-->

Relations And Functions

Question
CBSEENMA12032529

Let f : R → R be defined as f (x) = 3 x. Choose the correct answer. (A) f is one-one onto   (B) f is many-one onto  (C) f is one-one but not onto (D) f is neither onc-one nor onto.

Solution

f is one-one, as f (x1) = f (x2)
⇒ 3 x1 = 3 x2
⇒ x1 = x2.
Also, given any real number y in R, there exist  straight y over 3 in R such that 
straight f open parentheses straight y over 3 close parentheses equals 3 comma space space space open parentheses straight y over 3 close parentheses equals straight y

Hence. f is onto
∴ (A) is correct answer.


 

Some More Questions From Relations and Functions Chapter

Let L be the set of all lines in a plane and R be the relation in L defined as R = {(L1, L2) : L1 is perpendicular to L2}. Show that R is symmetric but neither reflexive nor transitive.

 Determine whether each of the following relations are reflexive, symmetric and transitive :

(i) Relation R in the set A = {1, 2, 3,....., 13, 14} defined as

R = {(x, y) : 3 x – y = 0}

(ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x < 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x,y) : y is divisible by x} (iv) Relation R in the set Z of all integers defined as R = {(x,y) : x – y is an integer}

(v) Relation R in the set A of human beings in a town at a particular time given by
(a)    R = {(x, y) : x and y work at the same place}
(b)    R = {(x,y) : x and y live in the same locality}
(c)    R = {(x, y) : x is exactly 7 cm taller than y}
(d)    R = {(x, y) : x is wife of y}
(e)    R = {(x,y) : x is father of y}

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b) : b = a + 1} is reflexive, symmetric or transitive.

Show that the relation R in R defined as R = {(a, b) : a ≤ b}, is reflexive and transitive but not symmetric.

Check whether the relation R in R defined by R = {(a,b) : a ≤ b3} is refleive, symmetric or transitive.

If R and R’ arc reflexive relations on a set then so are R ∪ R’ and R ∩ R’. 

If R and R’ are symmetric relations on a set A, then R ∩ R’ is also a sysmetric relation on A.

Show that the union of two symmetric relations on a set is again a symmetric relation on that set.

Let A = {1. 2. 3}. Then show that the number of relations containing (1,2) and (2. 3) which are reflexive and transitive but not symmetric is four.