Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
A = {1,2, 3}
R = {(1.2), (2, 1)}
Since (a, a) ∈ R ∀ a ∈ A R is not reflexive Now (1, 2) ∈ R ⇒ (2, 1) ∈ R and (2, 1) ∈ R ⇒ (1,2) ∈ R ∴ (a, b) ∈ R ⇒ (b, a) ∈ R ∀ (a, b) ∈ R ∴ R is symmetric Again (1, 2) ∈ R and (2, 1) ∈ R but (1, 1) ∉ R ∴ R is not transitive.