-->

Introduction To Trigonometry

Question
CBSEENMA10009634

The diagonal of a rectangular field is 16 metres more than the shorter side. If the longer side is 14 metres more than the shorter side, then find the lengths of the sides of the field.

Solution

Let the shorter side of the rectangular field be x m.
Then, diagonal of the rectangular field = ( x+ 16) m
Also, longer side of the rectangular field = (x +14) m
In right ΔABC
left parenthesis AB right parenthesis squared space plus left parenthesis BC right parenthesis squared space equals space left parenthesis AC right parenthesis squared

rightwards double arrow space left parenthesis straight x space plus 14 right parenthesis squared space plus space straight x squared space equals space left parenthesis space straight x space plus space 16 right parenthesis squared

rightwards double arrow space straight x squared space plus 196 space plus 28 straight x space plus space straight x squared space equals space straight x squared space plus 256 space plus space 32 straight x

rightwards double arrow space straight x squared space minus 4 straight x space minus 60 space equals space 0

rightwards double arrow space straight x squared space minus 10 straight x space plus space 6 straight x minus 60 space equals space 0

rightwards double arrow straight x left parenthesis straight x space minus space 10 right parenthesis space plus space 6 space left parenthesis straight x space minus 10 right parenthesis space equals space 0

rightwards double arrow space straight x space plus space 6 space equals space 0 space or space straight x minus 10 space equals 0

rightwards double arrow space straight x space equals negative 6 space or space space straight x space equals space 10
Since length cannot be negative, so x = 10
therefore, the length of the shorter side = 10 m
Length of the diagonal = 10 +16 = 26m
Length of the longer side = 10 +14 = 24
Hence, the length of the sides of the rectangular field is 10 m and 24 m.