Mathematics Chapter 6 Linear Inequalities
  • Sponsor Area

    NCERT Solution For Class 11 Mathematics

    Linear Inequalities Here is the CBSE Mathematics Chapter 6 for Class 11 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 11 Mathematics Linear Inequalities Chapter 6 NCERT Solutions for Class 11 Mathematics Linear Inequalities Chapter 6 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 11 Mathematics.

    Question 1
    CBSEENMA11015476

    Let C be the circle with centre at(1,1) and radius 1. If T is the circle centred at (0,y) passing through origin and touching the circle externally, then the radius of T is equal to

    • fraction numerator square root of 3 over denominator square root of 2 end fraction
    • fraction numerator square root of 3 over denominator 2 end fraction
    • 1/2

    • 1/4

    Solution

    D.

    1/4

    Let the coordinate of the centre of T be (0, K)
    Distance between their centre
    straight k plus 1 space equals space square root of 1 plus left parenthesis straight k minus 1 right parenthesis squared end root space left square bracket space because space straight C subscript 1 straight C subscript 2 space equals space straight k plus 1 right square bracket
rightwards double arrow straight k plus 1 space equals space square root of 1 plus straight k squared plus 1 minus 2 straight k end root
rightwards double arrow straight k plus 12 space equals space square root of straight k squared plus 2 minus 2 straight k end root
straight k squared space plus 1 plus 2 straight k space equals space straight k squared space plus 2 minus 2 straight k
rightwards double arrow space straight k space equals space 1 fourth
    So, the radius of circle T is k i.e, 1/4

    Question 2
    CBSEENMA11015478

    The image of line fraction numerator straight x minus 1 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator 1 end fraction space equals space fraction numerator straight z minus 4 over denominator negative 5 end fraction in the plane 2x-y+z+3 =0 is the line

    • fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction
    • fraction numerator straight x plus over denominator negative 3 end fraction space equals space fraction numerator straight y minus 5 over denominator negative 1 end fraction space equals space fraction numerator begin display style straight z plus 2 end style over denominator 5 end fraction
    • fraction numerator straight x minus 3 over denominator 3 end fraction space equals space fraction numerator straight y plus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction
    • fraction numerator straight x minus 3 over denominator negative 3 end fraction space equals space fraction numerator straight y plus 5 over denominator negative 1 end fraction space equals fraction numerator straight z minus 2 over denominator 5 end fraction

    Solution

    A.

    fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction

    Here, plane and line are parallel to each other. Equation of normal to the plane through the point (1,3,4) is
    fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 4 over denominator 1 end fraction space equals space straight k
    Any point in this normal is (2jk+2, -k+3,4+k)
    Then, open parentheses fraction numerator 2 straight k plus 1 plus 1 over denominator 2 end fraction comma space fraction numerator 3 minus straight k plus 3 over denominator 2 end fraction comma space fraction numerator 4 plus straight k plus 4 over denominator 2 end fraction close parentheses lies on the plane.
    rightwards double arrow space 2 left parenthesis straight k plus 1 right parenthesis space minus space open parentheses fraction numerator 6 minus straight k over denominator 2 end fraction close parentheses space plus open parentheses fraction numerator 8 plus straight k over denominator 2 end fraction close parentheses space plus 3 space equals 0
rightwards double arrow straight k space equals negative 2
    hence, point through which this image pass is
    (2k+1,3-k,4+k)
    i.e., (2(-2) + 1, 3+2, 4-2) = (-3,5,2)
    Hence equation of image line is
    fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction

    Question 4
    CBSEENMA11015486

    A ray of light along straight x space plus square root of 3 straight y end root space equals space square root of 3 get reflected upon reaching X -axis, the equation of the reflected ray is 

    • straight y equals space straight x plus square root of 3
    • square root of 3 straight y end root space equals space straight x minus square root of 3
    • straight y space equals space square root of 3 straight x end root minus square root of 3
    • square root of 3 straight y end root space equals space straight x minus 1

    Solution

    B.

    square root of 3 straight y end root space equals space straight x minus square root of 3

    Given equation of line
    straight x plus square root of 3 straight y space equals square root of 3 space end root space space space space space.... space left parenthesis straight i right parenthesis
straight y equals space 1 minus fraction numerator straight x over denominator square root of 3 end fraction
    Slope of incident ray is space minus fraction numerator 1 over denominator square root of 3 end fraction 
    So, slope of reflected ray must be fraction numerator 1 over denominator square root of 3 end fraction and the point of incident left parenthesis square root of 3 comma 0 right parenthesis
    So equation of reflected ray
    straight y minus 0 space equals space fraction numerator 1 over denominator square root of 3 end fraction space left parenthesis straight x minus square root of 3 right parenthesis
rightwards double arrow space square root of 3 straight y end root space equals space straight x minus square root of 3

    Question 5
    CBSEENMA11015487

    The number of values of k, for which the system of equations
    (k+1) x + 8y = 4k
    kx + (k+3)y = 3k -1
    has no solution, is 

    • infinite 

    • 1

    • 2

    • 3

    Solution

    B.

    1

    Condition for the system of equations has no solution,
    straight a subscript 1 over straight a subscript 2 space equals straight b subscript 1 over straight b subscript 2 space not equal to straight c subscript 1 over straight c subscript 2
therefore space fraction numerator straight k plus 1 over denominator straight k end fraction space equals space fraction numerator 8 over denominator straight k plus 3 end fraction space not equal to fraction numerator 4 straight k over denominator 3 straight k minus 1 end fraction
Take space fraction numerator straight k plus 1 over denominator straight k end fraction space equals space fraction numerator 8 over denominator straight k plus 3 end fraction
rightwards double arrow space straight k squared space plus space 4 straight k space plus 3 space equals space 8 straight k
rightwards double arrow straight k squared minus 4 straight k space plus 3 space equals space 0
rightwards double arrow left parenthesis straight k minus 1 right parenthesis left parenthesis straight k minus 3 right parenthesis space space equals 0
straight k space equals space 1 comma 3
If space straight k space equals 1 comma space then space fraction numerator 8 over denominator 1 plus 3 end fraction space equals space fraction numerator 4.1 over denominator 2 end fraction comma space false
    Therefore, k = 3
    Hence, only one value of k exists.

    Question 6
    CBSEENMA11015507

    In a ∆PQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then the angle R is equal to

    • 5π/6

    • π/6

    • π/4

    • 3π/4

    Solution

    B.

    π/6

    3 sin P + 4 cos Q = 6 ...... (1)
    4 sin Q + 3 cos P = 1 ...... (2)
    From (1) and (2) ∠P is obtuse.
    (3 sin P + 4 cos Q)2+ (4 sin Q + 3 cos P)2= 37
    ⇒9 + 16 + 24 (sin P cos Q + cos P sin Q) = 37
    ⇒ 24 sin (P + Q) = 12
    rightwards double arrow space sin space left parenthesis straight P space plus straight Q right parenthesis space equals space 1 half
rightwards double arrow space straight P space plus straight Q space equals space fraction numerator 5 straight pi over denominator 6 end fraction
rightwards double arrow space straight R space equals space straight pi over 6

    Question 7
    CBSEENMA11015508

    An equation of a plane parallel to the plane x – 2y + 2z – 5 = 0 and at a unit distance from the origin is

    • x – 2y + 2z – 3 = 0

    • x – 2y + 2z + 1 = 0

    • x – 2y + 2z – 1 = 0

    • x – 2y + 2z + 5 = 0

    Solution

    A.

    x – 2y + 2z – 3 = 0

    Perpendicular distance of the plane ax +by + cz +d =0 from the point
    (x,y,z) is d =open vertical bar fraction numerator ax subscript 1 space plus by subscript 1 plus cz subscript 1 plus straight d over denominator square root of straight a squared plus straight b squared plus straight c squared end root end fraction close vertical bar
    Equation of plane parallel to x – 2y + 2z – 5 = 0 is x – 2y + 2z + k = 0 ...... (1)

    perpendicular distance from O(0, 0, 0) to (1) is 1
    fraction numerator vertical line straight k vertical line over denominator square root of 1 plus 4 plus 4 end root end fraction space equals space 1
rightwards double arrow space vertical line straight k vertical line space equals space 3
rightwards double arrow space straight k space equals space plus-or-minus 3
therefore space straight x minus 2 straight y plus 2 straight z minus 3 space equals 0

    Question 8
    CBSEENMA11015509

    If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals

    • 29/5

    • 5

    • 6

    • 11/5

    Solution

    C.

    6

    Line L : 2x +y = k passes through the point (say P) which divides a lie segment (say AB) in ratio 3:2 where A (1,1) and B (2,4).
    Using section formula, the coordinates of the point P which divides AB internally in the ratio 3:2 are
    straight p space open parentheses fraction numerator 3 space straight x 2 plus 2 space straight x 1 over denominator 3 plus 2 end fraction comma fraction numerator space 3 straight x space 4 plus 2 straight x 1 over denominator 3 plus 2 end fraction close parentheses space equals space straight P open parentheses 8 over 5 comma 14 over 5 close parentheses
    Also, since the line L passes through P, hence substituting the coordinates of straight P space open parentheses 8 over 5 comma 14 over 5 close parentheses  in the equation of line L: 2x +y = k, 
    we get
    2 space open parentheses 8 over 5 close parentheses plus open parentheses 14 over 5 close parentheses space
rightwards double arrow space straight k space equals space 6

    Question 9
    CBSEENMA11015512

    If the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space equals space fraction numerator straight z minus 1 over denominator 4 end fraction and fraction numerator straight x minus 3 over denominator 1 end fraction space equals fraction numerator straight y minus straight k over denominator 2 end fraction space equals space straight z over 1 intersect, then k is equal to

    • -1

    • 2/9

    • 9/2

    • 0

    Solution

    C.

    9/2

    To find value of 'k' of the given lines L1 and L2 are intersecting each other.
    Let straight L subscript 1 space colon space fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space equals fraction numerator straight z minus 1 over denominator 4 end fraction space equals space straight p
and space straight L subscript 2 colon thin space fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus straight k over denominator 2 end fraction space equals space fraction numerator straight z minus 0 over denominator 1 end fraction space equals space straight q
    ⇒ Any point P on line L1 is of type
    P(2p+1), 3p-1, 4p+1) and any point Q on line L2 is of type Q (q+3, 2q+k, q).
    Since, L1 and L2 are intersecting each other, hence, both points P and Q should coincide at the point of intersection, i.e, corresponding coordinates of P and Q should be same.
    2p+1 =q +3,
    3p-1 =2q +k
    4p+1 = q
    solving these we get value of p and q as
    p = -3/2 and q = -5
    Substituting the values of p and q in the third equation
    3p-1 = 2q+k, we get
    3 open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses minus 1 space equals space 2 space left parenthesis negative 5 right parenthesis space plus straight k
space straight k space equals space 9 over 2

    Question 10
    CBSEENMA11015513

    Three numbers are chosen at random without replacement from {1, 2, 3, ...... 8}. The probability that their minimum is 3, given that their maximum is 6, is

    • 3/8

    • 1/5

    • 1/4

    • 2/5

    Solution

    B.

    1/5

    Let A be the event that maximum is 6.
    B be event that minimum is 3
    straight P space left parenthesis straight A right parenthesis space equals space fraction numerator straight C presuperscript 5 subscript 2 over denominator straight C presuperscript 8 subscript 3 end fraction space left parenthesis the space numbers space less than space 6 space are space 5 right parenthesis
straight P left parenthesis straight B right parenthesis space equals space fraction numerator straight C presuperscript 5 subscript 2 over denominator straight C presuperscript 8 subscript 3 end fraction space left parenthesis the space numbers space greater than space 3 space are space 5 right parenthesis
straight P space left parenthesis straight A space intersection straight B right parenthesis space equals space fraction numerator straight C presuperscript 2 subscript 1 over denominator straight C presuperscript 8 subscript 3 end fraction
    Required probability is straight P space open parentheses straight B over straight A close parentheses space equals space fraction numerator straight p space left parenthesis straight A space intersection straight B right parenthesis over denominator straight P space left parenthesis straight A right parenthesis end fraction space equals space fraction numerator straight C presuperscript 2 subscript 1 over denominator straight C presuperscript 5 subscript 2 end fraction space equals space 2 over 10 space equals space 1 fifth

    Question 11
    CBSEENMA11015518

    A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is

    • -1/4

    • -4

    • -2

    • -1/2

    Solution

    C.

    -2

    The slope of line PQ 

    Let 'm' be the slope of the line PQ, then the equation of PQ is
    y -2 = m (x-1)
    Now, PQ meets X-axis at P open parentheses 1 minus 2 over straight m comma space 0 close parentheses and y-axis at Q (0,2-m)
    OP space equals space 1 minus 2 over straight m space and space OQ space equals space 2 minus straight m
Also comma space area space space of space increment OPQ space equals space 1 half space left parenthesis OP right parenthesis left parenthesis OQ right parenthesis
space equals space 1 half open vertical bar open parentheses 1 minus 2 over straight m close parentheses left parenthesis 2 minus straight m right parenthesis close vertical bar
equals space 1 half open vertical bar 2 minus straight m minus 4 over straight m plus 2 close vertical bar
equals space 1 half open vertical bar 4 minus open parentheses straight m plus 4 over straight m close parentheses close vertical bar
Let space straight f left parenthesis straight m right parenthesis space equals space 4 minus open parentheses straight m plus 4 over straight m close parentheses
rightwards double arrow space straight f apostrophe left parenthesis straight m right parenthesis space equals space minus space 1 plus 4 over straight m squared
    Now, f'(m) = 0 
    m = ± 2
    f(2) =0
    f(-2) = 8
    Since, the area cannot be zero, hence the required value of m is -2

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    2