Give an example of a relation which is
(v) Symmetric and transitive but not reflexive.
Let A = {1,2,3}
Then A x A = {(1,1), (1,2), (1, 3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}
Let R = {(1,1), (1,2), (2,1), (2,2)}.
R is not reflexive as 3∈ A and (3,3) ∉ R.
R is symmetric as (a, b) ∈ R ⇒ (b, a) ∈R.
R is transitive since (a, b) ∈ R and (b, c) ∈R implies that (a, c) ∈ R.