals fraction numerator 1 over denominator square root of 13 end fraction cos space open parentheses 3 straight x minus tan to the power of negative 1 end exponent 3 over 2 close parentheses plus straight c space straight e to the power of negative 2 straight x end exponent
    which is required solution. 
    Question 112
    CBSEENMA12033191

    Solve:
    dy over dx plus 3 straight y space equals space sin space 2 straight x

    Solution
    The given differential equation is
                             dy over dx plus 3 straight y space equals space sin space 2 straight x
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space we space get comma space
                        straight P space equals space 3 comma space space space straight Q space equals sin space 2 straight x
    integral straight P space dx space equals space integral 3 space dx space equals space 3 straight x
               straight I. straight F. space equals straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 3 straight x end exponent
    Solution of given differential equation is
                        ye to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or          straight y space straight e to the power of 3 straight x end exponent space equals space integral straight e to the power of 3 straight x end exponent space space sin space 2 straight x space dx space plus straight c
    or     ye to the power of 3 straight x end exponent space equals space fraction numerator 1 over denominator square root of 9 plus 4 end root end fraction straight e to the power of 3 straight x end exponent space sin space open parentheses 2 straight x minus tan to the power of negative 1 end exponent 2 over 3 close parentheses plus straight c
                                                 open square brackets because space space space integral straight e to the power of ax space sin space bx space dx equals space fraction numerator 1 over denominator square root of straight a squared plus straight b squared end root end fraction straight e to the power of ax space sin space open parentheses bx minus tan to the power of negative 1 end exponent straight b over straight a close parentheses close square brackets
    therefore space space space space space straight y space equals space fraction numerator 1 over denominator square root of 13 end fraction sin space open parentheses 2 straight x minus tan to the power of negative 1 end exponent 2 over 3 close parentheses plus space straight c space straight e to the power of negative 3 straight x end exponent
    which is required solution. 
    Question 113
    CBSEENMA12033192

    Solve:
    dy over dx plus 3 straight y space equals space cos space 2 straight x


    Solution
    The given differential equation is
                           dy over dx plus 3 straight y space equals space cos space 2 straight x
    Comparing it with dy over dx plus straight P space straight y space equals straight Q comma we get,
                     P = 3,   Q = cos 2x
            integral straight P space dx space equals space integral 3 space dx space equals space 3 straight x 
                        straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of 3 straight x end exponent
    Solution of given differential equation is
                     straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral Qe to the power of integral straight P space dx end exponent dx plus straight c
    or              straight y space. straight e to the power of 3 straight x end exponent space equals space integral straight e to the power of 3 straight x end exponent space cos space 2 straight x space dx plus straight c
    or             ye to the power of 3 straight x end exponent space equals space fraction numerator 1 over denominator square root of 9 plus 4 end root end fraction space straight e to the power of 3 straight x end exponent space cos space open parentheses 2 straight x minus tan to the power of negative 1 end exponent 2 over 3 close parentheses plus straight c
    or            ye to the power of 3 straight x end exponent space equals space fraction numerator 1 over denominator square root of 13 end fraction straight e to the power of 3 straight x end exponent space cos space open parentheses 2 straight x minus tan to the power of negative 1 end exponent 2 over 3 close parentheses plus straight c
    therefore                     straight y space equals fraction numerator 1 over denominator square root of 13 end fraction cos space open parentheses 2 straight x minus tan to the power of negative 1 end exponent 2 over 3 close parentheses plus space straight c space straight e to the power of negative 3 straight x end exponent
    is the required solution. 
     
    Question 114
    CBSEENMA12033193

    Solve:
    dy over dx plus straight y space equals space cos space 2 straight x


    Solution

    The given differential equation is dy over dx plus straight y space equals space cos space 2 straight x
    Comparing it with dy over dx plus space straight P space straight y space equals space space straight Q comma space space we space get comma space space space straight P space equals space 1 comma space space space straight Q space equals space cos space 2 straight x
                     integral straight P space dx space equals space integral 1. space dx space equals space straight x comma space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of straight x
    therefore solution of differential equation is
                                  straight y. straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or           straight y. straight e to the power of straight x space space equals space integral space cos space 2 straight x. space straight e to the power of straight x space dx plus space straight c space space space or space space straight y space straight e to the power of straight x space equals space fraction numerator 1 over denominator 1 plus 4 end fraction straight e to the power of straight x left parenthesis cos space 2 straight x plus 2 space sin space 2 straight x right parenthesis space plus straight c
    or           straight y space equals space 1 fifth left parenthesis cos space straight x plus 2 space sin space 2 straight x right parenthesis space plus space straight c space straight e to the power of straight x

    Question 115
    CBSEENMA12033194

    Solve:
    dy over dx plus straight y space secx space equals space tan space straight x



    Solution

    The given differential equation is dy over dx plus straight y space secx space equals space tan space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma space straight P space equals space secx comma space space straight Q space equals tan space straight x
                      integral straight P space dx space equals space integral secx space dx space equals space log space left parenthesis secx plus tanx right parenthesis
    therefore space space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals straight e to the power of log space left parenthesis secx plus tan space straight x right parenthesis space end exponent space equals space secx space plus tanx
    therefore   solution of given equation is
                          straight y left parenthesis secx plus tanx right parenthesis space equals space integral tanx space left parenthesis secx plus tanx right parenthesis space dx plus straight c space open square brackets because space space straight y space straight e to the power of integral Pdx end exponent space equals space integral Qe to the power of integral straight P space dx end exponent plus straight c close square brackets
                                                    space equals space integral secx space tan space straight x space dx space plus space integral left parenthesis sec squared straight x minus 1 right parenthesis space dx plus straight c
    or     straight y space left parenthesis secx space plus space tanx right parenthesis space equals space secx plus tanx minus straight x plus straight c space space space space space space space space space space space space open parentheses straight x not equal to space an space odd space multiple space of space straight pi over 2 close parentheses

    Question 116
    CBSEENMA12033195

    Solve:
          dy over dx plus straight y space cotx space equals space straight x squared space cotx space plus space 2 straight x




    Solution
    The given differential equation is
                      dy over dx plus straight y space cotx space equals straight x squared cotx space plus space 2 straight x
    Comparing it with    dy over dx plus Py space equals space straight Q comma space space we space get comma
                       P = cot x,   straight Q space equals straight x squared space cot space straight x space plus space 2 straight x
    integral straight P space dx space equals space integral cot space straight x space dx space equals space log space sinx. space straight e to the power of integral Pdx end exponent space equals space straight e to the power of log space sinx end exponent space equals space sin space straight x space
    therefore   solution of differential equation is
                             straight y. space sin space straight x space equals space integral left parenthesis straight x squared space cot space straight x space plus space 2 straight x right parenthesis space sinx space dx space plus space straight c space space space space space open square brackets straight y space straight e to the power of integral Pdx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c close square brackets
    or              straight y. space sinx space space equals space integral left parenthesis straight x squared space cosx space plus 2 straight x space sin space straight x right parenthesis space dx space plus space straight c
    or space space space straight y space sin space straight x space equals space integral space straight x squared space cosx space dx space space plus integral space 2 space straight x space sinx space dx space plus space straight c
    or space space space straight y space sinx space minus straight x squared space sinx space minus space integral 2 straight x space sinx space dx space plus space integral 2 straight x space sinx space dx plus straight c
or space space space straight y space sinx space space equals space straight x squared sin space straight x space plus space straight c
    Question 117
    CBSEENMA12033196

    Solve the differential equation:
    left parenthesis 1 minus straight x squared right parenthesis space dy over dx plus straight x space straight y space equals space straight a space straight x

    Solution
    The given differential equation is
                       left parenthesis 1 minus straight x squared right parenthesis space dy over dx plus straight x space straight y space equals space straight a space straight x space space space or space space space dy over dx plus fraction numerator straight x over denominator 1 minus straight x squared end fraction straight y space equals space straight a fraction numerator straight x over denominator 1 minus straight x squared end fraction
    Comparing it with  dy over dx plus straight P space straight y space equals space straight Q comma space space we space get
               straight P space equals fraction numerator straight x over denominator 1 minus straight x squared end fraction comma space space space space straight Q space equals space fraction numerator straight a space straight x over denominator 1 minus straight x squared end fraction
       integral straight P space dx space equals space integral fraction numerator straight x over denominator 1 minus straight x squared end fraction dx space equals space minus 1 half integral fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction dx space equals space minus 1 half log space left parenthesis 1 minus straight x squared right parenthesis
    therefore space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative 1 half log left parenthesis 1 minus straight x squared right parenthesis end exponent space equals space straight e to the power of log space left parenthesis 1 minus straight x squared right parenthesis to the power of negative 1 half end exponent end exponent space equals space left parenthesis 1 minus straight x squared right parenthesis to the power of negative 1 half end exponent space equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
    Solution of differential equation is
                            straight y. space fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction space equals integral fraction numerator ax over denominator 1 minus straight x squared end fraction. fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction dx plus straight c
    or                fraction numerator straight y over denominator square root of 1 minus straight x squared end root end fraction space equals fraction numerator straight a over denominator negative 2 end fraction integral left parenthesis 1 minus straight x squared right parenthesis to the power of negative 3 over 2 end exponent left parenthesis negative 2 straight x right parenthesis space dx plus straight c
    or             fraction numerator straight y over denominator square root of 1 minus straight x squared end root end fraction space equals negative straight a over 2 fraction numerator left parenthesis 1 minus straight x squared right parenthesis to the power of negative begin display style 1 half end style end exponent over denominator negative begin display style 1 half end style end fraction plus straight c space space space space or space space space fraction numerator straight y over denominator square root of 1 minus straight x squared end root end fraction space equals fraction numerator straight a over denominator square root of 1 minus straight x squared end root end fraction plus straight c
    or                       straight y equals straight a plus straight c square root of 1 minus straight x squared end root
    Question 118
    CBSEENMA12033197

    Find the general solution of the following differential equation:
    straight x dy over dx minus straight a space straight y space equals space straight x plus 1 comma space space space straight x greater than 0

    Solution

    The given differential equation is straight x dy over dx minus ay space equals space straight x plus 1
    Dividing throughout by x, we get,
                      dy over dx minus straight a over straight x straight y space equals space fraction numerator straight x plus 1 over denominator straight x end fraction                                ...(1)
    Comparing (1) with dy over dx plus straight P space straight y space equals space straight Q comma we have, straight P space equals negative straight a over straight x comma space space straight Q space equals fraction numerator straight x plus 1 over denominator straight x end fraction
    therefore space space space space space integral straight P space dx equals space minus straight a integral 1 over straight x dx space equals negative straight a space logx space equals space log space straight x to the power of negative straight a end exponent
therefore space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space straight x to the power of negative straight a end exponent end exponent space equals space straight x to the power of negative straight a end exponent space equals space 1 over straight x to the power of straight a
    therefore   solution of given equation is,    straight y. space 1 over straight x to the power of straight a space equals space integral fraction numerator straight x plus 1 over denominator straight x end fraction 1 over straight x to the power of straight a dx plus straight c
    or           straight y over straight x to the power of straight a space equals integral open parentheses 1 over straight x to the power of straight a plus 1 over straight x to the power of straight a plus 1 end exponent close parentheses dx plus straight c
    or       straight y over straight x to the power of straight a space equals fraction numerator straight x to the power of 1 minus straight a end exponent over denominator 1 minus straight a end fraction plus fraction numerator straight x to the power of negative straight a end exponent over denominator negative straight a end fraction plus straight c space space space space or space space space straight y space equals space fraction numerator straight x over denominator 1 minus straight a end fraction minus 1 over straight a plus cx to the power of straight a

    Question 119
    CBSEENMA12033198

    Find the general solution of the following differential equation:
    dy over dx plus fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction straight y space equals negative fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction

    Solution

    The given differential equation is
                                              dy over dx plus fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction straight y space equals space minus fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction
    Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma space space space straight P space equals space fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction comma space straight Q space equals negative fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction
                      integral straight P space dx space equals space integral fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction dx space equals space 2 integral fraction numerator 2 straight x over denominator straight x squared plus 1 end fraction dx space equals space 2 space log space left parenthesis straight x squared plus 1 right parenthesis space equals space log space left parenthesis straight x squared plus 1 right parenthesis squared
integral straight e to the power of Pdx space equals space straight e to the power of log space left parenthesis straight x squared plus 1 right parenthesis squared end exponent equals space left parenthesis straight x squared plus 1 right parenthesis squared
    therefore  solution of given differential equation is
                                     straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent space dx space plus straight c
    or space space straight y. space left parenthesis straight x squared plus 1 right parenthesis squared space equals space integral fraction numerator negative 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction. space left parenthesis straight x squared plus 1 right parenthesis squared space dx plus straight c
or space space straight y. space open parentheses straight x squared plus 1 close parentheses squared space equals space minus integral fraction numerator 1 over denominator straight x squared plus 1 end fraction dx plus straight c space space or space space space straight y space left parenthesis straight x squared plus 1 right parenthesis squared space equals space minus tan to the power of negative 1 end exponent straight x plus straight c       

    Sponsor Area

    Question 120
    CBSEENMA12033199

    Solve:  open parentheses straight x plus straight y close parentheses space dy over dx space equals space 1.

    Solution
    The given differential equation is
                 open parentheses straight x plus straight y close parentheses dy over dx equals 1 space space space space space space space space space space or space space space straight x plus straight y space equals dy over dx space space space or space space space dx over dy minus straight x space equals space straight y
    Comparing it with dx over dy plus Py space equals straight Q comma space space we space get comma space straight P space equals space minus 1 comma space space straight Q space equals space straight y
                      integral straight P space dy space equals space minus integral 1 space dy space equals space minus straight y
straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of integral space 1 space dy end exponent space equals space straight e to the power of negative straight y end exponent
    therefore solution of given equation is
                      straight x. space straight e to the power of integral straight P space dy end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dy end exponent space dy space plus straight c
    or             straight x. space straight e to the power of negative straight y end exponent space equals space integral straight y. space straight e to the power of negative straight y end exponent dy plus straight c
    or space space space space straight x space straight e to the power of negative straight y end exponent space equals space straight y fraction numerator straight e to the power of negative straight y end exponent over denominator negative 1 end fraction space minus space integral 1. space fraction numerator straight e to the power of negative straight y end exponent over denominator negative 1 end fraction dy plus straight c
or space space space straight x space straight e to the power of negative straight y end exponent space equals space minus ye to the power of negative straight y end exponent plus integral straight e to the power of negative straight y end exponent space dy space plus space straight c
or space space space xe to the power of negative straight y end exponent space equals space minus ye to the power of negative straight y end exponent plus fraction numerator straight e to the power of negative straight y end exponent over denominator negative 1 end fraction plus straight c
or space space space xe to the power of negative straight y end exponent space equals space minus ye to the power of negative straight y end exponent plus fraction numerator straight e to the power of negative straight y end exponent over denominator negative 1 end fraction plus straight c
or space space space space xe to the power of negative straight y end exponent space equals space minus ye to the power of negative straight y end exponent minus straight e to the power of negative straight y end exponent plus straight c
or space space space space space space space space space straight x space equals space minus straight y space minus space 1 space plus space straight c space straight e to the power of straight y
or space space space space straight x plus straight y plus 1 space equals space ce to the power of straight y
    Question 121
    CBSEENMA12033200

    Solve:
          open parentheses straight x plus 2 straight y cubed close parentheses space straight y apostrophe space equals space straight y comma space space straight y greater than 0

    Solution
    The given equation is
                  left parenthesis straight x plus 2 straight y cubed right parenthesis space dy over dx space equals space straight y
              or space space open parentheses straight x plus 2 straight y cubed close parentheses. space space fraction numerator 1 over denominator begin display style dx over dy end style end fraction space equals space straight y space space space space space space or space space space space straight x plus 2 straight y cubed space equals space straight y space dy over dx
or space space straight x over straight y plus 2 straight y squared space equals space dx over dy space space space space space space space or space space space space space space space dy over dx minus 1 over straight y. space straight x space equals space 2 space straight y squared
    Comparing it with dx over dy plus Px space equals space straight Q comma space space we space get comma
                 straight P space equals negative 1 over straight y comma space space straight Q space equals space 2 straight y squared
integral straight P space dy space equals space minus integral 1 over straight y dy space equals space minus log space straight y
    straight I. straight F. space equals space straight e to the power of integral space straight P space dy end exponent space equals space straight e to the power of negative log space straight y end exponent space equals space straight e to the power of log space straight y to the power of negative 1 end exponent end exponent space equals space straight y to the power of negative 1 end exponent space equals space 1 over straight y
    therefore   solution of given equation is
                      straight x. space 1 over straight y space equals space integral space 2 straight y squared. space 1 over straight y dy plus straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space straight x. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dy plus straight c close square brackets
    or space space space space straight x over straight y space equals space 2 integral straight y space dy space plus straight c
or space space space straight x over straight y space equals space straight y squared plus straight c comma space space or space space straight x space equals space straight y cubed plus straight c space straight y
    which is required solution. 
    Question 122
    CBSEENMA12033201

    Solve:
    straight y space dx space plus space left parenthesis straight x minus straight y right parenthesis squared space dy space equals space 0
          

    Solution
    The given differential equation is
             straight y space dx space plus space left parenthesis straight x minus straight y squared right parenthesis space dy space equals space 0
     or       straight y dx over dy plus straight x minus straight y squared space equals space 0 space space space space space or space space space space straight y dx over dy plus straight x space equals space straight y squared space space space or space space dx over dy plus 1 over straight y straight x space equals space straight y
    Comparing it with dx over dy plus Px space equals space straight Q comma space space we space get comma space space straight P space equals space 1 over straight y comma space space straight Q space equals space straight y
    therefore space space space space integral straight P space dy space equals space integral 1 over straight y dy space equals log space straight y comma space space space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of log space straight y end exponent space equals space straight y
    therefore space space solution of differential equation is
              straight x space straight e to the power of integral straight P space dy end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dy end exponent space dy space plus space straight c space space or space space space straight x space straight y space equals space integral straight y. space straight y space dy space plus straight c          
    or  straight x space straight y space space equals space straight y cubed over 3 plus straight c
    Question 123
    CBSEENMA12033202

    Find the general solution of the differential equation y dx – (x + 2 y2) dy = 0.

    Solution
     The given differential equation is
           y dx – (x + 2 y2) dy = 0
     or    straight y dx over dy minus straight x minus 2 straight y squared space equals space 0 space space space space or space space space straight y dx over dy minus straight x space equals space 2 straight y squared
    or    dx over dy minus 1 over straight y straight x space equals space 2 straight y
    Comparing it with dx over dy plus Px space equals space straight Q comma space space we space get comma space space straight P space equals space minus 1 over straight y comma space space straight Q space equals space 2 straight y
    therefore space space space space integral space straight P space dy space equals space minus integral 1 over straight y dy space equals space minus log space straight y
space space space space space space space space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of negative log space straight y end exponent space equals space straight e to the power of log space straight y to the power of negative 1 end exponent end exponent space equals space straight y to the power of negative 1 end exponent space equals space 1 over straight y
    Solution of differential equation is
                      xe to the power of integral straight P space dy end exponent space equals space integral straight Q space straight e to the power of integral straight P space dy end exponent dy space plus space straight c
    or       straight x. space 1 over straight y space equals space integral space 2 straight y. space 1 over straight y dy plus straight c
    or         straight x over straight y space equals space 2 space integral space 1 space dy space plus straight c space space space or space space space straight x over straight y space equals space 2 straight y plus straight c
    or      straight x equals space 2 straight y squared plus straight c space straight y space is space the space required space solution. space                
    Question 124
    CBSEENMA12033203

    Solve the following differential equation:
    (1 + y2)dx = (tan– 1 y – x) dy

    Solution

    The given equation is  (1 + y2)dx = (tan– 1 y – x) dy
     or      left parenthesis 1 plus straight y squared right parenthesis space dx over dy space equals space tan to the power of negative 1 end exponent straight y minus straight x space space space or space space left parenthesis 1 plus straight y squared right parenthesis space dy over dx plus straight x space equals space tan to the power of negative 1 end exponent straight y
    or      dx over dy plus fraction numerator 1 over denominator 1 plus straight y squared end fraction straight x space equals space fraction numerator tan to the power of negative 1 end exponent straight y over denominator 1 plus straight y squared end fraction
    therefore      Comparing it with dy over dx plus Px space equals space straight Q,  we get,
                   straight P space equals fraction numerator 1 over denominator 1 plus straight y squared end fraction comma space space straight Q space equals fraction numerator tan to the power of negative 1 end exponent straight y over denominator 1 plus straight y squared end fraction comma space space space integral straight P space dy space equals space integral fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space tan to the power of negative 1 end exponent straight y
    therefore space space space straight I. straight F. space equals space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent
therefore space space space solution space of space equation space is
                      straight x. space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent space equals space space integral fraction numerator tan to the power of negative 1 end exponent straight y over denominator 1 plus straight y squared end fraction straight e to the power of tan to the power of negative 1 end exponent straight y end exponent dy plus straight c space space space space space space space space space open square brackets because space space space straight x space straight e to the power of integral straight P space dy end exponent space equals space integral straight Q space straight e to the power of integral straight P space dy end exponent dy space plus straight c close square brackets
    Put tan to the power of negative 1 end exponent straight y space equals straight t space space space space space space space space space space space space space space space space space space space therefore space space space fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space dt
    therefore space space straight x space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent space equals space integral straight t space straight e to the power of straight t space dt space plus space straight c space equals space ke to the power of straight t minus space integral straight e to the power of straight t. space dt space plus space straight c space equals space straight t space straight e to the power of straight t space minus space straight e to the power of straight t plus straight c
therefore space space space straight x space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent space equals space straight e to the power of tan to the power of negative 1 end exponent straight y end exponent left parenthesis tan to the power of negative 1 end exponent straight y space space minus 1 right parenthesis space plus straight c

    Question 125
    CBSEENMA12033204

    Solve the following differential equation:
    square root of 1 minus straight y squared end root space dx equals left parenthesis sin to the power of negative 1 end exponent straight y space minus straight x right parenthesis space dy

    Solution

    The given differential equation is
                  square root of 1 minus straight y squared end root space dx space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus straight x right parenthesis space dy space space space or space space square root of 1 minus straight y squared end root space dy over dx space equals sin to the power of negative 1 end exponent straight y minus straight x
    or   dx over dy space equals fraction numerator sin to the power of negative 1 end exponent straight y over denominator square root of 1 minus straight y squared end root end fraction minus fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction straight x space space space space or space space space dx over dy plus fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction straight x space equals space fraction numerator sin to the power of negative 1 end exponent straight y over denominator square root of 1 minus straight y squared end root end fraction
    Comparing it with dy over dx plus Px space equals space straight Q comma we get,
                        straight P space equals space fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction comma space space straight Q space equals space fraction numerator sin to the power of negative 1 end exponent straight y over denominator square root of 1 minus straight y squared end root end fraction
integral straight P space dy space equals space integral fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction dy space equals space sin to the power of negative 1 end exponent straight y comma space space space therefore space space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent
    Solution of differential equation is
                        straight x space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dy end exponent dy plus straight c
    or        straight x space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent space equals space integral fraction numerator left parenthesis sin to the power of negative 1 end exponent space straight y right parenthesis over denominator square root of 1 minus straight y squared end root end fraction. space straight e to the power of sin to the power of negative 1 end exponent straight y space end exponent dy plus straight c                   ...(1)
    Let    straight I space equals space integral fraction numerator open parentheses sin to the power of negative 1 end exponent space straight y close parentheses over denominator square root of 1 minus straight y squared end root end fraction. space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent dy
    Put    sin to the power of negative 1 end exponent straight y space equals straight t comma                                      therefore space space space space space fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction dy space equals space dt
    therefore space space space space space space space space space space space space space space space space straight I space equals space integral straight t. space straight e to the power of straight t space dt
space space space space space space space space space space space space space space space space space space space space space space equals space straight t space straight e to the power of straight t. space integral 1. space straight e to the power of straight t space dt space equals space straight t space straight e to the power of straight t space minus space straight e to the power of straight t space equals space left parenthesis straight t minus 1 right parenthesis space straight e to the power of straight t
space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus space 1 right parenthesis space straight e to the power of sin to the power of negative 1 end exponent end exponent straight y
space space space space space space space space space space space space space space space space space space space space space space
    therefore space space from space left parenthesis 1 right parenthesis comma space space straight x space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus 1 right parenthesis space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent plus straight c                     ...(2)
    Now                   y(0) = 0                    rightwards double arrow space space space space space straight y space equals space 0 space space when space straight x space equals space 0
    therefore                      0 space equals space left parenthesis sin to the power of negative 1 end exponent 0 minus 1 right parenthesis space straight e to the power of sin to the power of negative 1 end exponent 0 end exponent plus straight c
    rightwards double arrow                      0 space equals space left parenthesis 0 minus 1 right parenthesis space plus space straight c space space space space space space space space rightwards double arrow space space space straight c space equals space 1
    therefore     from (2), solution is
                  straight x space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus space 1 right parenthesis space space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent plus 1
    or      straight x equals space sin to the power of negative 1 end exponent straight y space minus space 1 plus space straight e to the power of negative sin to the power of negative 1 end exponent straight y end exponent space space space space space space space space or space space space space straight x plus 1 minus space sin to the power of negative 1 end exponent straight y space equals space straight e to the power of negative sin to the power of negative 1 end exponent straight y end exponent

    Question 126
    CBSEENMA12033205

    Find a one parameter family of solutions of each of the following differential equation e–y sec2 y dy = dx + x dy.

    Solution
    The given differential equation is
                       e–y sec2 y dy = dx + x dy
    therefore space space space left parenthesis straight e to the power of negative straight y end exponent space sec squared straight y minus straight x right parenthesis space dy space equals space dx space space space space space space space space space space space or space space space space dx over dy space equals space straight e to the power of negative straight y end exponent space sec squared straight y minus straight x
therefore space space space space space space space space dy over dx plus straight x space equals space straight e to the power of negative straight y end exponent space secy
    Comparing it with dx over dy plus Px space equals space straight Q comma space space we space get space straight P space equals space 1 comma space space straight Q space equals space straight e to the power of negative straight y end exponent space sec squared straight y
                  integral straight P space dy space equals space integral 1 space dy space equals space straight y. space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of straight y
    therefore    solution of differential equation is
                                        xe to the power of integral straight P space dy end exponent space equals space integral Qe to the power of integral straight P space dy end exponent plus straight c space space space space space space or space space space space space straight x space straight e to the power of straight y space equals space integral straight e to the power of negative straight y end exponent space sec squared straight y. space straight e to the power of straight y space dy space plus straight c
    or                               straight x space straight e to the power of straight y space equals space integral sec squared straight y space dy space plus space straight c space space space space space space or space space space straight x space straight e to the power of straight y space equals space tan space straight y space plus straight c
    Question 127
    CBSEENMA12033206

    Find the particular solution of the differential equation:
                         dy over dx plus straight y space cotx space equals space 2 straight x plus straight x squared space cotx space space space left parenthesis straight x not equal to 0 right parenthesis

    Solution
    The given differential equation is
                    dy over dx plus straight y space cotx space equals space 2 straight x plus straight x squared cotx thin space left parenthesis straight x not equal to 0 right parenthesis
    given that y = 0  when x  = straight pi over 2.
                       dy over dx plus straight y space cotx space equals space 2 straight x plus straight x squared space cot space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma we get,
                straight P space equals space cotx comma space space straight Q space equals space 2 straight x plus straight x squared space cotx
space space space integral straight P space dx space equals space integral cot space straight x space dx space equals space log space sinx. space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space sinx end exponent space equals space sinx
    Solution of differential equation is
                      straight y space straight e to the power of integral straight P space dx end exponent space equals space integral space straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or space space space space space space straight y space sinx space equals space integral left parenthesis 2 straight x plus straight x squared space cot space straight x right parenthesis space sinx space dx plus straight c
or space space space space space space straight y space sinx space equals space integral 2 straight x space sinx space dx space space plus space integral straight x squared space cosx space dx
or space space space space space straight y space sinx space equals space left parenthesis sinx right parenthesis. space open parentheses fraction numerator 2 straight x squared over denominator 2 end fraction close parentheses space minus space integral space cos space straight x space open parentheses fraction numerator 2 straight x squared over denominator 2 end fraction close parentheses dx plus space integral space straight x squared space cosx space dx space plus space straight c
or space space space space straight y space sinx space equals space straight x squared space sinx space minus space integral straight x squared space cosx space dx space plus space integral straight x squared space cos space straight x space dx space plus space straight c
or space space space space straight y space sinx space equals space straight x squared space sin space straight x space plus space straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now y = 0  when  straight x space equals space straight pi over 2
    therefore space space space space space 0 space equals space straight pi squared over 4 space sin space straight pi over 2 plus straight c space space space space space space rightwards double arrow space space space space 0 space equals space straight pi squared over 4 cross times 1 plus space straight c space space space rightwards double arrow space space space straight c space space equals negative straight pi squared over 4
    Question 128
    CBSEENMA12033207

    For the given differential equation, find a particular solution satisfying the given condition:
    dy over dx plus 2 straight y space tan space straight x space equals space sin space straight x space colon space straight y space space equals space 0 space space when space straight x space equals space straight pi over 3

                         

    Solution
    The given equation is
                           dy over dx plus 2 straight y space tan space straight x space equals space sin space straight x
      Comparing with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma space space straight P space equals space 2 space tanx space comma space space straight Q space equals space sin space straight x
    therefore space space space space space integral straight P space dx space equals space integral 2 space tan space straight x space dx space equals space minus 2 space log space cosx space equals space log space open parentheses cosx close parentheses squared
therefore space space space space space straight I. straight F. space equals space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space left parenthesis cos space straight x right parenthesis to the power of negative 2 end exponent end exponent space equals space left parenthesis cos space straight x right parenthesis to the power of negative 2 end exponent space equals space fraction numerator 1 over denominator cos squared straight x end fraction
    therefore   solution of given equation is 
                         straight y. space fraction numerator 1 over denominator cos squared straight x end fraction space equals space integral space sinx. space space fraction numerator 1 over denominator cos squared straight x end fraction dx plus straight c
                                                         open square brackets because space space straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c close square brackets
    or      fraction numerator straight y over denominator cos squared straight x end fraction space equals space integral secx space tanx space dx space plus space straight c
                 
           or space space space fraction numerator straight y over denominator cos squared straight x end fraction space equals secx space plus space straight c
or space space space straight y space equals space cos space straight x space plus space straight c space cos to the power of 2 straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
because space space space space space space straight y space equals space 0 space space space space when space straight x space equals space straight pi over 3
therefore space space space space space space 0 space equals space 1 half plus straight c space open parentheses 1 half close parentheses squared space space space space space space space space space space space therefore space space space straight c space equals space minus 2
therefore space space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space cosx minus 2 space cos squared straight x.
    Question 129
    CBSEENMA12033208

    For the given differential equation, find a particular solution satisfying the given condition:
       left parenthesis 1 plus straight x squared right parenthesis space dy over dx space plus space 2 space straight x space straight y space space equals space fraction numerator 1 over denominator 1 plus straight x squared end fraction semicolon space straight y space equals space 0 space space when space straight x space equals space 1


                         

    Solution
    The given differential equation is
                     left parenthesis 1 plus straight x squared right parenthesis space dy over dx plus 2 xy space equals space fraction numerator 1 over denominator 1 plus straight x squared end fraction
    or    dy over dx plus fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction straight y space equals space fraction numerator 1 over denominator left parenthesis 1 plus straight x squared right parenthesis squared end fraction
    Comparing it with  dy over dx plus straight P space straight y space equals space straight Q comma space we space get comma space straight P space equals space fraction numerator 2 straight x over denominator straight x squared plus 1 end fraction comma space space straight Q space equals space fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis squared end fraction
           integral straight P space dx space equals space integral fraction numerator 2 straight x over denominator straight x squared plus 1 end fraction dx space equals space log space left parenthesis straight x squared plus 1 right parenthesis comma space space straight e to the power of integral straight P space dx end exponent space equals straight e to the power of log space left parenthesis straight x squared plus 1 right parenthesis end exponent space equals straight x squared plus 1
    therefore solution of differential equation is
                                 straight y. space straight e to the power of integral straight P space dx end exponent space equals integral straight Q. space straight e to the power of integral straight P space dx end exponent space dx space plus space straight c
    or                  straight y. left parenthesis straight x squared plus 1 right parenthesis space equals integral fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis squared end fraction. space left parenthesis straight x squared plus 1 right parenthesis space dx space plus space straight c
    or             straight y left parenthesis straight x squared plus 1 right parenthesis space equals space integral fraction numerator 1 over denominator straight x squared plus 1 end fraction dx plus straight c
    or           straight y left parenthesis straight x squared plus 1 right parenthesis space equals space tan to the power of negative 1 end exponent straight x plus straight c
    or                                  straight y equals fraction numerator tan to the power of negative 1 end exponent straight x over denominator straight x squared plus 1 end fraction plus fraction numerator straight c over denominator straight x squared plus 1 end fraction                                 ...(1)
    Now y = 0  when x = 1
    therefore space space space space 0 space equals space fraction numerator tan to the power of negative 1 end exponent 1 over denominator 1 plus 1 end fraction plus fraction numerator straight c over denominator 1 plus 1 end fraction space space space rightwards double arrow space space space 0 space equals space straight pi over 4 plus straight c space space space rightwards double arrow space space space straight c space equals space minus straight pi over 4
therefore space space space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space fraction numerator tan to the power of negative 1 end exponent straight x over denominator straight x squared plus 1 end fraction minus fraction numerator straight pi over denominator 4 left parenthesis straight x squared plus 1 right parenthesis end fraction
    which is required solution.                 
    Question 130
    CBSEENMA12033209

    For the given differential equation, find a particular solution satisfying the given condition:
                  dy over dx minus 3 space straight y space cotx space equals space sin space 2 straight x space colon space space straight y space equals space 2 space space when space space straight x space equals space straight pi over 2
       


                         

    Solution
    The given differential equation is
                             dy over dx minus 3 straight y space cotx space equals space sin space 2 straight x
    Comparing it with dy over dx plus Py space equals straight Q comma space we space get comma space space straight P space equals space minus 3 space cotx space comma space space straight Q space equals space sin space 2 straight x
                    integral straight P space dx space equals space minus 3 integral cot space straight x space dx space equals space minus 3 space log space sinx
    therefore space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative 3 space log space sinx end exponent space equals space straight e to the power of log space left parenthesis sinx right parenthesis cubed end exponent space equals space left parenthesis sin space straight x right parenthesis to the power of negative 3 end exponent space equals fraction numerator 1 over denominator sin cubed straight x end fraction
    therefore     solution of given equation is 
                  straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or  straight y. space fraction numerator 1 over denominator sin space cubed straight x end fraction space equals space integral sin space 2 straight x. space 1 over sin to the power of 3 straight x end exponent dx plus space straight c
    or    fraction numerator straight y over denominator sin cubed straight x end fraction space equals space 2 space integral fraction numerator cosx over denominator sin squared straight x end fraction dx plus straight c
    or     fraction numerator straight y over denominator sin cubed straight x end fraction space equals space 2 space integral left parenthesis sinx right parenthesis to the power of negative 2 end exponent space cosx space dx space plus space straight c
    or      fraction numerator straight y over denominator sin cubed straight x end fraction space equals 2 fraction numerator left parenthesis sin space straight x right parenthesis to the power of negative 1 end exponent over denominator negative 1 end fraction plus straight c
    or      fraction numerator straight y over denominator sin cubed straight x end fraction space equals space minus fraction numerator 2 over denominator sin space straight x end fraction plus straight c
    or       straight y space equals space minus 2 space sin squared straight x plus space straight c space sin cubed straight x                                     ...(1)
    Initially,   y = 2  when   straight x equals space straight pi over 2
    therefore              2 space equals space minus 2 sin squared straight pi over 2 plus straight c space sin cubed. space straight pi over 2
    rightwards double arrow            2 space equals space minus 2 plus straight c                                       open square brackets because space space sin space straight pi over 2 space equals space 1 close square brackets
    rightwards double arrow      c = 4
    Putting c = 4 in (1), we get,
                           straight y space equals negative 2 space sin squared straight x plus 4 space sin cubed straight x comma space which space is space required space solution. space
              
    Question 131
    CBSEENMA12033210

    Find a particular solution of the differential equation:
                       dy over dx plus straight y space cotx space equals space 4 straight x
    cosec space straight x space left parenthesis straight x not equal to 0 right parenthesis comma space space given space that space straight y space equals space 0 space space space when space straight x space equals space straight pi over 2.

    Solution
    The given differential equation is
                                    dy over dx plus straight y space cotx space equals space 4 space straight x space cosec space straight x
    or               dy over dx plus left parenthesis cotx right parenthesis. space straight y space equals space 4 space straight x space cosec space straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space we space get comma
                      straight P space space equals space cot space straight x comma space space space space straight Q space equals space 4 straight x space cosec space straight x
                                integral straight P space dx space equals space integral cotx space dx space equals space log space sinx space
    therefore space space space space space space space space space space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space sinx end exponent space equals space sin space straight x
    therefore space solution of differential equation is
                          straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
                    or space space space space space space space space straight y space sinx space equals space integral 4 straight x space cosecx. space sinx space dx space plus straight c
or space space space space space space space space straight y space sinx space space equals space 4 space integral space straight x space dx space plus space straight c
or space space space space space space space space straight y space sinx space space equals space 2 straight x squared plus straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
Now space straight y space equals space 0 space space space when space straight x space equals space straight pi over 2
    therefore space space space space space space space space space space space space space space space space space 0 space equals space 2 cross times straight pi squared over 4 plus straight c space space space space space space space space space space space space space space rightwards double arrow space space space space space space space space straight c space equals space minus straight pi squared over 2
    therefore    from (1),    straight y space sinx space equals space 2 straight x squared minus straight pi squared over 2
    which is required solution. 
    Question 132
    CBSEENMA12033211

    Find a particular solution of the differential equation left parenthesis straight x plus 1 right parenthesis space dy over dx space equals space 2 straight e to the power of negative straight y end exponent minus 1 comma space space given that y = 0,  when x = 0.

    Solution
    The given differential equation is
                       left parenthesis straight x plus 1 right parenthesis space straight y apostrophe space space equals space 2 space straight e to the power of negative straight y end exponent minus 1 space space space space or space space left parenthesis straight x plus 1 right parenthesis space dy over dx space equals space 2 straight e to the power of negative straight y end exponent minus 1
    or           dy over dx space equals space fraction numerator 2 over denominator straight x plus 1 end fraction space straight e to the power of negative straight y end exponent minus fraction numerator 1 over denominator straight x plus 1 end fraction
    or      straight e to the power of straight y dy over dx plus fraction numerator 1 over denominator straight x plus 1 end fraction straight e to the power of straight y space equals space fraction numerator 2 over denominator straight x plus 1 end fraction
    Put straight e to the power of straight y space equals space straight z comma space space space space space therefore space space straight e to the power of straight y dy over dx space equals space dz over dx
    therefore        dz over dx plus fraction numerator 1 over denominator straight x plus 1 end fraction straight z space equals fraction numerator 2 over denominator straight x plus 1 end fraction
    Comparing it with dz over dx plus Pz space equals space straight Q comma space space we space get comma
                    straight P space equals fraction numerator 1 over denominator straight x plus 1 end fraction. space space space straight Q space space equals space fraction numerator 2 over denominator straight x plus 1 end fraction
                straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of integral fraction numerator 1 over denominator straight x plus 1 end fraction end exponent space equals space straight e to the power of log left parenthesis straight x plus 1 right parenthesis end exponent space equals space straight x plus 1
    therefore  solution of differential equation is
                    straight z space. space straight e to the power of integral straight P space dx end exponent space equals space integral space straight Q. space straight e to the power of integral straight P space dx end exponent space plus straight c space
    or              straight z left parenthesis straight x plus 1 right parenthesis space equals space integral open parentheses fraction numerator 2 over denominator straight x plus 1 end fraction close parentheses space left parenthesis straight x plus 1 right parenthesis space dx plus straight c
    or space space space space space space straight z left parenthesis straight x plus 1 right parenthesis space equals space integral 2 dx plus straight c
    or space space space space space straight z left parenthesis straight x plus 1 right parenthesis space equals space 2 straight x plus straight c
or space space space straight e to the power of straight y left parenthesis straight x plus 1 right parenthesis space equals space 2 straight x plus straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now y = 0    when   x = 0
    therefore space space space space space space straight e to the power of 0 left parenthesis 0 plus 1 right parenthesis space equals space 0 plus straight c space space space space space space space space space space space rightwards double arrow space space space straight c space equals space 1
therefore space space space from space space left parenthesis 1 right parenthesis comma space space space straight e to the power of straight y space left parenthesis straight x plus 1 right parenthesis space equals space 2 straight x plus 1
    which is required solution.
               
                                
            
    Question 133
    CBSEENMA12033212

    Solve the differential equation, given that y = 1 where x = 2
    straight x dy over dx plus straight y space equals space straight x cubed.

    Solution

    The given differential equation is
                           straight x dy over dx plus straight y space equals space straight x cubed
    or          dy over dx plus 1 over straight x straight y space equals space straight x squared
    Comparing it with dy over dx plus Py space equals space straight Q comma space space space we space get comma space space space straight P space equals space 1 over straight x comma space space straight Q space equals space straight x squared
                         integral straight P space dx space equals space integral 1 over straight x dx space equals space log space straight x
    therefore space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of log space straight x end exponent space equals space straight x
    therefore  solution of given differential equation is
                                ye space to the power of integral straight P space dx end exponent space equals space integral space straight Q. space straight e to the power of integral straight P space dx end exponent space dx space plus straight c space space space space or space space space straight y. space straight x space equals space integral straight x squared. space space straight x space dx space plus space straight c
    or         xy equals space integral straight x cubed dx plus straight c space space or space space straight x space straight y space equals space straight x to the power of 4 over 4 plus straight c space space space or space space space straight y space equals space straight x cubed over 4 plus straight c over straight x
    Now straight y space equals space 1 space space space space when space straight x space equals space 2
    therefore space space space space space space space space space space space 1 space equals space 8 over 4 plus straight c over 2 space space space or space space space 1 space equals space 2 plus straight c over 2 space space space space space space rightwards double arrow space space space space straight c space equals space minus 2
    therefore space space solution is  straight y space equals space straight x cubed over 4 minus straight x over 2.

    Question 134
    CBSEENMA12033213

    Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

    Solution
    Let y = f (x) be equation of curve.
     Now dy over dx is the slope of the tangent to the curve at point (x, y)
    From the given condition,
                         dx over dy space equals space straight x plus xy        or         dy over dx minus straight x space straight y space equals space straight x
    Comparing dy over dx plus Py space equals space straight Q with dy over dx minus straight x space straight y space equals space straight x comma space we get,  P = -x,  Q = x
    therefore space space space space space space space integral straight P space dx space equals negative integral straight x space dx space equals space minus straight x squared over 2 comma space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative straight x squared over 2 end exponent
    Solution of differential equation is
                     straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
    or        straight y space straight e to the power of negative straight x squared over 2 end exponent space equals space integral space straight x space straight e to the power of negative straight x squared over 2 end exponent dx plus straight c                               ...(1)
    Let                   straight I space equals space integral space straight x space space straight e to the power of negative straight x squared over 2 end exponent dx plus straight c
    Put negative straight x squared over 2 space equals space straight t comma space space space space therefore space space space space space space minus straight x space dx space space equals space dt space space space space rightwards double arrow space space space space straight x space dx space equals space minus dt
    therefore                         straight I space equals space minus integral straight e to the power of straight t dt space equals space minus straight e to the power of straight t space equals space minus straight e to the power of negative straight x squared over 2 end exponent
    therefore                       straight y space straight e to the power of negative straight x squared over 2 end exponent space equals space minus straight e to the power of negative straight x squared over 2 end exponent plus straight c
    or                straight y space equals negative 1 plus space straight c space straight e to the power of straight x squared over 2 end exponent                              ...(2)
    Since the curve passes through (0, 1)
    therefore                       straight I space equals space minus 1 plus space straight c space straight e to the power of 0 space space space space rightwards double arrow space space space 2 space equals space straight c
    therefore        from (2),   straight y equals negative 1 plus 2 space straight e to the power of straight x squared over 2 end exponent
    or                 straight y plus 1 space equals space 2 space straight e to the power of straight x squared over 2 end exponent, which is required equation of curve. 
    Question 135
    CBSEENMA12033214

    Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

    Solution
    Let y = f (x) be the equation of curve.
    We know that dy over dx represents the slope of the tangent to the curve at the point (x, y).
    From the given condition.
                                dy over dx space equals space straight x plus straight y              or          dy over dx minus straight y space equals straight x
    Comparing dy over dx plus straight P space straight y space equals space straight Q space space space with space dy over dx minus straight y space equals space straight x comma space we space get comma space space straight P space equals space minus 1 comma space space straight Q space equals space straight x
    therefore space space space space space space space space integral straight P space dx space equals space minus integral 1 space dx space equals space minus straight x comma space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative straight x end exponent
    Solution of differential equation is
                           straight y space straight e to the power of integral straight P space dx end exponent space equals integral straight Q space straight e to the power of integral straight P space dx end exponent dx space plus space straight c
    or              straight y space straight e to the power of negative straight x end exponent space equals space integral space straight x space straight e to the power of negative straight x end exponent space dx plus straight c space space space or space space space space straight y space straight e to the power of negative straight x end exponent space equals space straight x fraction numerator straight e to the power of negative straight x end exponent over denominator negative 1 end fraction minus integral 1. space fraction numerator straight e to the power of negative straight x end exponent over denominator negative 1 end fraction dx plus straight c
    or                straight y space straight e to the power of negative straight x end exponent space equals space minus straight x space straight e to the power of negative straight x end exponent plus integral space straight e to the power of negative straight x end exponent dx plus straight c
    or                straight y space straight e to the power of negative straight x end exponent space equals space minus xe to the power of negative straight x end exponent plus straight e to the power of negative straight x end exponent plus straight c
    or                 straight y space equals space minus straight x minus 1 plus straight c over straight e to the power of negative straight x end exponent
    or            straight x plus straight y plus 1 space equals space straight c space straight e to the power of straight x                                  ...(1)
    Now curve passes through origin (0,  0).
    therefore space space space 0 plus 0 plus 1 space equals space straight c space straight e to the power of 0 space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight c space equals space 1
    therefore     from (1),  straight x plus straight y plus 1 space equals space straight e to the power of straight x is the required equation of curve. 
    Question 136
    CBSEENMA12033215

    The integrating factor of the differential equation straight x dy over dx minus straight y space equals space 2 straight x squared is

    Solution
    The given differential equation is
    straight x dy over dx minus straight y space equals 2 straight x squared space space space space space or space space space dy over dx minus 1 over straight x straight y space equals 2 straight x
    Comparing it with dy over dx plus Py space equals space straight Q comma space space we space get comma space straight P space equals space minus 1 over straight x comma space space straight Q space equals space 2 straight x
    I.F. = straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative integral space 1 over straight x dx end exponent space equals space straight e to the power of negative space log space straight x end exponent space equals space straight e to the power of log space straight x to the power of negative 1 end exponent end exponent space equals space straight x to the power of negative 1 end exponent space equals space 1 over straight x
    therefore space space space left parenthesis straight C right parenthesis space is space correct space answer.
    Question 137
    CBSEENMA12033216

    The integrating factor of the differential equation:
    left parenthesis 1 minus straight y squared right parenthesis dx over dy plus straight y space straight x space equals space straight a space straight y space space left parenthesis negative 1 less than straight y less than 1 right parenthesis

    • fraction numerator 1 over denominator straight y squared minus 1 end fraction
    • fraction numerator 1 over denominator square root of straight y squared minus 1 end root end fraction
    • fraction numerator 1 over denominator 1 minus straight y squared end fraction
    • fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction

    Solution

    D.

    fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction

    The given differential equation is left parenthesis 1 minus straight y squared right parenthesis space dx over dy plus space straight y space straight x space equals space straight a space straight y
    or         dx over dy plus fraction numerator straight y over denominator 1 minus straight y squared end fraction straight x space equals space fraction numerator straight a space straight y over denominator 1 minus straight y squared end fraction
    Comparing it with dx over dy plus Px space equals space straight Q comma space space we space get comma space space straight P space equals space fraction numerator straight y over denominator 1 minus straight y squared end fraction comma space space space straight Q space equals space fraction numerator straight a space straight y over denominator 1 minus straight y squared end fraction
    I.F.  = straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of integral fraction numerator straight y over denominator 1 minus straight x squared end fraction dy end exponent space equals space straight e to the power of 1 half integral subscript 1 minus straight y squared end subscript superscript negative 2 straight y end superscript dy end exponent space equals space straight e to the power of negative 1 half log space left parenthesis 1 minus straight x squared right parenthesis end exponent
           equals space straight e to the power of log space left parenthesis 1 minus straight x squared right parenthesis to the power of negative 1 half end exponent end exponent space equals space left parenthesis 1 minus straight y squared right parenthesis to the power of negative 1 half end exponent space equals space fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction
    therefore space space space space left parenthesis straight D right parenthesis space is space correct space answer.

    Question 138
    CBSEENMA12033217

    The general solution of a differential equation of the type dx over dy plus straight P subscript 1 straight x space equals space straight Q subscript 1 is 
    • straight y space straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral space open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dy end exponent close parentheses space dy plus straight C
    • straight y. space straight e to the power of integral straight P subscript 1 dx end exponent space equals space integral space open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dx end exponent close parentheses dx plus straight C
    • straight x. straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral open parentheses straight Q subscript 1 straight e to the power of integral straight P subscript 1 dy end exponent close parentheses dy plus straight C
    • straight x space straight e to the power of integral straight P subscript 1 dx end exponent space equals space integral open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dx end exponent close parentheses dx plus straight C

    Solution

    C.

    straight x. straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral open parentheses straight Q subscript 1 straight e to the power of integral straight P subscript 1 dy end exponent close parentheses dy plus straight C

    The given differential equation is dx over dy plus straight P subscript 1 straight x space equals space straight Q subscript 1
    Multiplying through by straight e to the power of integral straight P subscript 1 dy end exponent comma space we get,
                         dx over dy straight e to the power of integral straight P subscript 1 dy end exponent space plus space straight P subscript 1 straight x space straight e to the power of integral straight P subscript 1 dy end exponent space equals straight Q subscript 1 space straight e to the power of integral straight P subscript 1 end exponent space dy
    or         straight d over dy left parenthesis space straight x space straight e to the power of integral straight P subscript 1 dy end exponent right parenthesis space equals space straight Q subscript 1 space straight e to the power of integral straight P subscript 1 end exponent dy
                                  open square brackets because space space straight d over dy left parenthesis straight x space straight e to the power of integral straight P subscript 1 dy end exponent right parenthesis space equals space xe to the power of integral straight P subscript 1 dy. end exponent straight d over dy left parenthesis integral straight P subscript 1 space dy right parenthesis plus straight e to the power of integral straight P subscript 1 dy end exponent dx over dy
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space xe to the power of integral straight P subscript 1 dy end exponent space space straight P subscript 1 space plus space straight e to the power of integral straight P subscript 1 dy end exponent space dx over dy
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space dx over dy straight e to the power of integral straight P subscript 1 dy end exponent space plus space straight P subscript 1 space xe to the power of integral straight P subscript 1 dy end exponent close square brackets

space space space
    Integrating both sides w.r.t y, we get,
                         xe to the power of integral straight P subscript 1 dy end exponent space equals space integral straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dy end exponent dy plus straight C space which space is space required space solution. space
    therefore space space space left parenthesis straight C right parenthesis space is space correct space answer. space

    Question 139
    CBSEENMA12033218

    The general solution of the differential equation ex dy + (yex + 2x) dx = 0 is
    • x ey + x2 = C
    • x ey + y2 = C
    •  y ex + x2 = C

    • y ey + x2 = C

    Solution

    C.

     y ex + x2 = C

    The given differential equation is
                           straight e to the power of straight x dy space plus space left parenthesis straight y space straight e to the power of straight x space plus space 2 straight x right parenthesis space dx space equals space 0
    or        straight e to the power of straight x dy over dx plus space straight y space straight e to the power of straight x space plus space 2 space straight x space equals 0 space space space space or space space space dy over dx plus straight y plus fraction numerator 2 straight x over denominator straight e to the power of straight x end fraction space equals space 0 space space or space space dy over dx plus straight y space equals space minus 2 xe to the power of negative straight x end exponent
    Comparing it with dy over dx plus Py space equals space straight Q comma   we get,  P = 1, straight Q space equals negative 2 xe to the power of negative straight x end exponent
    therefore space space space space space space space space space space integral straight P space dx space equals space integral space 1 space dx space equals space apostrophe straight x comma space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of straight x
    Solution of given differential equation is
                           ye space to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight C space space space or space space space straight y space straight e to the power of straight x space equals space integral left parenthesis negative 2 straight x space straight e to the power of straight x right parenthesis. space straight e to the power of straight x dx plus straight C
    or                 straight y space straight e to the power of straight x space equals space minus 2 space integral space straight x space dx space plus space straight C space space space space or space space space straight y space straight e to the power of straight x space equals space minus straight x squared plus straight C
    or                 space ye to the power of straight x plus straight x squared space equals space straight C
    therefore space space left parenthesis straight C right parenthesis space is space correct space answer. 
    Question 140
    CBSEENMA12035699

    Solve the differential equation left parenthesis 1 plus straight x squared right parenthesis dy over dx plus straight y equals straight e to the power of tan to the power of negative 1 end exponent straight x end exponent

    Solution

    Given differential equation is:
    left parenthesis 1 plus straight x squared right parenthesis dy over dx plus straight y equals straight e to the power of tan to the power of negative 1 end exponent straight x end exponent
rightwards double arrow dy over dx plus fraction numerator straight y over denominator left parenthesis 1 plus straight x squared right parenthesis end fraction space equals space fraction numerator straight e to the power of tan to the power of negative 1 end exponent straight x end exponent over denominator left parenthesis 1 plus straight x squared right parenthesis end fraction
    This is a linear differential equation of the form
    dy over dx plus Py space equals space straight Q
    where space straight P space equals space fraction numerator 1 over denominator left parenthesis 1 plus straight x squared right parenthesis end fraction space and space straight Q space equals fraction numerator straight e to the power of tan to the power of negative 1 end exponent straight x end exponent over denominator left parenthesis 1 plus straight x squared right parenthesis end fraction
Therefore comma space
straight I. straight F. space equals space straight e to the power of integral Pdx end exponent space equals space straight e to the power of tan to the power of negative 1 end exponent straight x end exponent
Thus space the space solution space is comma
straight y left parenthesis straight I. straight F right parenthesis space equals space integral straight Q thin space left parenthesis straight I. straight F right parenthesis space dx
rightwards double arrow straight y open parentheses straight e to the power of tan to the power of negative 1 end exponent straight x end exponent close parentheses space equals integral fraction numerator straight e to the power of tan to the power of negative 1 end exponent straight x end exponent over denominator left parenthesis 1 plus straight x squared right parenthesis end fraction cross times straight e to the power of tan to the power of negative 1 end exponent straight x end exponent dx
Substitute space straight e to the power of tan to the power of negative 1 end exponent straight x end exponent space equals space straight t semicolon
    straight e to the power of tan to the power of negative 1 end exponent straight x end exponent space cross times fraction numerator 1 over denominator left parenthesis 1 plus straight x squared right parenthesis end fraction dx space equals space dt
Thus comma space
straight y open parentheses straight e to the power of tan to the power of negative 1 end exponent straight x end exponent close parentheses space equals space integral tdt
rightwards double arrow space space straight y open parentheses straight e to the power of tan to the power of negative 1 end exponent straight x end exponent close parentheses space equals straight t squared over 2 plus straight C
rightwards double arrow space straight y open parentheses straight e to the power of tan to the power of negative 1 end exponent straight x end exponent close parentheses space equals space open parentheses straight e to the power of tan to the power of negative 1 end exponent straight x end exponent close parentheses squared over 2 plus straight C 

    Question 141
    CBSEENMA12035710

    If space straight y space equals space Pe to the power of ax plus Qe to the power of bx show that
    straight d to the power of 2 straight y end exponent over dx squared minus left parenthesis straight a plus straight b right parenthesis dy over dx plus aby space equals 0

    Solution

    Given that
    straight y equals Pe to the power of ax plus Qe to the power of bx
Differentiating space the space above space function space with space respect space to space straight x comma
dy over dx equals Pae to the power of ax plus Qbe to the power of bx
Differentiating space once space again comma space we space have comma
fraction numerator straight d squared straight y over denominator dx squared end fraction equals space Pa squared straight e to the power of ax plus Qb squared straight e to the power of bx
    Let us now find left parenthesis straight a plus straight b right parenthesis dy over dx colon
    left parenthesis straight a plus straight b right parenthesis dy over dx equals left parenthesis straight a plus straight b right parenthesis open parentheses Pae to the power of ax plus Qbe to the power of bx close parentheses space
space rightwards double arrow space left parenthesis straight a plus straight b right parenthesis dy over dx equals Pa squared straight e to the power of ax plus Qabe to the power of bx plus Pabe to the power of bx plus Qb squared straight e to the power of bx
rightwards double arrow space left parenthesis straight a plus straight b right parenthesis dy over dx equals Pa squared straight e to the power of ax plus left parenthesis straight P plus straight Q right parenthesis abe to the power of bx plus Qb squared straight e to the power of bx space space space
    Also we have,
    aby space equals ab open parentheses Pe to the power of ax plus Qe to the power of bx close parentheses space equals space ab
Thus comma space fraction numerator straight d squared straight y over denominator dx squared end fraction minus left parenthesis straight a plus straight b right parenthesis dy over dx plus aby
equals Pa squared straight e to the power of ax plus Qb squared straight e to the power of bx minus Pa squared straight e to the power of ax minus left parenthesis straight P plus straight Q right parenthesis abe to the power of bx minus Qb squared straight e to the power of bx plus abPe to the power of ax plus abQe to the power of bx
equals 0

    Question 142
    CBSEENMA12035712

    If space straight x equals cost left parenthesis 3 minus 2 cos squared straight t right parenthesis space and space straight y equals sint left parenthesis 3 minus 2 sin squared straight t right parenthesis comma space find space the space value space of space dy over dx at space straight t equals straight pi over 4.

    Solution
    straight x equals cost space left parenthesis 3 minus 2 cos squared straight t right parenthesis
and
straight y equals sint left parenthesis 3 minus sin squared straight t right parenthesis
We space need space to space find space dy over dx colon
dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style dx over dt end style end fraction
Let space us space find space dx over dt colon
straight x equals cost left parenthesis 3 minus 2 cos squared straight t right parenthesis
dx over dt equals cost left parenthesis 4 cost space sint right parenthesis plus left parenthesis 3 minus 2 cos squared straight t right parenthesis left parenthesis negative sint right parenthesis
rightwards double arrow dx over dt equals negative 3 sint plus 4 cos squared tsint plus 2 cos squared tsint
Let space us space find space dy over dt colon
straight y equals sint left parenthesis 3 minus 2 sin squared straight t right parenthesis
dy over dt equals sint left parenthesis negative 4 sint space cost right parenthesis plus left parenthesis 3 minus 2 sin squared straight t right parenthesis space left parenthesis cost right parenthesis
rightwards double arrow dy over dt equals 3 cost minus 4 sin squared tcost minus 2 sin squared tcost
Thus comma space dy over dx equals fraction numerator 3 cost minus 4 sin squared tcost minus 2 sin squared tcost over denominator negative 3 sint plus 4 cos squared tsint plus 2 cos squared tsint end fraction
rightwards double arrow space dy over dx equals fraction numerator 3 cost minus 6 sin squared tcost over denominator negative 3 sint plus 6 cos squared tsint end fraction
rightwards double arrow dy over dx equals fraction numerator 3 cost left parenthesis 1 minus 2 sin squared straight t right parenthesis over denominator negative 3 sint left parenthesis 1 minus 2 cos squared straight t right parenthesis end fraction
rightwards double arrow dy over dx equals fraction numerator 3 cost left parenthesis 1 minus 2 sin squared straight t right parenthesis over denominator 3 sint left parenthesis 2 cos squared straight t minus 1 right parenthesis end fraction
rightwards double arrow dy over dx equals fraction numerator cost space over denominator sint end fraction open square brackets because 2 cos squared straight t minus 1 equals 1 minus 2 sin squared straight t close square brackets
rightwards double arrow dy over dx equals cot space straight t
rightwards double arrow open parentheses dy over dx close parentheses subscript straight t equals straight pi over 4 end subscript equals cot straight pi over 4 equals 1
    Question 143
    CBSEENMA12035713

    Find the particular solution of the differential equation log open parentheses dy over dx close parentheses equals 3 straight x plus 4 straight y comma space given space that space straight y space equals space 0 comma space when space straight x equals space 0.

    Solution

    Consider the differential equation,
    log open parentheses dy over dx close parentheses equals 3 straight x plus 4 straight y
    Taking exponent on both the sides, we have
    straight e to the power of log open parentheses dy over dx close parentheses end exponent space equals space straight e to the power of 3 straight x plus 4 straight y end exponent
space rightwards double arrow dy over dx equals straight e to the power of 3 straight x plus 4 straight y end exponent
space rightwards double arrow dy over dx equals straight e to the power of 3 straight x end exponent. straight e to the power of 4 straight y end exponent
rightwards double arrow dy over straight e to the power of 4 straight y end exponent equals straight e to the power of 3 straight x end exponent. dx
    Integration in both the sides, we have
    integral dy over straight e to the power of 4 straight y end exponent space equals space integral straight e to the power of 3 straight x end exponent dx
fraction numerator straight e to the power of negative 4 straight y end exponent over denominator negative 4 end fraction equals straight e to the power of 3 straight x end exponent over 3 plus straight C
We space need space to space find space the space particular space solution
We space have comma space straight y space equals space 0 comma space when space straight x space equals space 0
fraction numerator 1 over denominator negative 4 end fraction space equals 1 third plus straight C
rightwards double arrow straight C space equals negative 1 fourth minus 1 third
rightwards double arrow straight C space equals space fraction numerator negative 3 minus 4 over denominator 12 end fraction equals negative 7 over 12
Thus comma space the space solution space is space straight e to the power of 3 straight x end exponent over 3 plus straight e to the power of negative 4 straight y end exponent over 4 equals 7 over 12

    Question 144
    CBSEENMA12035729

    Write the degree of the differential equation straight x cubed open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses squared space plus space open parentheses dy over dx close parentheses to the power of 4 space equals space 0

    Solution
    straight x cubed open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses squared plus open parentheses dy over dx close parentheses to the power of 4 space equals space 0
    We know that the degree of a differential equation is the highest power (exponent) of the highest order derivative in it.
    The highest order derivative present in the given differential equation is fraction numerator straight d squared straight y over denominator dx squared end fraction. Its power is 2. So, the degree of the given differential equation is 2.
    Question 145
    CBSEENMA12035733

    The amount of pollution content added in air in city due to x-diesel vehicles is given by straight P left parenthesis straight x right parenthesis space equals space 0.005 straight x cubed plus 0.02 straight x squared plus 30 straight x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above questions.

    Solution
    straight P left parenthesis straight x right parenthesis space equals space 0.005 straight x cubed plus 0.02 straight x squared plus 30 straight x
    Differentiating w.r.t.x,
    Marginal increase in pollution content equals fraction numerator dP left parenthesis straight x right parenthesis over denominator dx end fraction equals 0.015 straight x squared plus 0.04 straight x plus 30
    Putting x = 3 in (1), open parentheses fraction numerator dp left parenthesis straight x right parenthesis over denominator dx end fraction close parentheses subscript straight x equals 3 end subscript space equals space 0.015 cross times 9 plus 0.04 cross times 3 plus 30 equals 30.255
    Therefore, the value of marginal increase pollution content is 30.255.
    Increase in number of vehicles increases the pollution. We should aim at saving the environment by reducing the pollution by decreasing the vehicle density on road. 
    Question 146
    CBSEENMA12035734

    Show that the function f in straight A space equals space straight R to the power of minus open curly brackets 2 over 3 close curly brackets space defined space as space straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction space is space one minus one space and space onto. space Hence space find space straight f to the power of negative 1 end exponent.

    Solution
    straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction
Let space straight f left parenthesis straight x subscript 1 right parenthesis space equals space straight f left parenthesis straight x subscript 2 right parenthesis
rightwards double arrow fraction numerator 4 straight x subscript 1 plus 3 over denominator 6 straight x subscript 1 minus 4 end fraction equals fraction numerator 4 straight x subscript 2 plus 3 over denominator 6 straight x subscript 2 minus 4 end fraction
rightwards double arrow space space 24 straight x subscript 1 straight x subscript 2 minus 16 straight x subscript 1 plus 18 straight x subscript 2 minus 12 space equals space 24 straight x subscript 1 straight x subscript 2 plus 18 straight x subscript 1 minus 16 straight x subscript 2 minus 12
rightwards double arrow space space 18 straight x subscript 2 plus 16 straight x subscript 2 space equals space 18 straight x subscript 1 plus 16 straight x subscript 1
rightwards double arrow 34 straight x subscript 2 space equals 34 straight x subscript 1
rightwards double arrow straight x subscript 1 space equals space straight x subscript 2
    Since, fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction is a real number, therefore, for every y in the co-domain of f, there exists a number x in straight R to the power of minus open curly brackets 2 over 3 close curly brackets space such space that space straight f left parenthesis straight x right parenthesis space equals space straight y space equals space fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction
    Therefore, f(x) is onto.
    Hence, straight f to the power of negative 1 end exponent exists.
    Now, let space straight y space equals space fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction
rightwards double arrow 6 xy minus 4 straight y space equals space 4 straight x plus 3
rightwards double arrow space 6 xy minus 4 straight x space equals space 4 straight y plus 3
rightwards double arrow straight x left parenthesis 6 straight y minus 4 right parenthesis space equals space 4 straight y plus 3
rightwards double arrow space space space straight x space equals space fraction numerator 4 straight y plus 3 over denominator 6 straight y minus 4 end fraction
rightwards double arrow space space straight y equals space fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction space space left square bracket interchanging space the space variables space straight x space and space straight y right square bracket
rightwards double arrow straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals space fraction numerator 4 straight x plus 3 over denominator 6 straight x minus 4 end fraction left square bracket put space straight y space equals space straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis right square bracket
    Question 147
    CBSEENMA12035738

    Differentiate the following function with respect to x:
    left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log straight x

    Solution

     Let space straight y space equals left parenthesis logx right parenthesis to the power of straight x plus straight x to the power of logx space space space space space space space space... left parenthesis 1 right parenthesis
Now space let space straight y subscript 1 equals left parenthesis log space straight x right parenthesis to the power of straight x space and space straight y subscript 2 equals straight x to the power of logx
rightwards double arrow space space straight y space equals space straight y subscript 1 plus straight y subscript 2 space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Differentiating (2), w.r.t.x, 
    dy over dx equals dy subscript 1 over dx plus dy subscript 2 over dx space space space space space space space space space space... left parenthesis 3 right parenthesis

    Now consider straight y subscript 1 space equals space left parenthesis log space straight x right parenthesis to the power of straight x
    Taking log on both sides,
    logy subscript 1 space equals space straight x space log left parenthesis log space straight x right parenthesis
    Differentiating, w.r.t.x, we get
    1 over straight y subscript 1 dy subscript 1 over dx equals straight x cross times 1 over logx cross times 1 over straight x plus 1 cross times log left parenthesis log space straight x right parenthesis
rightwards double arrow space space dy subscript 1 over dx space equals space straight y subscript 1 open parentheses 1 over logx plus log left parenthesis log space straight x right parenthesis close parentheses
rightwards double arrow dy subscript 1 over dx equals left parenthesis logx right parenthesis to the power of straight x open parentheses fraction numerator 1 over denominator log space straight x end fraction plus log space left parenthesis log space straight x right parenthesis close parentheses space space space space space space... left parenthesis 4 right parenthesis
    Now comma space consider space straight y subscript 2 space equals straight x to the power of logx
logy subscript 2 space equals space left parenthesis log space straight x right parenthesis left parenthesis log space straight x right parenthesis space equals left parenthesis log space straight x right parenthesis squared
Differentiating space straight w. straight r. straight t. straight x comma space we space get
1 over straight y subscript 2 dy subscript 2 over dx equals 2 left parenthesis log space straight x right parenthesis cross times 1 over straight x
rightwards double arrow space dy subscript 2 over dx space equals straight y subscript 2 open parentheses fraction numerator 2 logx over denominator straight x end fraction close parentheses equals straight x to the power of logx open parentheses fraction numerator 2 logx over denominator straight x end fraction close parentheses... left parenthesis 5 right parenthesis
    Using equations (3), (4) and (5), we get:
    dy over dx equals left parenthesis log space straight x right parenthesis to the power of straight x open square brackets 1 over logx plus log left parenthesis log space straight x right parenthesis close square brackets plus straight x to the power of logx open parentheses fraction numerator 2 logx over denominator straight x end fraction close parentheses
    Question 148
    CBSEENMA12035739

    If space straight y space equals space log space open square brackets straight x space plus space square root of straight x squared plus space straight a squared end root close square brackets comma space show space that space left parenthesis straight x squared space plus space straight a squared right parenthesis space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus straight x dy over dx space equals space 0

    Solution

    Given,

    straight y space equals space log space open square brackets straight x space plus space square root of straight x squared space plus space straight a squared end root close square brackets space

straight y space equals space log space open square brackets straight x space plus space square root of straight x squared space plus straight a squared end root close square brackets...... space left parenthesis straight i right parenthesis

Differentiating space left parenthesis 1 right parenthesis space straight w. straight r. straight t space space straight x comma space we space get
dy over dx space equals space fraction numerator 1 plus fraction numerator straight x over denominator square root of straight x squared plus straight a squared end root end fraction over denominator straight x space plus space square root of straight x squared space plus space straight a squared end root end fraction

rightwards double arrow space dy over dx space equals space fraction numerator 1 over denominator square root of straight x squared space plus space straight a squared end root end fraction space space space space space..... space left parenthesis ii right parenthesis

rightwards double arrow space straight x dy over dx space equals space fraction numerator straight x over denominator square root of straight x squared space plus space straight a squared end root end fraction space space space space space space.... space left parenthesis iii right parenthesis

Again comma space differentiating space left parenthesis ii right parenthesis space straight w. straight r. straight t space straight x comma space we space get

fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space fraction numerator negative begin display style fraction numerator 2 straight x over denominator 2 left parenthesis straight x squared space plus space straight a squared right parenthesis to the power of begin display style 1 half end style end exponent end fraction end style over denominator left parenthesis straight x squared space plus space straight a squared right parenthesis end fraction

rightwards double arrow space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space minus fraction numerator straight x over denominator left parenthesis straight x squared space plus space straight a squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction

rightwards double arrow space left parenthesis straight x squared space plus space straight a squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space minus fraction numerator straight x over denominator square root of straight x squared space plus space straight a squared end root end fraction space space... space left parenthesis iv right parenthesis

adding space equation space left parenthesis iii right parenthesis space and space left parenthesis iv right parenthesis comma space we space get

left parenthesis straight x squared space plus space straight a squared right parenthesis space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space straight x dy over dx space equals space minus fraction numerator straight x over denominator square root of straight x squared plus straight a squared end root end fraction space space plus fraction numerator straight x over denominator square root of straight x squared space plus space straight a squared end root end fraction space equals space 0

rightwards double arrow space left parenthesis space straight x squared space plus space straight a squared right parenthesis space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space straight x dy over dx space equals space 0

    Question 149
    CBSEENMA12035741

    If straight x equals straight a space sint space and space straight y space equals space straight a open parentheses cost plus log space tan straight t over 2 close parentheses space find space fraction numerator straight d squared straight y over denominator dx squared end fraction

    Solution
    straight y space equals space straight a open parentheses cost plus log space tan straight t over 2 close parentheses
rightwards double arrow dy over dt space equals space straight a open square brackets straight d over dt left parenthesis cost right parenthesis plus straight d over dt left parenthesis log space tan straight t over 2 right parenthesis close square brackets
space equals space straight a open square brackets negative sint plus cot straight t over 2 cross times sec squared straight t over 2 cross times 1 half close square brackets
equals space straight a open square brackets negative sint plus fraction numerator 1 over denominator 2 sin begin display style straight t over 2 end style cos begin display style straight t over 2 end style end fraction close square brackets
equals straight a open parentheses negative sint plus 1 over sint close parentheses equals straight a open parentheses fraction numerator negative sin squared straight t plus 1 over denominator sint end fraction close parentheses equals straight a fraction numerator cos squared straight t over denominator sint end fraction
    straight x equals straight a space sint
dx over dt equals straight a straight d over dt left parenthesis sin space straight t right parenthesis space equals space straight a space cost
therefore space dy over dx equals fraction numerator open parentheses begin display style dy over dt end style close parentheses over denominator open parentheses begin display style dx over dt end style close parentheses end fraction equals space fraction numerator open parentheses straight a begin display style fraction numerator cos squared straight t over denominator sint end fraction end style close parentheses over denominator acost end fraction space equals cost over sint equals cot space straight t
fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative cosec squared straight t dt over dx equals negative cosec squared straight t cross times fraction numerator 1 over denominator straight a space cost end fraction equals negative fraction numerator 1 over denominator straight a space sin squared straight t space cost end fraction
    Question 150
    CBSEENMA12035755

    Show that the differential equation 2 ye to the power of straight x divided by straight y end exponent dx plus left parenthesis straight y minus 2 straight x space straight e to the power of straight x divided by straight y end exponent right parenthesis space dy space equals space 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.

    Solution
    2 ye to the power of straight x divided by straight y end exponent dx plus left parenthesis straight y minus 2 straight x space straight e to the power of straight x divided by straight y end exponent right parenthesis dy space equals space 0
dy over dx space equals space fraction numerator 2 xe to the power of begin display style straight x over straight y end style end exponent minus straight y over denominator 2 ye to the power of begin display style straight x over straight y end style end exponent end fraction space space space space... left parenthesis 1 right parenthesis
    Let space straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator 2 xe to the power of begin display style straight x over straight y end style end exponent minus straight y over denominator 2 ye to the power of begin display style straight x over straight y end style end exponent end fraction
     Then comma space straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda open parentheses 2 xe to the power of begin display style straight x over straight y end style end exponent minus straight y close parentheses over denominator straight lambda open parentheses 2 ye to the power of begin display style straight x over straight y end style end exponent close parentheses end fraction equals straight lambda degree open square brackets straight F left parenthesis straight x comma space straight y right parenthesis close square brackets
    Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation. 
    Let x = vy
    Differentiating w.r.t. y, we get
    dx over dy equals straight v plus straight y dv over dy
    Substituting the value of x and dx over dy in equation (1), we get
    straight v plus straight y dv over dy equals fraction numerator 2 vye to the power of straight v minus straight y over denominator 2 ye to the power of straight v end fraction space equals fraction numerator 2 ve to the power of straight v minus 1 over denominator 2 straight e to the power of straight v end fraction
    or space space straight y dv over dy space equals fraction numerator 2 ve to the power of straight v minus 1 over denominator 2 straight e to the power of straight v end fraction minus straight v
or space space straight y dv over dy equals negative fraction numerator 1 over denominator 2 straight e to the power of straight v end fraction
or space space 2 straight e to the power of straight v dv space equals fraction numerator negative dy over denominator straight y end fraction
or space space integral 2 straight e to the power of straight v. dv space equals space minus integral dy over straight y
or space space 2 straight e to the power of straight v space equals space minus log space open vertical bar straight y close vertical bar plus straight C
    Substituting the value of v, we get
    2 straight e to the power of straight x over straight y end exponent plus log space open vertical bar straight y close vertical bar space equals space straight C space space... left parenthesis 2 right parenthesis
    Substituting x = 0 and y = 1 in equation (2), we get
    2 straight e degree plus log space open vertical bar 1 close vertical bar space equals space straight C space rightwards double arrow space straight C space equals space 2
    Substituting the value of C in equation (2), we get
    2 straight e to the power of straight x over straight y end exponent plus log space open vertical bar straight y close vertical bar space equals space 2 comma which is the particular solution of the given differential equation. 
    Question 151
    CBSEENMA12035802

    Find the differential equation representing the family of curves y = aebx + 5 , where a and b are arbitrary constants.

    Solution

    y = aebx x e5y = aebx x e5y = αebxwhere  e5a = αDifferentiate w.r.t . 'x'dydx = α bebx dydx = bydydxy = bagain differentiate w.r.t 'x'yd2ydx2 - dydxxdydxy2 = 0yd2ydx2 - dydx2 = 0

    Question 152
    CBSEENMA12035804

    If y = sin (sin x), prove that d2 ydx2 + tan x dydx  + y cos2 x = 0

    Solution

    As y = sin (sin x)

     dydx = cos (sin x) cos x.... (i)and d2ydx2= cos (sin x) (-sin x) - cos2 x (sin(sinx))Now d2ydx2 + tan x dydx + y cos2 x= -sinx cos(sin x) - cos 2 x sin (sin x) + sin  xcos x  x cos x cos(sin x) + sin (sin x) cos2x = - sin x cos (sin x) -cos2 x sion (sin x) +  sin x cos(sin x) + cos2 x sin (sin x) = 0 = R.H.SHence we have proved thatd2ydx2 + tan x dydxx + y cos2 x  = 0 for  y = sin (sin x)

    Question 153
    CBSEENMA12035805

    Find the particular solution of the differential equation ex tan ydx + (2 -ex) sec2 ydy = 0, given that y  = π4 when x = 0

    Solution

    ex tan y dx + (2 -ex) sec2 y dy = 0ex tan y dx = (ex -2) sec2 y dy  = 0ex tan y dx = (ex -2) sec2 y dyexdxex -2 = sec2 y dytan yIn |ex -2| = In |tan y | + In CIn |ex-2| = In (C tan y)ex - 2  = C tan yGiven; x = 0, y = π4eo - 2 = C tan π4eo - 2  = -C tan π41 -2 = C x 1 C = - 1 ex - 2 = - tan ex - 2 + tan y = 0

    Question 154
    CBSEENMA12035806

    Find the particular solution of the differential equation dydx + 2 y tan x  = sin x, given that y = 0 when x = π3

    Solution

    dydx + (2 tan x) y = sin xdydx + py = Q P = 2 tan x and Q = sin xI.F = ePdx = e2tan x dx = e2In sec x = eIn sec2 x = sec2 xsoln. y (I.F) = Q (I.F)dxy .sec2 x = sin x. sec2 x dxy sec2 x = tan x sec x dxy sec2 x = sec x + CGiven y = 0  x = π3sec π3 + C = 0C = - sec π3 = - 2 y sec2 x  = sec x -2 y sec2 x - sec x  +2 = 0

    Question 155
    CBSEENMA12035816

    If (x2 + y2)2 = xy, find dydx

    Solution

    Given:

    (x2 + y2)2 = xyx4 + y4 + 2x2y2 = xydiff w.r.t   x4x3 + 4y3dydx + 22x2y dydx+ 2xy2 = xdydx + y4y3 dydx + 4x2y dydx -x dydx = y- 4x3 - 4xy2dydx 4y3 + 4x2y- x = y - 4x3-4xy2dydx = y -4x3-4xy24y3+ 4x2y - x

    Question 156
    CBSEENMA12035817

    If x =a (2θ - sin 2θ) and y = a(1- cos 2θ), finddydx when θ =π3

    Solution

    y = a [1 -cos 2θ], dy = a(0-2 sin 2θ) dy = - 2a sin 2θx = a(2θ - sin 2θ), dy = a (2-2cos 2θ) dydx = dydx = -2a sin 2θ2a[ 1- cos 2θ]  dx  0 -2 sin θ cosθ2 sin2 θ = -cot θdydx = -cotπ3 = - 13

    Question 157
    CBSEENMA12035842

    Differentiate the following with respect of x:

    y = tan-1 1 + x - 1 - x1 + x + 1 - x 

    Solution

    Let  x = cos 2θ    θ = 12 cos-1 x        .................(1)1 + x = 1 + cos2θ = 1 + 2cos2θ -1 = 2 cosθ    1 - x = 1 - cos2θ = 1 - 1 -  2sin2θ  = 2 sinθLet   y= tan-1 1 + x - 1 - x1 + x + 1 - x          =   tan-1 2 cosθ - 2 sinθ2 cosθ + 2 sinθ          = tan-11 - tanθ1 + tanθ          =  tan-1 tan π4 - θ           = π4 - θ  =   π4 - 12cos-1x       .........From(1)dydx = -12-11 - x2             = 12 1 - x2

    Question 158
    CBSEENMA12035845

    Solve the following differential equation:
    (x2 − y2) dx + 2xy dy = 0   given that y = 1 when x = 1

    Solution

    ( x2 - y2 ) dx + 2xy dy = 0

     

    dydx = y2 - x22xy          .........(1)

    It is a homogeneous differential equation.

    Let y = vx                ..........(2)

     

    dydx = v + xdvdx        ...........(3)

     

    Substituting (2) and (3) in (1), we get:

     

    v + xdvdx = v2 x2 - x22x . vxv + xdvdx =  x2 (v2 - 1 )2vx2 = v2 - 12v2v2 + 2vx dvdx = v2 - 1 2vx dvdx = - v2 - 12vv2 + 1 dv = -dxx

     

    Integrating both sides, we get:

     

    2vv2 + 1 dv = -1x dxlog v2 + 1 = - log x + log Clog v2 + 1 =  log Cxv2 + 1 = Cxx ( v2 + 1 ) = C

     

    x yx2 + 1 = C  y2 + x2 = Cx           .........(4)

     

    It is given that when   x = 1,  y = 1

     

    (1)2 + (2)2 =  C(1)

     

      C = 2

     

    Thus, the required solution is  y2 + x2 = 2x.

     

    Question 159
    CBSEENMA12035846

    Solve the following differential equation:


    dydx = x ( 2y - x )x ( 2y + x),   if y = 1 when x = 1

    Solution

    We need to solve the following differential equation

     

    dydx = x ( 2y - x )x ( 2y + x ) dydx =  2y - x  2y + x               ........(1)

     

    It is a homogeneous differential equation.

     

    Let  y = vx               ..........(2)

     

     dydx = v + x dvdx      ..........(3)

     

    Substituting (2) and (3) in (1),  we get:

     

    v + x dvdx = x ( 2v - 1 )x ( 2v + 1 ) x dvdx =   2v - 1   2v + 1  - vx dvdx =   - 2v2 = v - 1   2v + 1 2v + 1- 2v2 + v - 1  dv = 1x dx2v + 12v2 - v + 1  dv = - 1x  dx

     

    Integrating both sides,

     

    124v - 1 + 32v2 - v + 1 dv = 1x dx 124v - 1 2v2 - v + 1 dv + 321 2v2 - v + 1 dv = - 1x  dx

     

    124v - 12v2 - v + 1 dv + 341v2 - v2 + 12 =  -1x dx

     

    12 log  2v2 - v + 1 + 34  1v2 - v2 + 116 + 716 dv =-  log x + C12 log  2v2 - v + 1 + 34  dv v - 142+ 742  =-  log x + C12 log  2v2 - v + 1 + 34 x 47 tan-1v - 1474 = -  log x + C12 log  2v2 - v + 1 +  37 tan-14v - 17 = C- log x 

     

    Put v = yx12 log  2 yx2 - yx + 1  + 37 tan-14yx - 17 = C - log x12 log 2y2 - xy + x2x2 + 37 tan-1 4y - x7x =  C - log x        ..........(4)Now  y = 1 when  x = 112 log 2(1)2 - 1 x 1 + 1212 + 37 tan-1 4 x 1 - 17 x 1 =  C - log 1 12 log 2 + 37 tan-1 37 = C                                              .................(5)

     

    Therefore, from (4) and (5) we get:

     

    12log 2y2 - xy + x2x2 + 37tan-1 4y - x7 x= 12log 2 + 37tan-137 - log x12log 2y2 - xy + x2x2  - 12log 2  + log x= 37 tan-1 37 - tan-1  4y - x7 x12log 2y2 - xy + x2x2  x2   = 37  tan-1 3x - 4y + x7 x1 + 3 x (4y - x )7x12log 2y2 - xy + x22     = 37  tan-1 4 (x - y )7 x 7x + 12y - 3x 7x12log 2y2 - xy + x22     = 37  tan-1 7 ( x - y )( x + 3y )

    Question 160
    CBSEENMA12035847

    Solve the following differential equation:

    cos2 x dydx + y = tanx

    Solution

    cos2x dydx + y = tan xdydx + sec2x.y = tan x. sec2x

     

    It is a linear differential equation of the first order.

     

    comparing it with  dydx + py = Q, we get:

    P = sec2x and   Q = tanx.sec2x

     

    Integration factor = e P dx = e sec2 x dx  = etan xThe solutoin of the given linear differential equation is given as:y etan x = tan x. sec2x . etan x  dx  + CLet   tan x = t   sec2x dx = dty et = t.et.dt + Cy et = t.et -1.et.dt + Cy et = t.et - et+ Cy et = et ( t - 1 ) + Cy etan x = etan x tan x - 1 + Cy =  tan x - 1 + C e-tan x

    Question 161
    CBSEENMA12035884

    Solve the following differential equation:

     1 + x2  dydx + y = tan-1 x

    Solution

     1 + x2  dydx + y = tan-1 x

    The equation can be expressed as

    dydx + y1 + x2 = tan-1 x1 + x2               .........(i)

    This is a linear differential equation of the type  dydx + Py = Q

    So, I.F = e 11 + x2 dx = etan-1xSolution of (i)y etan-1x =  etan-1x tan-1 x1 + x2 dx        ........(ii)For R.H.S.,  let   tan-1 x = t   11 + x2 dx = dt  

    Substituting  in equation (ii)

    yetan-1x =  et. tdt y.etan-1x = tet - et  + C y.etan-1x =etan-1x  tan-1 x - 1  + C y =  tan-1 x - 1  + Ce-tan-1x

    Question 162
    CBSEENMA12035885

    Find the particular solution, satisfying the given condition, for the following differential equation:

    dydx - yx + cosec yx = 0 ;   y = 0  when  x = 1

    Solution

    dydx - yx + cosec yx = 0      .......(i)y = 0   When  x = 1Let  yx = t   y = xtdydx = x dtdx + tBy substituting  dydx in equation (i) x dt dx + t  - t + cosect = 0 x dtdx = - cosect  dtcosect +  dxx = 0 -cost + logx = C   -cos yx + logx = C

    Using  y = 0  When  x= 1

    - 1 + 0 = C    C =-1So the solution is :  cos yx = logx + 1

    Question 163
    CBSEENMA12035905

    What is the degree of the following differential equation?

    5x 5x dydx2 - d2ydx2 - 6y = log x

    Solution

    Given differential equation is  5x dydx2 - d2ydx2 - 6y = log xIn the above equation the highest order derivative is  d2ydx2 andits power is 1.Thus, the degree of differential equation  5x dydx2 - d2ydx2 - 6y = log x is 1.

    Question 164
    CBSEENMA12035920

    Find the particular solution of the differential equation satisfying the given conditions: x2 dy + (xy + y2 )dx = 0; y = 1 when x = 1.

    Solution

    x2 dy +  xy + y2  dx = 0x2 dy =-  xy + y2  dx dydx = - -  xy + y2 x2          ..........(i)

    This is a homogeneous differential equation.

    Such type of equations can be reduced to variable separable form by the substitution  y = vx.

    Differentiating w.r.t.x we get, 

    ddx  y  = ddx  vx   dydx = v + x dvdxsubstituting the value of  y  and dydx in equation  (i), we get:v + x dvdx = -  x × vx +  vx 2 x2  x dvdx = - v2 - 2v = -v  v + 2  dvv  v + 2  = - dxx 12  1v - 1v + 2  dv = - dxx

    Integrating both sides, we get:

    12  log v - log  v + 2  = - log x + log C 12 log  vv + 2  = log Cx vv + 2  = Cx2 Substituting   v = yx

     yxyx + 2 = Cx2 yy + 2x = C2x2 x2yy + 2x = D                           ............(ii)

    Now, it is given that  y = 1  at  x = 1.

     11 + 2 = D   D = 13Substituting   D = 13 in equation (ii), we getx2yy + 2x = 13   y + 2x = 3x2ySo, the required solution is   y + 2x = 3x2y

    Question 165
    CBSEENMA12035921

    Find the general solution of the differential equation,

    x log x dydx + y = 2x log x

    Solution

    x log x dydx + y = 2x log x

    Dividing all the terms of the equation by  x log x, we get

     dydx + yx log x = 2x2

    This equation is in the form of a linear differential equation

    dydx + py = Q,   where   P = 1x log x  and  Q = 2x2Now, I.F = e pdx =  e 1x log x dx = e log ( log x ) = log x

    The general solution of the given differential equation is given by 

    y x I.F. =  ( Q x I.F. ) dx + C

    y log x =   2x2 log x  dxy log x = 2 log x ×1x2  dx.               = 2  log x ×  1x2 dx -  ddx  log x  × 1x2 dx  dx                = 2  log x  - 1x  -   1x ×  -1x   dx                = 2  - log xx +  1x2 dx                 = 2  - log xx - 1x  + CSo the required general solution is    y log x = - 2x  1 + log x  + C

    Question 166
    CBSEENMA12035922

    Find the particular solution of the differential equation satisfying the given conditions:

    dydx = y tan x,    given that   y = 1  when   x= 0.

    Solution

    dydx = y tan x dyy =  tan x dx

    On integration, we get

     dyy =  tan x dx log y = log ( sec x ) + log C            ........(i) log y = log ( C sec x ) y = C sec x

    Now, it is given that   y = 1  when  x = 0

     1 = C x sec 0 1 = C x 1 C = 1

    substituting  C = 1  in equation (i), we get

    y = sec x   as the required particular solution.

    Question 167
    CBSEENMA12035953

    Solve the following differential equation:

    ex tan y dx + ( 1 - e) sec2 y dy  = 0

    Solution

    The given differential equation is:

    ex tan y dx + ( 1 - e) sec2 y dy  = 0

     ex tan y dx =  - ( 1 - e) sec2 y dy

      ex tan y dx = ( e - 1 ) sec2 y dy

     exex - 1 dx = sec2 ytan y dy

    On integrating on both sides,  we get

     exex - 1 dx = sec2 ytan y dy                                  ..........(i)Let  I1 = sec2 ytan y dy Put  tan y = t sec2 y dy = dt  sec2 ytan y dy =  dtt = log  t  = log tan y       .........(ii)Let  I2 =  exex - 1 dx

    Put   e - 1 = u

     ex  dx = du

     exex - 1  dx =  duu

                        = log u

                        = log  ( e - 1 )                        ............(iii)

    From (i),  (ii),  and  (iii),  we get

    log tan y = log  ( e - 1 ) + log C

     log tan y = log  C ( e - 1 ) 

     tan y  = C ( e - 1 ) 

    The solution of the given differential equation is  tan y = C ( e - 1 ). 

    Question 168
    CBSEENMA12035954

    Solve the following differential equation:

    cos2 x dydx + y = tan x

    Solution

    cos2 x dydx  + y = tan x dydx + sec2 x . y =  sec2 x tan xThis equation is in the form of   dydx +  py = QHere  P =  sec2 x   and    Q =  sec2 x tan xIntegrating factor,  I.F = e p dx =  e sec2 x  dx = etan x

    The general solution can be given by 

    y ( I. F ) =  ( Q x I. F ) dx + C             ..........(i)

    Let  tan x = t

     ddx ( tan x ) = dtdx sec2 x = dtdx   sec2 x dx = dt

    Therefore, equation  (i)  becomes:

    y etan x =   et . t  dt y etan x =   et . t  dt + C y etan x = t .  et dt -   ddt  t  .  et dt  dt + C y etan x = t . et -  et dt + C y etan x = t . et -  et  + C y etan x =( t - 1 )  et  + C y etan x =( tan x - 1 )  etan x  + C y = ( tan x - 1 ) + C e- tan x ,   where C is an arbitary constant.

    Question 169
    CBSEENMA12036165

    How many real solutions does the equation x7+ 14x5+ 16x3+ 30x – 560 = 0 have?

    • 7

    • 1

    • 3

    • 5

    Solution

    B.

    1

    x7+ 14x5+ 16x3+ 30x – 560 = 0
    Let f(x) = x7+ 14x5+ 16x3+ 30x
    ⇒ f′(x) = 7x6+ 70x4+ 48x2+ 30 > 0 ∀ x.
    ∴ f (x) is an increasing function ∀ x.

    Question 170
    CBSEENMA12036296

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    5