Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
∧ |
1 |
2 |
3 |
4 |
5 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
1 |
3 |
1 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
5 |
1 |
1 |
1 |
1 |
5 |
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative ?
(iii) Compute (2 * 3) * (4 * 5).
Let A = {1,2, 3,4, 5}
Multiplication table is given as follows :
Table
* |
1 |
2 |
3 |
4 |
5 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
1 |
3 |
1 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
5 |
1 |
1 |
1 |
1 |
5 |
(i) (2 *3) *4 = 1 *4 = 1
2* (3 *4) = 2* 1 = 1
(ii) Since the multiplication table is symmetrical about the diagonal starting at the upper left corner and ending at the lower right corner.
* is commutative.
(iii) 2 * 3 = 1, 4 * 5 = 1
∴ (2 * 3) * (4 * 5) = 1 * 1 = 1