Physics Part Ii Chapter 12 Atoms
  • Sponsor Area

    NCERT Solution For Class 12 Physics Physics Part Ii

    Atoms Here is the CBSE Physics Chapter 12 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Physics Atoms Chapter 12 NCERT Solutions for Class 12 Physics Atoms Chapter 12 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Physics.

    Question 1
    CBSEENPH12039400

    A proton and an electron travelling along parallel paths enter a region of uniform magnetic field, acting perpendicular to their paths. Which of them will move in a circular path with higher frequency ?

    Solution

    Mass of electron is low as compared to proton. Hence when both enter into the uniform magnetic region, the electron will move in a circular path with higher frequency on the opposite direction to the current.

    Question 4
    CBSEENPH12039424

    State Bohr’s postulate to define stable orbits in hydrogen atom. How does de Broglie’s hypothesis explain the stability of these orbits?

    Solution

    Bohr's postulate:

    An atom has a number of stable orbits in which an electron can reside without the emission of radiant energy. Each orbit corresponds, to a certain energy level.

    Electrons revolve in a circular orbit. Centripetal force is provided by electrostatic force between electron and proton.

    Given as,

    mv2r = 14πr0e2r2

    The motion of an electron in a circular orbit is restricted in such a manner that its angular momentum is an integral multiple of h/2π, Thus

    L = mvr = nh2π

    3.

    An electron may jump spontaneously from one orbit (energy level E1) to the other orbit (energy level E2) (E> E1); then the energy change AE in the electron jump is given by Planck’s equation

    ∆E = E2-E1 = hv

    Where h = Planck’s constant.

    And v = frequency of light emitted.

    When the electron jumps from nth higher orbit to pth lower orbit it emits energy in form of the photon.

    En - Ep = hv

    According to de'Broglie hypothesis

    λ = hp = hmv = 2πrnhmv = 2πrnh = 2πmvrL = nh2π

    Question 5
    CBSEENPH12039425

    A hydrogen atom initially in the ground state absorbs a photon which excites it to the n = 4 level. Estimate the frequency of the photon.

    Solution

    E4  - E1 = hve13.64 + 13.6 = 6.63 x 10-34 x v1.6 x 10-1913.6 = 1-14 = 6.63 x 10-341.6 x 10-19 v1.6 x 10-19 x 13.6 x 36.63 x 10-34 x 4 = vv = 2.4615 x 1015 Hz

    Question 10
    CBSEENPH12039758

    An electron from various excited states of hydrogen atom emits radiation to come to the ground state. Let λn, λg, be the de Broglie wavelength of the electron in the nth state and the ground state respectively. Let Λn be the wavelength of the emitted photon in the transition from the nth state to the ground state. For large n, (A, B are constants)

    • Λn2  λ

    • Λn  A + Bλn2

    • Λn  A + Bλn

    • Λn2  A + Bλn2

    Solution

    B.

    Λn  A + Bλn2

    The wavelength of emitted photon from nth state to the ground state,

    1Λn = RZ2 112-1n2Λn = 1RZ21-1n2-1

    Since n is very large, using the binomial theorem

    Λn = 1RZ21+1n2Λn = 1RZ2 + 1RZ21n2As we know, λn = 2πrn =2πn2h24π2mZe21nnΛn  A + Bλn2

    Question 11
    CBSEENPH12039762

    If the series limit frequency of the Lyman series is vL, then the series limit frequency of the Pfund series is:

    • vL/25

    • 25vL

    • 16 vL

    • vL/16

    Solution

    A.

    vL/25

    Series limit frequency of the Lyman series is given by
    vL = RcZ2112-12νL = RcZ2 ... (1)

    Series limit frequency of the Pfund series

    vp = RcZ2 152-12vp = vL25

    Question 12
    CBSEENPH12040109
    Question 13
    CBSEENPH12040141

    The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is

    • 1:1

    • 1:-1

    • 1:-2

    • 2:-1

    Solution

    B.

    1:-1

    In a Bohr orbit of the hydrogen atom Kinetic energy,

    k = kze22rnTotal energy, E = -kze22rn

    so, Kinetic energy: total energy  = 1:-1

    Question 14
    CBSEENPH12040142

    An electron of mass m with an initial velocity V = Voi^ (Vo>0) enters an electric field E = - Eo i^  (E0 constant >0) at t = 0. if λ0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

    • λ01+eE0mV0t

    • λo1 + eE0mV0t

    • λ0

    • λ0t

    Solution

    A.

    λ01+eE0mV0t

    Initial de-Brogile wavelength

    λ0 = hmV0 .... (i)

    Acceleration of electron

    a = eE0m  ( F- ma = eE0)Velocity  after time 't'V = V0+ eE0mtSo , λ = hmV = hmV0 + eE0mtSo, λ = hmV01+eE0mV0t = λ01 + eE0mV0t... (ii)Dividing eqs (ii) by (i)de - Broglie wavelength  λ = λ01+ eE0mV0 t

    Question 15
    CBSEENPH12040172

    The potential of an atom is given by V = V0loge(r/r0) where r0 is a constant and r is the radius of the orbit. Assuming Bohr's model to be applicable, which variation or rn with n is possible (n being a principal quantum number)?

    • rn  n

    • rn  1n

    • rn  n2

    • rn  1n2

    Solution

    A.

    rn  n

    Given that, V = Vologe (r/ro)

    Field,

    E = - dVdt = -VorroeE = mV2r or eV0r0r = mV2rV = eV0r0m1/2mV = (meV0r0)1/2 = constant mvr = nh2π, Bohr's quantum conditionor rn

    Question 16
    CBSEENPH12047729

    Radius of first Bohr orbit is r. What is the radius of 2nd Bohr orbit ?

    • 8 r

    • 2 r

    • 4 r

    • 22 r

    Solution

    C.

    4 r

    Radius of Bohr orbit 

    vn = n2mh24πεo1h2π

    r ∝ n2

    r1r2 = n1n22 r1r2=122rr2 =  14r2 = 4r

    Question 17
    CBSEENPH12047749

    Copper has face-centred cubic ( FCC ) lattice with interatomic spacing equal to 2.54 A. The value of lattice constant for this lattice is

    • 1.27 Ao

    • 5.08 Ao

    • 2.54 Ao

    • 3.59 Ao

    Solution

    D.

    3.59 Ao

    Denoting a crystal structure in which there is an atom at each vertex and at the centre of each face of the unit cell.

    lnteratomic spacing for a FCC lattice

    r = a22 + a22 + 0212    = a2a being lattice constanta = 2 r      =2 × 2.54 a  = 3.59 Ao

    Note:- interatomic spacing is just the nearest neighbours distance.

    Sponsor Area

    Question 18
    CBSEENPH12047808
    Question 19
    CBSEENPH12047809

    Wavelength of light emitted from second orbit to first orbit in a hydrogen atom is

    • 6563 Ao

    • 4102 Ao

    • 4861 Ao

    • 1215 Ao

    Solution

    D.

    1215 Ao

    The Rydberg formula is

    hcλif = m e48 ε02 h2 1nf2 - 1ni2

    where R = me48εo2 h3c

    Wavelength of light

         1λ = R 112- 122

    Where R is Rydberg constant 

    ⇒    1λ = 1.097 × 107 × 34

    ∴     λ  = 1.215 × 10-7 m

            λ  = 1215 Ao

    Question 20
    CBSEENPH12047815

    If λ1 and λ2 are the wavelengths of the first members of the Lyman and Paschen series respectively, then λ1 : λ2 is

    • 1:3

    • 1: 30

    • 7: 50

    • 7: 108

    Solution

    D.

    7: 108

    For first line of Lyman series, 

            n1 = 1 and n2 = 2

    ∴    1λ1 = R 112 - 122

                = R 1- 14

         1λ1 = 3R4

    For first line of Paschen series,

       n1= 3  and  n2 = 4

        1λ2 = R 132 - 142

              = R 19 - 116

    ⇒         = 7R144

    ∴    λ1λ2 = 7R144 ×43R

           λ1λ2 = 7108

    Question 21
    CBSEENPH12047842

    Minimum excitation potential of Bohr's first orbit in hydrogen atom is

    • 3.6 V

    • 10.2 V

    • 13.6 V

    • 3.4 V

    Solution

    B.

    10.2 V

    The energy of an electron in Bohr's orbit of hydrogen atom is given by the expression

                    En = - 2 π2 me2 Z2n2 h2  4πεo 2

                    En = -13.6 Z2n2 eV

    Since Z = 1 for hydrogen above equation can be further simplified to

                   En-13.6n2 eV

    From the relation

           E =  13.6 eV - 13.6 eVn2

                 = 13.6 - 13.6 eV22

            ΔE = 10.2 eV

    Therefore, excitation potential

              = 10.2e eV

                = 10.2 V

    Question 22
    CBSEENPH12047847

    Ionisation potential of hydrogen atom is 13.6 eV. Hydrogen atom on the ground state rarely excited by monochromatic radiation of photon 12.1 eV. The special line emitted by a hydrogen atom according to Bohr's theory will be

    • one

    • two

    • three

    • four

    Solution

    C.

    three

                En  = -13.6n2eV

    According to Bohr's model

       E1 = -13.6 , E3 = -1.5

    From the relation

           E3 - E1 = (-1.5) - (-13.6)

                       = 12.09

          E3 - E1 = 12.1 eV

    As the energy is equal to the energy taken by n=1, n = 2,  n=3 Hence there will be three spectral line.

    Question 23
    CBSEENPH12047875

    According to Bohr's model of hydrogen atom, relation between principal quantum number n and radius of stable orbit is

    • r ∝ 1n

    • r ∝ n

    • r ∝ 1n2

    • r ∝ n2

    Solution

    D.

    r ∝ n2

    According to Bohr's model, relation between the principal quantum number (n) and radius of
    stable orbit (r) are related as 

         rnn2m h2π2 4πεoe2

    ⇒         r ∝ n2

    Question 24
    CBSEENPH12047899

    The de-Broglie wavelength of electron falling on the target in an X-ray tube is),. The cut-off wavelength of the emitted X-ray is

    • λ0 =  m c λ 2h

    • λ0 = m2 h2

    • λ0 = 2 mc λ2h

    • λ0 = m c λ2h2

    Solution

    C.

    λ0 = 2 mc λ2h

    The de-Broglie wavelength is given by

           λ = hp = h2m E                  .... (i)

    where, E is the energy of the electron. The cut-off wavelength λ0 is given by

           λ0 = h cE                              ....(ii)

    From Eq. (i),

           λ2h22 mE

    ⇒     E = h22 m λ2                           ....(iii)

    Substituting the value of E from Eq. (ii), we get

          λ0 = h ch22 2

         λ02 m 2h

    Question 25
    CBSEENPH12047919

    If a proton and anti-proton come close to each other and annihilate, how much energy will be released?

    • 1.5 × 10-10 J

    • 3 × 10-10 J

    • 4.5 × 10-10 J

    • 2 ×  10-10 J

    Solution

    B.

    3 × 10-10 J

    Mass of proton = mass of anti-proton

                           = 1.67 × 10-27 kg = 1amu

    Energy equivalent to 1 amu = 931 MeV

    So,

    energy equivalent to 2 amu = 2 x 931 MeV

                                            = 1862 × 106 × 1.6 × 10-19

                                             = 2.97 × 10-10 J

    energy equivalent to 2 amu = 3 × 10-10 J

    Question 26
    CBSEENPH12047920

    A body at rest slides down a 30° inclined plane. The time taken by it to slide down is twice the time it takes when it slides down the same distance in the absence of friction. The coefficient of friction between the body and the inclined plane is

    • 0.43

    • 0.37

    • 0.64

    • 0.75

    Solution

    A.

    0.43

    When a plane is inclined to the horizontal at an angle θ, which is greater than the angle of repose, then the body placed on the inclined plane slides down with an acceleration a.

      

    From figure,

            R = mg cosθ                            ......(i)

    Net force on the body down the inclined plane

           f = mg sinθ - F

          f = ma = mgsinθ - μR                           μ = FR

    ∴     ma = mg sinθ - μ mg cosθ             ....[ from (i) ]

                  = mg ( sinθ - μ coθ )

    ⇒    a = g ( sinθ - μ cosθ )

    Time taken by the body to slide down the plane

           t1 =  2 sa

                = 2s g sinθ - μg cosθ 

           t22 sg sinθ                     [ in absence of friction ]

           t1 = 2 t2

             t12 =   4 t22

                2 sg sinθ - μg cosθ 2 = 4 ×  2 sg sinθ  2

    ⇒       2 sg sin θ - μ cos θ = 4 × 2sg sinθ

                         sinθ = 4 sinθ - 4 μ cosθ

    ⇒     μ =  34 tanθ

               = 34 tan30o

             μ = 0.43

    Question 27
    CBSEENPH12047927

    An energy of 68.0 eV is required to excite a hydrogen-like atom in its second Bohr energy level to third energy level the charge of nucleus is Ze. The wavelength of a radiation required to eject the electron from first orbit to infinity is

    • 2.2 nm

    • 2.85 nm

    • 3.2 nm

    • 2.5 nm

    Solution

    D.

    2.5 nm

    Given:-

    n1 =2,

    n2 = 3 and 

    ΔE  = 68 eV

    The difference in energies of two orbits

          ΔE = 13.6 Z2 1n12 - 1n22

         ΔE = 13.6 Z2 122 - 132

        ΔE = 13.6 Z2 14 - 19

        ΔE = 12.6 Z2 9 - 436

          ΔE = 13.6 Z2 × 536

         Z268 × 3613.6 × 5

         Z = 6

     Wavelength of photon

         1λ = Z21n12  -1n22

    n1 = 1 and n2 = ∞

          1λ = 62 × R 112 - 1

              = 36R

        λ = 136 R

           = 136 × 1.097 × 107

          = 10-739.5 m

       λ = 0.025 × 10-7 m

       λ = 2.5 nm

    Question 28
    CBSEENPH12047999

    Assertion:  Electrons in the atom are held due to Coulomb forces. 

    Reason:  The atom is stable only because the centripetal force due to Coulomb's law is balanced by the centrifugal force.

    • If both assertion and reason are true and reason is the correct explanation of assertion.

    • If both assertion and reason are true but reason is not the correct explanation of assertion.

    • If assertion is true but reason is false.

    • If both assertion and reason are false.

    Solution

    C.

    If assertion is true but reason is false.

    Assertion is true but reason is false. 

    According to postulates of Bohr's atom model, the electron revolves round the nucleus in fixed orbit of definite radii. As long as the electron is in a certain orbit it does not radiate any energy. Not only the centripetal force has to be the centrifugal force, even the stable orbits are fixed by Bohr's theory.

             

    Question 29
    CBSEENPH12048005

    Total energy of an electron in hydrogen atoms above 0 eV leads to

    • ionisation of the atom

    • accelerate the atom

    • send the atom in higher excited state

    • none of these

    Solution

    A.

    ionisation of the atom

    When energy of electron in a hydrogen atom goes above 0 eV then it leaves the atom. Hence hydrogen atom becomes ionised.

    Question 30
    CBSEENPH12048020

    Ionisation potential of hydrogen atom is 13.6 V. Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV. The spectral lines emitted by hydrogen atoms according to Bohr's theory will be

    • one

    • two

    • four

    • three

    Solution

    D.

    three

    Energy in the excited state = -13.6 + 12.1

                                             = -1.5 eV

    ∴      -13· 6n2 = -1.5

                n = 13·61·5

                n = 3

    ∴  Number of spectral lines

                   = n n + 12

                    = 3 3 -12

                     = 3

    Question 31
    CBSEENPH12048021

    The current gain for a transistor working as common-base amplifier is 0.96. If the emitter current is 7.2 mA, then base current is

    • 0.35 mA

    • 0.28 mA

    • 0.39 ma

    • 0.43 mA

    Solution

    C.

    0.39 ma

    The current gain from the Collector terminal to the Emitter terminal, IC / IE is called (α )   

             α = ICIE

      ∴         ICα IE

                      = 0·96 × 7·2

                 IC = 6·91 mA

    Now   

               IE = IC + IB

        ∴      IB = IE - IB

                     = 7·2 - 6·91

                IB = 0.29 mA        

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation