Show that the relation R in R defined as R = {(a, b) : a ≤ b}, is reflexive and transitive but not symmetric.
R = {(a, b) : a ≤ b}
(i) Since (a, a) ∈ R ∀ a ∈ R [∵ a ≤ a ∀ a ∈ R]
∴ R is reflexive.
(ii) (a, b) ∈ R ⇏ (b, a) ∈ R [∵ if a ≤ b. then b ≤ a is not true]
∴ R is not symmetric.
(iii) Let (a, b), (b, c) ∈ R ∴ a ≤ b, b ≤ c ∴ a ≤ c ⇒ (a, c) ∈ R ∴ (a, b), (b. c) ∈ R ⇒ (a, c) ∈ R ∴ R is transitive