-->

Relations And Functions

Question
CBSEENMA12035680

Let A = Q × Q, where Q is the set of all rational numbers, and * be a binary operation on A defined by (a, b) * (c, d) = (ac, b+ad) for (a, b), (c, d) element of A. Then find
(i) The identify element of * in A.
(ii) Invertible elements of A, and write the inverse of elements (5, 3) and open parentheses 1 half comma space 4 close parentheses.

Solution

Let A = Q x Q, where Q is the set of rational numbers.
Given that * is the binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for 
(a, b), (c, d) ∈ A.
(i)
We need to find the identity element of the operation * in A.
Let (x, y) be the identity element in A.
Thus,
(a, b) * (x, y) = (x, y) * (a, b) = (a, b), for all (a, b) ∈ A
⇒(ax, b + ay) = (a, b)
⇒ ax = a and b + ay =b
⇒ y = 0 and x = 1
Therefore, (1, 0) ∈ A is the identity element in A with respect to the operation *.
(ii) We need to find the invertible elements of A.
Let (p, q) be the inverse of the element (a, b)
Thus,
left parenthesis straight a comma space straight b right parenthesis asterisk times left parenthesis straight p comma space straight q right parenthesis space equals space left parenthesis 1 comma space 0 right parenthesis
rightwards double arrow space left parenthesis ap comma space straight b plus aq right parenthesis space equals left parenthesis 1 comma space 0 right parenthesis
rightwards double arrow space ap space equals space 1 space and space straight b plus aq space equals space 0
rightwards double arrow space straight p space equals 1 over straight a space space and space straight q equals negative straight b over straight a
space space Thus space the space inverse space elements space of space left parenthesis straight a comma space straight b right parenthesis space is space open parentheses 1 over straight a comma space minus straight b over straight a close parentheses
space space Now space let space us space find space the space inverse space of space left parenthesis 5 comma space 3 right parenthesis space and space open parentheses 1 half comma space 4 close parentheses
space Hence comma space inverse space of space left parenthesis 5 comma space 3 right parenthesis space is space open parentheses 1 fifth comma space minus 3 over 5 close parentheses
And space inverse space of space open parentheses 1 half comma space 4 close parentheses space is space open parentheses 2 comma space fraction numerator negative 4 over denominator begin display style 1 half end style end fraction close parentheses space equals space space left parenthesis 2 comma space minus 8 right parenthesis