-->

Constructions

Question
CBSEENMA10008468

Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Solution

Let O be the common centre of the two concentric circle.
Let PQ be a chord of the larger circle which touches the smaller circle at M.
Join OM and OP.
Since, the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Therefore,
∠OMP = 90°
Now,
In ΔOMP, we have
OP2 = OM2 + PM2
[Using Pythagoras theorem]
⇒ (5)2 = (3)2 + PM2
⇒ 25 = 9 + PM2
⇒ PM2 = 16
⇒ PM = 4 cm
Since, the perpendicular from the centre of a circle to a chord bisects the chord.
Therefore,
PM = MQ = 4 cm
∴ PQ = 2 PM = 2 x 4 = 8 cm
Hence, the required length = 8 cm.