Give an example of a relation which is
(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.
(i) Let A = {1, 2}.
Then A x A = {(1,1), (1,2), (2,1), (2,2) }.
Let R = {(1,2), (2,1 )} .
Then R ⊆ A x A and hence R is a relation on the set A.
R is symmetric since (a, b) ∈ R ⇒ (b. a) ∈ R.
R is not reflexive since I ∈ A but (1,1) ∉ R.
R is not transitive since (1, 2) ∈ R, (2,1) ∈ R but (1,1) ∉ R.
(ii) Let A = {1,2,3}
Then A x A = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}.
Let R = {(1,1), (2,2), (1,2), (2,1), (1,3), (2,3)}.
Then R is transitive since (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R.
R is not reflexive since 3 G A but (3.3) ∉ R.
R is not symmetric since (1,3) ∈R but (3,1) ∉ R.
(iii) Let A = {1,2 3}
Then A x A = {(1, 1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) }.
Let R = {(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)}.
R is a relation on A as R ⊆ A x A.
R is reflexive as (a, a) ∈ R ∀ a ∈ A.
Also. R is symmetric since (a. b) ∈ R implies that (b, a) ∈R.
But R is not transitive since (1,2) ∈R arid (2,3) ∈R but (1,3) ∢ R.
(iv) Let A = {1,2,3}.
Then A x A = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}.
Let R = {(1,1), (2,2), (3,3), (1,3)}.
Then R is a relation on A as R ⊆ A x A.
R is reflexive since (a, a) ∈R ∀ a ∈ A.
R is not symmetric as (1,3) ∈R and (3,1) ∉ R. R is transitive since (a, b) ∈R and (b, c) ∈R implies that (a, c) ∈R.
(v) Let A = {1,2,3}
Then A x A = {(1,1), (1,2), (1, 3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}
Let R = {(1,1), (1,2), (2,1), (2,2)}.
R is not reflexive as 3∈ A and (3,3) ∉ R.
R is symmetric as (a, b) ∈ R ⇒ (b, a) ∈R.
R is transitive since (a, b) ∈ R and (b, c) ∈R implies that (a, c) ∈ R.