-->

Relations And Functions

Question
CBSEENMA12032240

Let A = {1. 2. 3}. Then show that the number of relations containing (1,2) and (2. 3) which are reflexive and transitive but not symmetric is four.

Solution

The smallest relation R1 containing (1, 2) and (2, 3) which is reflexive and transitive but not symmetric is {(1, 1), (2. 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Now, if we add the pair (2. 1) to Rto get R2, then the relation R2 will be reflexive, transitive but not symmetric. Similarly, we can obtain R3 and R4 by adding (3, 2) and (3, 1) respectively, to R1 to get the desired relations. However, we can not add any two pairs out of (2, 1), (3, 2) and (3, 1) to R1 at a time, as by doing so, we will be forced to add the remaining third pair in order to maintain transitivity and in the process, the relation will become symmetric also which is not required. the total number of desired relations is four.