-->

Relations And Functions

Question
CBSEENMA12032515

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

f : R → R defined by f(x) = 3 – 4x

Solution

f : R → R defined by f(x) = 3 – 4x
Let,  straight x subscript 1. straight x subscript 2 space element of space straight R such that f(x1) = f(x2)
rightwards double arrow 3 - 4x= 3 - 4x2
rightwards double arrow space minus 4 straight x subscript 1 minus 4 straight x subscript 2
rightwards double arrow space straight x subscript 1 equals straight x subscript 2
therefore  f is one-one
For any real  number (y) in R, there exists fraction numerator 3 minus straight y over denominator 4 end fraction in R such that 
straight f open parentheses fraction numerator 3 minus straight y over denominator 4 end fraction close parentheses 3 minus 4 space open parentheses fraction numerator 3 minus straight y over denominator 4 end fraction close parentheses equals y
therefore f is onto
Hence, f is bijective. 

 

Some More Questions From Relations and Functions Chapter

Let A be the set of all students of a boys school. Show that the relation R in A given by R = {(a, b) : a is sister of b} is the empty relation and R’ = {(a, b) : the difference between heights of a and b is less than 3 meters} is the universal relation.

Show that the relation R in the set {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} is reflexive but neither symmetric nor transitive.

Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.

Give an example of a relation which is

(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.

Let L be the set of all lines in a plane and R be the relation in L defined as R = {(L1, L2) : L1 is perpendicular to L2}. Show that R is symmetric but neither reflexive nor transitive.

 Determine whether each of the following relations are reflexive, symmetric and transitive :

(i) Relation R in the set A = {1, 2, 3,....., 13, 14} defined as

R = {(x, y) : 3 x – y = 0}

(ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x < 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x,y) : y is divisible by x} (iv) Relation R in the set Z of all integers defined as R = {(x,y) : x – y is an integer}

(v) Relation R in the set A of human beings in a town at a particular time given by
(a)    R = {(x, y) : x and y work at the same place}
(b)    R = {(x,y) : x and y live in the same locality}
(c)    R = {(x, y) : x is exactly 7 cm taller than y}
(d)    R = {(x, y) : x is wife of y}
(e)    R = {(x,y) : x is father of y}

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b) : b = a + 1} is reflexive, symmetric or transitive.

Show that the relation R in R defined as R = {(a, b) : a ≤ b}, is reflexive and transitive but not symmetric.

Check whether the relation R in R defined by R = {(a,b) : a ≤ b3} is refleive, symmetric or transitive.