Mathematics Chapter 7 Coordinate Geometry
  • Sponsor Area

    NCERT Solution For Class 10 Mathematics

    Coordinate Geometry Here is the CBSE Mathematics Chapter 7 for Class 10 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 10 Mathematics Coordinate Geometry Chapter 7 NCERT Solutions for Class 10 Mathematics Coordinate Geometry Chapter 7 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 10 Mathematics.

    Question 1
    CBSEENMA10009647

    If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?

    Solution

    Let the points X (4,k) and Y(1,0)
    It is given that the distance XY is 5 units.
    By using the distance formula,
    XY space equals space square root of left parenthesis 4 minus 1 right parenthesis squared space plus left parenthesis straight k minus 0 right parenthesis squared end root
rightwards double arrow space 5 space equals space square root of 9 plus left parenthesis straight k right parenthesis squared end root
rightwards double arrow space 25 space equals space 9 space plus straight k squared
rightwards double arrow 16 space equals space straight k squared
rightwards double arrow plus-or-minus space 4 space equals space straight k

    Question 2
    CBSEENMA10009662
    Question 3
    CBSEENMA10009672

    If a≠b≠0, prove that the points (a, a2), (b, b2) (0, 0) will not be collinear.

    Solution

    Let A(a, a2), B(b, b2) and C(0, 0) be the coordinates of the given points.
    We know that the area of a triangle having vertices (x1, y1), (x2, y2) and (x3, y3) is ∣∣12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]∣∣ square units.
    So,
    Area of ∆ABC\
    open vertical bar 1 half open square brackets straight a left parenthesis straight b squared minus 0 right parenthesis plus straight b left parenthesis 0 minus straight a squared right parenthesis plus 0 left parenthesis straight a squared minus straight b squared right parenthesis close square brackets close vertical bar
space equals space open vertical bar 1 half left parenthesis ab squared minus straight a squared straight b right parenthesis close vertical bar
space equals 1 half open vertical bar ab left parenthesis straight b minus straight a right parenthesis close vertical bar
not equal to 0 space left parenthesis therefore straight a not equal to straight b not equal to 0 right parenthesis
    Since the area of the triangle formed by the points (a, a2), (b, b2) and (0, 0) is not zero, so the given points are not collinear.

    Question 4
    CBSEENMA10009676

    In what ratio does the x-y-2=0 divided the line segment joining the points A(3,-1) and B(8,9)?

    Solution

    let t line x-y-2=0 divid t line segment in t ratio k : 1 at point C
    so coordinates of C are

    open parentheses fraction numerator 8 straight k plus 3 over denominator straight k plus 1 end fraction close parentheses comma open parentheses fraction numerator 9 straight k minus 1 over denominator straight k plus 1 end fraction close parentheses

    C lies on x - y - 2 = o

    so, subs coordinates of x,y in tis eq.
    open parentheses fraction numerator 8 straight k plus 3 over denominator straight k plus 1 end fraction close parentheses minus open parentheses fraction numerator 9 straight k minus 1 over denominator straight k plus 1 end fraction close parentheses space minus 2 space equals 0
fraction numerator 8 k plus 3 minus 9 k plus 1 minus 2 k minus 2 over denominator k plus 1 end fraction space equals 0
fraction numerator 8 k plus 3 minus 9 k plus 1 minus 2 k minus 2 over denominator k plus 1 end fraction space equals space 0
fraction numerator negative 3 k plus 2 over denominator k plus 1 end fraction space equals space 0
minus 3 k space plus 2 space equals space 0
rightwards double arrow space k space equals space 2 divided by 3
i. e space 2 colon 3

    Question 5
    CBSEENMA10009681

    Find the distance of a point P(x, y) from the origin.

    Solution

    Given point is P(x,y)

    Origin point is O (0,0)

    Using distance formula

    PO = (x2-x1)2 + (y2-y1)2 = (x-0)2 + (y-0)2= x2 +y2

    Question 6
    CBSEENMA10009684

    Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, –3). Hence find m.

    Solution

    Suppose the point P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3) in the ratio K : 1

    Co-ordinates of the point,

    P = 6K + 2K + 1, -3K + 3K + 1

    But the co-ordinates of point P are given as (4, m)

    6K + 2K+1  = 4  ....(i)-3K + 3K+1 = m ..... (ii)6K + 2 = 4K +42K =2K =1Putting K =1 in equ. (2)-3(1) + 31 + 1 = m m = 0Ratio is 1:1 and m = 0i.e P is the mid point of AB 

    Question 7
    CBSEENMA10009723

    Find the ratio in which the y-axis divides the line segment joining the points (-4, -6) and (10, 12). Also, find the coordinates of the point of division

    Solution

    Let the y-axis divide the line segment joining the points ( -4, -6 ) and ( 10, 12 )in the ratio k:1 and the point of the intersection be ( 0, y ).

    Using section formula, we have

    10k+ ( -4)k + 1 . 12k + (-6 )k + 1 = 0, y 10k - 4k + 1 = 0     10k -4 = 0  k = 410  =25Thus the y-axis divides the line segment joining the given points in the ratio 2:5  y = 12k + (-6)k + 1 = 12 x 25 -625 + 1  =24-3052+55 = -67Thus, the coordinates of the point of division are 0, -67

    Question 8
    CBSEENMA10009726

    Show that the points (-2, 3), (8, 3) and (6, 7) are the vertices of a right
    triangle

    Solution

    The given points are  A( -2, 3 )  B( 8, 3 )  and C( 6, 7 ).using distance firmula, we have:AB2 =( 8 - ( -2 ))2 +( 3 - 3 )2AB2 = ( 8+ 2 )2 + 0AB2 = 102AB2 = 100BC2 = (6-8 )2 + (7-3)2 BC2 = ( - 2 )2 + 42BC2 = 4+16 BC2 = 20CA2 = ( -2 -6 )2 + ( 3-7 )2 CA2 = (-8)2 +(-4 )2CA2 = 64 + 16CA2 =80It can be observe that:BC2 + CA2 = 20 + 80 =100 = AB2So, by the converse of pythagoras Theorem,ABC is a right angled triangle  with right angled at C.

    Question 9
    CBSEENMA10009732

    If the area of triangle ABC formed by A(x, y), B(1, 2) and C(2, 1) is 6 square units, then prove that  x + y = 15.

    Solution

    The given vertises are A(x,y), B(1,2) C(2,1).It is know that the area of a tringle whose vertises are (x1,y1). (x2, y2 ), and (x3,  y3)  is given by12 x1 (y2-y3 ) + x2 (y3-y1) + x3(y1-y2)  Area of ABC  = 12 x(2-1) + 1(1-y) +2(y-2)  =12 x+1-y+2y-4 =12 x+y-3The area of ABC is given as 6 sq.units.12x+y-3 = 6x+y-3 = 12x+y=15

    Question 10
    CBSEENMA10009735

    In fig., the area of triangle ABC (in sq. units) is

    • 15

    • 10

    • 7.5

    • 2.5

    Solution

    C.

    7.5

    From the figure, the coordinates of A, B, and C are (1,3), (-1, 0) and (4, 0)

    respectively.

    Area ofABC       = 12 1(0-0) + (-1)(0-3) +(3-0)       =12 0+3+12       =12 15       = 7.5 sq. units

    Question 11
    CBSEENMA10009762

    Find the ratio in which the line segment joining the points A(3,- 3) and B(- 2, 7) is divided by x-axis. Also find the coordinates of the point of division

    Solution

    Point P lies  on X-axis  so it's coordinate is 0   ( Using section formula )

                         

    Let the ratio  be k:1 

    Let the coordinate of the point be P(x,0)

    As given A(3, -3) and B( -2,7)

    y = my2 + ny1m+n0 = k x 7 +1 x (-3)k +10 x (k+1) = 7k - 30 = 7k - 13 = 7kk = 37k:1 = 3:7x = mx2 + nx1m+n x =  37 x (-2)+1 x337 + 1x = 1.5

    Question 12
    CBSEENMA10009766

    Prove that the diagonals of a rectangle ABCD, with vertices A(2, -1), B(5, -1), C(5, 6) and D(2, 6), are equal and bisect each other.

    Solution

                                

     

        AC2 = ( 5 -2 )2 + ( 6 + 1 )2 

              = 9 + 49 

              = 58 sq.unit

    BD2 = ( 5 - 2 )2 + ( -1 -6 )2 

          = 9 + 49

          = 58 sq unit

    Diagonals of parallelogram are equal so rectangle.

    Question 13
    CBSEENMA10009775

    A(4, - 6), B(3,- 2) and C(5, 2) are the vertices of a ΔABC and AD is its median. Prove that the median AD divides ΔABC into two triangles of equal areas.

    Solution

    Let co-ordinate of D(x,y) and D is mid point of BC 

    x = 3+52 = 4y = 2-22 = 0

                    

    Now area of triangle  ABD  =12{4(-2-0)+3[(0-(-6))]+4[(-6)--2]}                                          =0.5 x [-8+18-16]                                          =3 sq. unitAnd area of triangle ACD = 125-6-0 + 40-2 + 42+6                                               = 0.5 x -30 + -8 + 32                                               =  3 sq. unit  

    Hence, the median AD divides triangle ABC into two triangles of equal area.

    Question 14
    CBSEENMA10009785

    A line intersects the y-axis and x-axis at the points P and Q respectively. If (2, -5) is the mid-point of PQ, then find the coordinates of P and Q.

    Solution

    Since a line is  intersecting  Y-axis at P and X- axis at Q,

    Coordinates of P = (0,y) and coordinates of Q = (x,0)

    Let R be the midpoint of PQ.

     

    Then, co-ordinates of R = 0 + x2, y + 02 = ( 2,-5) x2, y2 = (2, -5) x2 = 2 and  y2 = -5  x = 4  and  y = -10Hence, co-ordinates of P are (0, -10)  and  co-ordinates of Q are (4,0).

    Question 15
    CBSEENMA10009786

    If the distances of P(x, y) from A(5, 1) and B(-1, 5) are equal, then prove that  3x = 2y.

    Solution

    Given, P(x,y) is equidistant from  A(5,1)  and B(-1,5)

    Now,  AP = BP

    5-x2 + 1-y2  = -1-x2 + 5-y2  5-x2 + 1-y2 = -1-x2 + 5-y225 + x2 - 10x + 1 + y2 -2y = 1 + x2 + 2x + 25 + y2 -10yx2 + y2 -10x -2y +26 = x2 +y2 +2x -10y +26-10x -2y = -10y + 2y-12x = -8y3x = 2y     .........(Dividing throughout by -4)

    Question 16
    CBSEENMA10009791

    In what ratio does the point 2411, y divides the line segment joining the points P(2, -2) and Q(3, 7)? Also find the value of y.

    Solution

     Suppose the point A2411, y divides the line segment joining pointsP2, -2  and  Q3,7 in the ratio k : 1Then, the co-ordinates of A are  3k + 2k + 1, 7k - 2k + 1But, the  co-ordinates of  A  are given as  2411, y.3k + 2k + 1 = 241133k + 22 = 24k + 24 9k = 2     k = 29Hence, the ratio is  2 : 9.Also, 7k - 2k + 1 = y7 x 29 - 229 + 1 = yy= 14-1892+99 = -49 x 911 y= -411

     

     

    Question 17
    CBSEENMA10009813

    The coordinates of the point P dividing the line segment joining the points A(1, 3) and B(4, 6) in the ratio 2 : 1 are

    • ( 2, 4 )

    • ( 3, 5 )

    • ( 4, 2 )

    • ( 5, 3 )

    Solution

    B.

    ( 3, 5 )

    It is given that the point P divides AB in the ratio  2 : 1.

    Using the section formula, the coordinates of the point P are

     

     1x1 + 2x42 + 1 ,  1x3 + 2x62 + 1= 1 + 83, 3 + 123 = (3,5)

    Hence, the coordinates of the point P are (3,5).

    Sponsor Area

    Question 18
    CBSEENMA10009817

    If a point A(0, 2) is equidistant from the points B(3, p) and C(p, 5) then find the value of p.

    Solution

    It is given that the point  A(0, 2) is equidistant from the points B(3, p) and C(p, 5).

    So, AB = AC  AB2 = AC2

    Using distance formula, we have

     ( 0 - 3 )2 + (2 - p )2 = ( 0 - p )2 = ( 2 - 5 )2

     9 + 4 + p2 - 4p = p2 + 9

    4 - 4p = 0

     p = 1

    Hence, the value of p = 1.

    Question 19
    CBSEENMA10009825

    A point P divides the line segment joining the points A(3,-5) and B(-4, 8) such that APPB = K1 . If P lies on the line x + y = 0, then find the value of K.

    Solution

                     

    Let the co-ordinates of point P be (x, y)

    Then using the section formula co-ordinates of P are.

     

    x = -4k + 3k + 1      y = 8k - 5k + 1 

    Since P lies on  x + y = 0

     

     -4k + 3k + 1 + 8k - 5k + 1 = 0 4k - 2 = 0 k = 24  k = 12Hence the value of k = 12.

    Question 20
    CBSEENMA10009826

    If the vertices of a triangle are (1, -3), (4, p) and (-9, 7) and its area is 15 sq. units, find the value (s) of p.

    Solution

                               

    The area of the triangle, whose vertises are (x1, y1),  (x2, y2)  and (x3, y3) is

    Area of a  = 12[ x(y- y3) + x2 ( y-  y) + x( y- y) ]

     

    Substituting the given coordinates

    Area of  = 12x1 (y2 - y3 ) + x2 (y3 - y1) + x3 ( y1 - y2)

     

     12p - 7 + 40 + 27 + 9p = 15

     

      10p + 60  = ±30

     

      10p = 30   or 10p = -90

     

      p = -3    or    p = -9

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    111