Relations and Functions
Here (a, b) R (c, d) ⇔ a + d = b + c.
(i) Now (a, b) R (a, b) if a + b = b + a, which is true.
∴ relation R is reflexive.
(ii) Now (a, b) R (c, d)
⇒ a + d = b + c ⇒ d + a = c + b
⇒ c + b = d + a ⇒ (c, d) R (a, b)
∴ relation R is symmetric.
(iii) Now (a, b) R (c, d) and (c, d) R (e,f)
⇒ a + d = b + c and c + f = d + e
⇒ (a + d) + (c + f) = (b + c) + (d + e) ⇒ a + f = b + e
⇒ (a , b) R (e, f)
∴ relation R is transitive.
Now R is reflexive, symmetric and transitive
∴ relation R is an equivalence relation.
Sponsor Area
Determine whether each of the following relations are reflexive, symmetric and transitive :
(i) Relation R in the set A = {1, 2, 3,....., 13, 14} defined as
R = {(x, y) : 3 x – y = 0}
(ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x < 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x,y) : y is divisible by x} (iv) Relation R in the set Z of all integers defined as R = {(x,y) : x – y is an integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y) : x and y work at the same place}
(b) R = {(x,y) : x and y live in the same locality}
(c) R = {(x, y) : x is exactly 7 cm taller than y}
(d) R = {(x, y) : x is wife of y}
(e) R = {(x,y) : x is father of y}
Sponsor Area
Sponsor Area