Oscillations

More Topic from Physics

Question 1

A coin is placed on a horizontal platform which undergoes vertical simple harmonic motion of angular frequency ω. The amplitude of oscillation is gradually increased. The coin will leave contact with the platform for the first time

  • at the highest position of the platform

  • at the mean position of the platform

  • for an amplitude of g/ω2 

  • for an amplitude of g2/ ω2 

Solution

C.

for an amplitude of g/ω2 

2 = g
⇒ A = g/ω2

Question 2

A magnetic needle of magnetic moment 6.7 × 10–2 Am2 and moment of inertia 7.5 × 10–6 kg m2 is performing simple harmonic oscillations in a magnetic field of 0.01 T.Time taken for 10 complete oscillations is :

  • 6.98 s 

  • 8.76 s

  • 6.65 s

  • 8.89 s

Solution

C.

6.65 s

straight T space equals space 2 straight pi space square root of straight I over MB end root
I = 7.5 × 10–6 kg – m2
M = 6.7 × 10–2 Am2
By substituting value in the formula
T = .665 sec
for 10 oscillation, time taken will be
Time = 10 T = 6.65 sec

Question 3

A mass M, attached to a horizontal spring, executes SHM with an amplitude A1. When the mass M passes through its mean position than a smaller mass m is placed over it and both of them move together with amplitude A2. The ratio of (A1/A2) is

  • fraction numerator straight M space plus straight m over denominator straight M end fraction
  • open parentheses fraction numerator straight M over denominator straight M plus straight m end fraction close parentheses to the power of 1 divided by 2 end exponent
  • fraction numerator straight M over denominator straight M plus straight m end fraction

Solution

C.

At mean position, Fnet = 0
Therefore, By conservation of linear momentum,
Mv1 = (M+m)v2
1A1 = (M+m)ω2A2
⇒ rightwards double arrow space open parentheses fraction numerator straight M over denominator straight M plus straight m end fraction close parentheses space equals space fraction numerator straight omega subscript 2 straight A subscript 2 over denominator straight omega subscript 1 straight A subscript 1 end fraction
But space straight omega subscript 1 space equals space square root of straight k over straight M end root space and space straight omega subscript 2 space equals space square root of fraction numerator straight k over denominator straight M plus straight m end fraction end root
On space solving comma space we space get space straight A subscript 1 over straight A subscript 2 space equals space square root of fraction numerator straight m plus straight M over denominator straight M end fraction end root

Question 4

A particle at the end of a spring executes simple harmonic motion with a period t1, while the corresponding period for another spring is t2. If the period of oscillation with the two springs in series is t, then

  • T = t1 + t2

  • straight T squared space equals space straight t subscript 1 superscript 2 space plus space straight t subscript 2 superscript 2
  • space straight T to the power of negative 1 end exponent space equals straight t subscript 1 superscript negative 1 end superscript space plus straight t subscript 2 superscript negative 1 end superscript
  • space straight T to the power of negative 1 end exponent space equals straight t subscript 1 superscript negative 2 end superscript space plus straight t subscript 2 superscript negative 2 end superscript

Solution

B.

straight T squared space equals space straight t subscript 1 superscript 2 space plus space straight t subscript 2 superscript 2

Time period of spring
straight T space equals space 2 straight pi square root of straight M over straight k end root
k, being the force constant of spring. For first spring and for second spring
we have,
straight T space equals space 2 straight pi square root of straight m over straight k subscript 1 end root space space space....... space left parenthesis straight i right parenthesis

straight T space equals space 2 straight pi square root of straight m over straight k subscript 2 end root space......... space left parenthesis ii right parenthesis
The effective force constant in their series combination is
straight k space equals fraction numerator straight k subscript 1 straight k subscript 2 over denominator straight k subscript 1 plus straight k subscript 2 end fraction
therefore space Time space period space of space combination

straight T space equals space 2 straight pi space square root of open square brackets fraction numerator straight m left parenthesis straight k subscript 1 plus straight k subscript 2 right parenthesis over denominator straight k subscript 1 straight k subscript 2 end fraction close square brackets end root
straight T squared space equals space fraction numerator 4 straight pi squared straight m space left parenthesis straight k subscript 1 plus straight k subscript 2 right parenthesis over denominator straight k subscript 1 straight k subscript 2 end fraction space...... space left parenthesis iii right parenthesis
From space equations space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis comma space we space obtain
straight t subscript 1 superscript 2 space plus space straight t subscript 2 superscript 2 space equals space 4 straight pi squared space open parentheses straight m over straight k subscript 1 space plus straight m over straight k subscript 2 close parentheses
rightwards double arrow straight t subscript 1 superscript 2 space plus space straight t subscript 2 superscript 2 space equals space 4 straight pi squared straight m space open parentheses 1 over straight k subscript 1 plus 1 over straight k subscript 2 close parentheses
straight t subscript 1 superscript 2 space plus straight t subscript 2 superscript 2 space equals space fraction numerator 4 straight pi squared straight m space left parenthesis straight k subscript 1 plus straight k subscript 2 right parenthesis over denominator straight k subscript 1 straight k subscript 2 end fraction
straight t subscript 1 superscript 2 space plus straight t subscript 2 superscript 2 space equals space straight T squared

Question 5

A particle is executing simple harmonic motion with a time period T. AT time t = 0, it is at its position of equilibrium. The kinetic energy-time graph of the particle will look like 

Solution

B.

2