-->

Relations And Functions

Question
CBSEENMA12032489

Let f : X → Y be an invertible function. Show that f has unique inverse.

Solution

Let g1 and g2 be two inverses of f for all y ∈ Y, we have, (f o g1)(y) = y = IY (y) and (f o g 2) (y) = y = IY (y)
⇒    (f o g1) (y) = (f o g2) (y) for all y ∈ Y
⇒    f(g1(y)) = f(g2(y)) for all y ∈ Y
⇒    g1 (y) = g2(y)    [∵ f is one-one as f is invertible]
∴ g1 = g2 ∴ inverse of f is unique.

Some More Questions From Relations and Functions Chapter

Let L be the set of all lines in a plane and R be the relation in L defined as R = {(L1, L2) : L1 is perpendicular to L2}. Show that R is symmetric but neither reflexive nor transitive.

 Determine whether each of the following relations are reflexive, symmetric and transitive :

(i) Relation R in the set A = {1, 2, 3,....., 13, 14} defined as

R = {(x, y) : 3 x – y = 0}

(ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x < 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x,y) : y is divisible by x} (iv) Relation R in the set Z of all integers defined as R = {(x,y) : x – y is an integer}

(v) Relation R in the set A of human beings in a town at a particular time given by
(a)    R = {(x, y) : x and y work at the same place}
(b)    R = {(x,y) : x and y live in the same locality}
(c)    R = {(x, y) : x is exactly 7 cm taller than y}
(d)    R = {(x, y) : x is wife of y}
(e)    R = {(x,y) : x is father of y}

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b) : b = a + 1} is reflexive, symmetric or transitive.

Show that the relation R in R defined as R = {(a, b) : a ≤ b}, is reflexive and transitive but not symmetric.

Check whether the relation R in R defined by R = {(a,b) : a ≤ b3} is refleive, symmetric or transitive.

If R and R’ arc reflexive relations on a set then so are R ∪ R’ and R ∩ R’. 

If R and R’ are symmetric relations on a set A, then R ∩ R’ is also a sysmetric relation on A.

Show that the union of two symmetric relations on a set is again a symmetric relation on that set.

Let A = {1. 2. 3}. Then show that the number of relations containing (1,2) and (2. 3) which are reflexive and transitive but not symmetric is four.