-->

Relations And Functions

Question
CBSEENMA12035681

Let space straight f colon straight W rightwards arrow straight W space be space defined space as
straight f left parenthesis straight n right parenthesis space equals space open curly brackets table row cell straight n minus 1 comma space space if space straight n space is space odd end cell row cell straight n plus 1 comma space if space straight n space is space even end cell end table close curly brackets
Show that f is invertible and find the inverse of f. Here, W is the set of all whole numbers. 

Solution

Let f: W→W be defined as
straight f left parenthesis straight n right parenthesis space equals space open curly brackets table row cell straight n minus 1 comma space if space straight n space is space odd end cell row cell straight n plus 1 comma space space if space straight n space is space even end cell end table close curly brackets
We need to prove that 'f' is invertible.
In order to prove that 'f' is invertible it is sufficient to prove that f is a bijection.
A function f: A→B is a one-one function or an injection, if
f(x) = f(y) ⇒ x = y for all x, y ∈ A.
Case i:
If x and y are odd.
Let f(x) = f(y)
⇒x − 1 = y − 1
⇒x = y
Case ii:
If x and y are even,
Let f(x) = f(y)
⇒x + 1 = y + 1
⇒x = y
Thus, in both the cases, we have,
f(x) = f(y) ⇒ x = y for all x, y ∈ W.
Hence f is an injection. 
Let n be an arbitrary element of W.
If n is an odd whole number, there exists an even whole number n − 1 ∈ W such that
f(n − 1) = n − 1 + 1 = n.
If n is an even whole number, then there exists an odd whole number n + 1 ∈ W such that f(n + 1) = n + 1 − 1 = n. Also, f(1) = 0 and f(0) = 1
Thus, every element of W (co-domain) has its pre-image in W (domain).
So f is an onto function.
Thus, it is proved that f is an invertible function.
Thus, a function g: B→A which associates each element y ∈ B to a unique element x ∈ A such that f(x) = y is called the inverse of f.
That is, f(x) = y ⇔ g(y) = x.
The inverse of f is generally denoted by f -1.
Now let us find the inverse of f.
Let x, y ∈ W such that f(x) = y
⇒x + 1 = y, if x is even
And
straight x minus 1 space equals space straight y comma space if space straight x space is space odd
rightwards double arrow space space straight x space equals space open curly brackets table row cell straight y minus 1 comma space if space straight y space is space odd end cell row cell straight y plus 1 comma if space straight y space is space even end cell end table close curly brackets
rightwards double arrow space straight f to the power of negative 1 end exponent left parenthesis straight y right parenthesis space equals open curly brackets table row cell straight y minus 1 comma space if space straight y space is space odd end cell row cell straight y plus 1 comma space if space straight y space straight i space even end cell end table close curly brackets
Interchange comma space straight x space and space straight y comma space we space have comma space
rightwards double arrow straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals open curly brackets table row cell straight x minus 1 comma space if space straight x space is space odd end cell row cell straight x plus 1 comma space if space straight x space is space even end cell end table close curly brackets
Re space writing space the space above space we space have comma
space space rightwards double arrow straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals space open curly brackets table row cell straight x plus 1 comma space if space straight x space is space even space end cell row cell straight x minus 1 comma space if space straight x space is space odd end cell end table close curly brackets
Thus comma space straight f to the power of negative 1 end exponent left parenthesis straight x right parenthesis space equals space straight f left parenthesis straight x right parenthesis

Some More Questions From Relations and Functions Chapter

If a matrix has 24 elements, what are the possible orders it can have ? Wh'at. if it has 13 elements ?

lf a matrix has 18 elements, what are the possible orders it can have ? What, if it has 5 elements?

If a matrix A has 12 elements, what arc the possible orders it can have 7 What if it has 7 elements ?

Let A be the set of all students of a boys school. Show that the relation R in A given by R = {(a, b) : a is sister of b} is the empty relation and R’ = {(a, b) : the difference between heights of a and b is less than 3 meters} is the universal relation.

Show that the relation R in the set {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} is reflexive but neither symmetric nor transitive.

Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.

Give an example of a relation which is

(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.

Let L be the set of all lines in a plane and R be the relation in L defined as R = {(L1, L2) : L1 is perpendicular to L2}. Show that R is symmetric but neither reflexive nor transitive.

 Determine whether each of the following relations are reflexive, symmetric and transitive :

(i) Relation R in the set A = {1, 2, 3,....., 13, 14} defined as

R = {(x, y) : 3 x – y = 0}

(ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x < 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x,y) : y is divisible by x} (iv) Relation R in the set Z of all integers defined as R = {(x,y) : x – y is an integer}

(v) Relation R in the set A of human beings in a town at a particular time given by
(a)    R = {(x, y) : x and y work at the same place}
(b)    R = {(x,y) : x and y live in the same locality}
(c)    R = {(x, y) : x is exactly 7 cm taller than y}
(d)    R = {(x, y) : x is wife of y}
(e)    R = {(x,y) : x is father of y}