Mathematics Part Ii Chapter 11 Three Dimensional Geometry
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part Ii

    Three Dimensional Geometry Here is the CBSE Mathematics Chapter 11 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Three Dimensional Geometry Chapter 11 NCERT Solutions for Class 12 Mathematics Three Dimensional Geometry Chapter 11 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12033219

    If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.

    Solution
    Let l, m, n be the direction cosines of the line with direction angles 90°, 135°, 45°.
    therefore space space straight l space equals space cos space 90 degree space equals space 0 comma space space space straight m space equals space cos space 135 degree space equals space cos space left parenthesis 180 degree minus 45 degree right parenthesis space equals space minus cos space 45 degree space equals space minus fraction numerator 1 over denominator square root of 2 end fraction comma
               straight n space equals space cos space 45 degree space equals space fraction numerator 1 over denominator square root of 2 end fraction
    therefore space space   direction cosines are 0,  negative fraction numerator 1 over denominator square root of 2 end fraction comma space fraction numerator 1 over denominator square root of 2 end fraction.
    Question 2
    CBSEENMA12033220

    Can a directed line have direction angles 45°, 60°, 120°?

    Solution
    Let l, m, n be the direction cosines of the line with direction angles 45°. 60°, 120°
    ∴     l = cos 45°              equals space fraction numerator 1 over denominator square root of 2 end fraction comma space space straight m space equals space cos space 60 degree space equals 1 half comma space space straight n space equals cos space 120 degree space equals space cos space left parenthesis 180 degree minus 60 degree right parenthesis space equals space minus cos space 60 degree space equals negative 1 half
    therefore space space space straight l squared plus straight m squared plus straight n squared space equals space 1 half plus 1 fourth plus 1 fourth space equals space fraction numerator 2 plus 1 plus 1 over denominator 4 end fraction space equals 4 over 4 space equals 1
    ∴ a line can have the given angles as direction angles.
    Question 3
    CBSEENMA12033221

    Can a directed line have direction angles 45°, 45°, 60°?

    Solution
    Let l, m, n be the direction cosines of the line with direction angles 45°, 45°, 60°.
         therefore space space straight l space equals cos space 45 degree space equals fraction numerator 1 over denominator square root of 2 end fraction comma space straight m space equals space cos space 45 degree space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space straight n space equals space cos space 60 degree space equals space 1 half
    These values of l, m, n do not satisfy the selection l2 + m2 + n2 = 1 as
        open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses squared plus space open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses squared plus space open parentheses 1 half close parentheses squared space equals space 1 half plus 1 half plus 1 fourth space equals 5 over 4 not equal to 1
    ∴ given angles cannot be the direction angles of a line.
    Question 4
    CBSEENMA12033222

    A line makes an angle of straight pi over 4 with each of y-axis and z-axis. Find the angle made by it with x-axis. 

    Solution
    Let a be the angle which the line makes with positive axis of x.
    therefore   direction cosines of the line are cos space straight alpha comma space space cos space straight pi over 4 comma space space cos straight pi over 4
    therefore space space space cos squared space straight alpha space plus space cos space squared space straight pi over 4 space plus space cos squared straight pi over 4 space equals space 1               open square brackets cos squared straight alpha plus cos squared straight beta plus cos squared straight gamma space equals space 1 close square brackets
    therefore              cos squared straight alpha plus 1 half plus 1 half space equals space 1 space space space space rightwards double arrow space space space space cos squared straight alpha space equals space 0 space space space rightwards double arrow space space space space cos space straight alpha space equals space 0 space space space space space rightwards double arrow space space space straight a space equals space straight pi over 2
    ∴ line makes a right angle with x-axis.
    Question 5
    CBSEENMA12033223

    Find the direction cosines of x, y and z-axis.

    Solution

    The x-axis makes angles 0°, 90° and 90° with x, y and z-axis.
    ∴  direction cosines of x-axis are cos 0°, cos 90°, cos 90° i.e. 1, 0. 0
    Again y-axis makes angles 90°, 0°, 90° with x, y and z-axis.
    ∴ direction cosines of y-axes are cos 90°, cos 0°, cos 90° i.e. 0, 1,0.
    Also z-axis makes angles 90°, 90°, 0° with x, y and z-axis.
    ∴   direction cosines of z-axis and cos 90°, cos 90°, cos 0° i.e. 0, 0, 1.

    Question 6
    CBSEENMA12033224

    Find the direction-cosines of a line which makes equal angles with the axes. How many such lines are there?

    Solution
    Let α be the angle which the line with all the axes,
    ∴     its direction-cosines are cos α, cos α, cos α
    therefore space space cos squared straight alpha plus cos squared straight alpha plus cos squared straight alpha space equals space 1                                   open square brackets because space space straight l squared plus straight m squared plus straight n squared space equals space 1 close square brackets
    therefore space space space 3 space cos space squared space equals space 1 comma space space space space or space space space cos squared straight alpha space equals space 1 third
    therefore space space space space space space cos space straight alpha space equals space plus-or-minus space fraction numerator 1 over denominator square root of 3 end fraction
    therefore required direction-cosines are plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction comma space plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction comma space plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction
    These are four different groups of signs
    i.e.,     +, +, +
               +, -, +
               +, +, -
               +, -, -
    ∴ there are four distinct lines.
    Question 7
    CBSEENMA12033225

    If a line has direction ratios 2, -1, -2, determine its direction cosines. 

    Solution
    Direction ratios of the line are 2, –1,–2.
    Dividing each by square root of left parenthesis 2 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root space equals space square root of 4 plus 1 plus 4 end root space equals space square root of 9 space equals space 3. the direction cosines of line are 2 over 3 comma space minus 1 third comma space minus 2 over 3.
    Question 8
    CBSEENMA12033226

    If a line has direction ratios 2, -1, -2, determine its direction cosines. 

    Solution
    Direction ratios of the line are 1, – 3, 2.
    Dividing each by square root of left parenthesis 1 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root space equals space square root of 14 comma the direction-cosines of the line are fraction numerator 1 over denominator square root of 14 end fraction comma space fraction numerator negative 3 over denominator square root of 14 end fraction comma space fraction numerator 2 over denominator square root of 14 end fraction.
                       
    Question 9
    CBSEENMA12033227

    If a line has the direction ratios – 18, 12, – 4. then what are its direction cosines?

    Solution
    Direction ratios of the line are – 18, 12, –4
    Dividing each by square root of left parenthesis negative 18 right parenthesis squared plus left parenthesis 12 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared end root space equals space square root of 324 plus 144 plus 16 end root space equals square root of 484 space equals space 22 comma the direction cosines of the line are negative 18 over 22 comma space 12 over 22 comma space fraction numerator negative 4 over denominator 22 end fraction space straight i. straight e. space minus 9 over 11 comma space 6 over 11 comma space minus 2 over 11.
    Question 10
    CBSEENMA12033228

    Find the direction ratios and the direction cosines of the lines joining the pairs of points:
     (–2, 1, 0), (3, 2, 1).

    Solution
    The direction ratios of the line joining the points (–2, 1, 0) , (3, 2,1) are 3 + 2, 2 – 1, 1 – 0 i.e. 5, 1, 1.
    Dividing each by square root of left parenthesis 5 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space equals space square root of 27 space equals space 3 square root of 3 comma we get the direction cosines of the line as fraction numerator 5 over denominator 3 square root of 3 end fraction comma space fraction numerator 1 over denominator 3 square root of 3 end fraction comma space fraction numerator 1 over denominator 3 square root of 3 end fraction
    Question 11
    CBSEENMA12033229

    Find the direction ratios and the direction cosines of the lines joining the pairs of points:
    (– 1, –1, –1), (2, 3, 4)

    Solution
    The direction ratios of the line joining the points (–1, – 1, –1), (2, 3, 4) are 2 + 1, 3 + 1, 4 + 1 i.e. 3, 4, 5.
    Dividing each by square root of left parenthesis 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared plus left parenthesis 5 right parenthesis squared end root space equals space square root of 9 plus 16 plus 25 end root space equals space square root of 50 space equals space 5 square root of 2 comma we get, the direction cosines of the line as
         fraction numerator 3 over denominator 5 square root of 2 end fraction comma space fraction numerator 4 over denominator 5 square root of 2 end fraction comma space fraction numerator 5 over denominator 5 square root of 2 end fraction.
    Question 12
    CBSEENMA12033230

    Find the direction cosines of the line passing through the two points (–2, 4, –5) and (1, 2, 3).

    Solution

    The direction ratios of the line joining the points (–2, 4, –5) and (1. 2, 3) are
    1 + 2, 2 – 4, 3 + 5 i.e. 3, – 2, 8.
    Dividing each by square root of left parenthesis 3 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared plus left parenthesis 8 right parenthesis squared end root space equals space square root of 9 plus 4 plus 64 end root space equals space square root of 77 comma we get the direction cosines of the line as fraction numerator 3 over denominator square root of 77 end fraction comma space minus fraction numerator 2 over denominator square root of 77 end fraction comma space fraction numerator 8 over denominator square root of 77 end fraction.

    Question 13
    CBSEENMA12033231

    Find the direction cosines of the sides of the triangle whose vertices are (3, 5, –4), (–1, 1, 2) and (–5, –5, –2).

    Solution
    Let A(3, 5, – 4), B(–1, 1, 2), C(–5, –5, –2) be the vertices of ΔABC.
    Direction ratios of AB are – 1 – 3, 1 – 5, 2 + 4 i.e. – 4, – 4, 6
              Dividing each by square root of left parenthesis negative 4 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared plus left parenthesis 6 right parenthesis squared end root
    equals space square root of 16 plus 16 plus 36 end root space equals space square root of 68 comma space we space get space the space direction space
    cosines of the line AB as negative fraction numerator 4 over denominator square root of 68 end fraction comma space minus fraction numerator 4 over denominator square root of 68 end fraction comma space fraction numerator 6 over denominator square root of 68 end fraction
        i.e.       negative fraction numerator 1 over denominator square root of 17 end fraction comma space space space minus fraction numerator 2 over denominator square root of 17 end fraction comma space fraction numerator 3 over denominator square root of 17 end fraction.

    Direction ratios of BC are – 5 + 1, –5 –1, –2 –2 i.e. – 4, –6, –4.
                   Dividing each by square root of left parenthesis negative 4 right parenthesis squared plus left parenthesis negative 6 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared end root space equals space square root of 16 plus 36 plus 16 end root space equals space square root of 68 comma space we space get space the space     
               direction ratios of the line BC as negative fraction numerator 4 over denominator square root of 68 end fraction comma space minus fraction numerator 6 over denominator square root of 68 end fraction comma space minus fraction numerator 4 over denominator square root of 68 end fraction space space space or space space space minus fraction numerator 2 over denominator square root of 17 end fraction comma space minus fraction numerator 3 over denominator square root of 17 end fraction comma space minus fraction numerator 2 over denominator square root of 17 end fraction.
      Direction ratios of CA are 3+5, 5+5,  -4+2 i.e., 8, 10 -2.
      Dividing each by square root of left parenthesis 8 right parenthesis squared plus left parenthesis 10 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root space equals space square root of 64 plus 100 plus 4 end root space equals space square root of 168 comma space we space get space the space
    direction ratios of the line CA as fraction numerator 8 over denominator square root of 168 end fraction comma space fraction numerator 10 over denominator square root of 168 end fraction comma space space minus fraction numerator 2 over denominator square root of 168 end fraction comma space straight i. straight e. space fraction numerator 4 over denominator square root of 42 end fraction comma space fraction numerator 5 over denominator square root of 42 end fraction comma space minus fraction numerator 1 over denominator square root of 42 end fraction.
    Question 14
    CBSEENMA12033232

    Find the direction cosines of the line joining the points (2, 1, 2) and (4, 2, 0).

    Solution
    The direction ratios of the line joining (2, 1, 2) and (4, 2, 0) are 4 – 2, 2 – 1, 0 – 2 i.e., 2, 1, –2 i.e.,
    Dividing each by square root of left parenthesis 2 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root space equals space 3 comma the direction-cosines of the line are 2 over 3 comma space 1 third comma space minus 2 over 3.
    Question 15
    CBSEENMA12033233

    A line makes angles of 45° and 60° with the positive axes of x and y respectively. What angle does it make with the positive axis of z?

    Solution
    Let a, β, γ be the angles which line makes with axes.
    therefore    direction - cosines of the line are cos space 45 degree comma space space cos space 60 degree comma space space cos space straight gamma      open square brackets because space space space straight alpha space equals space 45 degree comma space space straight beta space equals space 60 degree close square brackets
    therefore            cos squared 45 degree plus cos squared 60 degree plus space cos squared straight gamma space equals space 1 space space space space space space space space space space space open square brackets because space space cos squared straight alpha plus cos squared straight beta plus cos squared straight gamma space equals space 1 close square brackets
    rightwards double arrow space space space space space 1 half plus 1 fourth plus cos squared straight gamma space equals space 1 space space space space rightwards double arrow space space space cos squared straight gamma space equals space 1 fourth space space rightwards double arrow space space cos space straight gamma space equals space plus-or-minus 1 half space rightwards double arrow space straight gamma space equals space 60 degree space space or space space 120 degree
    Question 16
    CBSEENMA12033234

    If α, β, γ are the angles which a line makes with the axes, prove that sin2α + sin2 β + sin2γ = 2.

    Solution

    ∵ the line makes angles α, β, γ with the axes
    ∴  cos2 α + cos2 β + cos2 γ = 1
    ∴ 1 – sin2 α + 1 – sin2  β + 1 – sin2 γ = 1 or – sin2 α – sinβ – sin2 γ = –2
    ∴ sin2 α + sin2 β + sin2 γ = 2.

    Question 17
    CBSEENMA12033235

    Show that  the points (2, 3, 4), (–1, –2, 1), (5, 8, 7) are collinear.

    Solution
    Let P (2, 3, 4), Q (–1, –2, 1), R (5, 8, 7) be given points.
    The direction ratios of PQ are –1, –2, –2 –3, 1 – 4 i.e. – 3, – 5, – 3
    The direction ratios of PR are 5 – 2, 8 – 3, 7 –4 i.e. 3, 5, 3
    Since fraction numerator negative 3 over denominator 3 end fraction equals space fraction numerator negative 5 over denominator 5 end fraction equals fraction numerator negative 3 over denominator 3 end fraction
    ∴    lines PQ and PR are parallel.
    But P is a common point on both the lines points
    ∴    P, Q, R are collinear.

    Sponsor Area

    Question 18
    CBSEENMA12033236

    Show that the points (–1, 2, –3), (4, 5, 1) and (9, 8, 5) are collinear.

    Solution

    Let P(– 1, 2, – 3), Q(4, 5, 1) , R(9, 8, 5) be given points.
    The direction ratios of PQ are 4 + 1, 5 – 2, 1 + 3 i.e. 5, 3, 4,
    The direction ratios of PR are 9 + 1, 8 – 2, 5 + 3, i.e. 10, 6, 8.
    Since 10 over 5 space equals 6 over 3 space equals space 8 over 4
    ∴    lines PQ and PR are parallel.
    But P is a common point on both lines.
    ∴  points P, Q, R are collinear.

    Question 19
    CBSEENMA12033237

    Show that the points A(2, 3, – 4), B(1, –2, 3) and C (3, 8, –11) are collinear.

    Solution

    The given points are A(2, 3, – 4), B(1, –2, 3), C(3, 8, –11)
    The direction ratios of the AB are 1 – 2, – 2 – 3, 3 + 4 i.e. – 1 – 5,1
    The direction ratios of AC are 3 – 2, 8 – 3, –11 + 4 i.e. 1, 5, – 7
    ∴  direction ratios of AB and AC are proportional
    ∴  AB is parallel to AC.
    But A is a common point on both the lines.
    ∴   A, B, C are collinear points.

    Question 20
    CBSEENMA12033238

    Find the length of the projection of the line segment joining the points P (3, -1, 2) and Q(2, 4, -1) on the line with direction ratios -1, 2, -2.

    Solution
    Direction ratios of AB are –1, 2, –2.
    ∴ direction cosines of AB are fraction numerator negative 1 over denominator square root of 1 plus 4 plus 4 end root end fraction comma space space fraction numerator 2 over denominator square root of 1 plus 4 plus 4 end root end fraction comma space fraction numerator negative 2 over denominator square root of 1 plus 4 plus 4 end root end fraction
    i.e.,            negative 1 third comma space 2 over 3 comma space minus 2 over 3
    P and Q are (3, -1, 2) and (2, 4, -1)
    therefore   projection of PQ on AB
                        equals space left parenthesis 2 minus 3 right parenthesis space open parentheses negative 1 third close parentheses plus left parenthesis 4 plus 1 right parenthesis space open parentheses 2 over 3 close parentheses plus left parenthesis negative 1 minus 2 right parenthesis space open parentheses negative 2 over 3 close parentheses
equals space 1 third plus 10 over 3 plus 6 over 3 space equals 17 over 3
    Question 21
    CBSEENMA12033239

    Find the projection of the line segment joining the points (1, 2, 3), (4, 3, 1) on the line with direction ratios 3, –6, –2.

    Solution
    Let P (1, 2, 3), Q (4, 3, 1) be given points and AB be the line whose direction ratios are 3; – 6, 2.
    Direction cosines of AB are
    fraction numerator 3 over denominator square root of 9 plus 36 plus 4 end root end fraction comma space space fraction numerator negative 6 over denominator square root of 9 plus 36 plus 4 end root end fraction comma space space fraction numerator negative 2 over denominator square root of 9 plus 36 plus 4 end root end fraction space space straight i. straight e. comma space space 3 over 7 comma space minus 6 over 7 comma space minus 2 over 7
    Projection of PQ on AB = (4-1) + open parentheses 3 over 7 close parentheses plus space left parenthesis 3 minus 2 right parenthesis space open parentheses negative 6 over 7 close parentheses space plus space left parenthesis 1 minus 3 right parenthesis space open parentheses negative 2 over 7 close parentheses
                                          equals space 9 over 7 minus 6 over 7 plus 4 over 7 space equals space 7 over 1 space equals space 1.
           
    Question 22
    CBSEENMA12033240

    Find the projection of the line segment joining the points (2, -3, 0), (0, 4, 5) on the line with direction cosines 2 over 3 comma space 3 over 7 comma space minus 6 over 7

    Solution

    P, Q are the points (2, –3, 0), (0, 4, 5) and direction cosines of line AB are 2 over 7 comma space 3 over 7 comma space minus 6 over 7
    therefore   projection of PQ on AB = open vertical bar left parenthesis 0 minus 2 right parenthesis space open parentheses 2 over 3 close parentheses plus left parenthesis 4 minus 3 right parenthesis space open parentheses 3 over 7 close parentheses plus left parenthesis 5 minus 0 right parenthesis space open parentheses negative 6 over 7 close parentheses close vertical bar
                                                equals space open vertical bar negative 4 over 7 plus 21 over 7 minus 30 over 7 close vertical bar space equals space open vertical bar negative 4 over 7 minus 9 over 7 close vertical bar
equals space open vertical bar fraction numerator negative 4 minus 9 over denominator 7 end fraction close vertical bar space equals space 13 over 7

    Question 23
    CBSEENMA12033241

    A directed line segment makes angles 45° and 60° with x-axis and y-axis and an acute angle with z-axis. If P (– 1, 2, – 3) and Q (4, 3, 1) are two points in space, find the projection of PQ on the given line.

    Solution
    Let l, m, n be the direction cosines of the given line AB. Then
    straight l space equals space cos space 45 degree comma space space space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space space straight m space equals space cos space 60 degree space equals space 1 half
    Now straight l squared plus straight m squared plus straight n squared space equals space 1 space space space space space rightwards double arrow space space space space space 1 half plus 1 fourth plus straight n squared space equals space 1 space space space rightwards double arrow space space space straight n squared space equals space 1 fourth
    therefore space space space straight n space equals space 1 half
    [∵ line AB makes acute angle with z-axis]
    therefore   direction cosines of line AB are fraction numerator 1 over denominator square root of 2 end fraction comma space 1 half comma space 1 half.
    Now,   P, Q are (-1, 2, -3), (4, 3, 1).
    therefore  projection of PQ on AB = (4+1).  fraction numerator 1 over denominator square root of 2 end fraction plus left parenthesis 3 minus 2 right parenthesis. space 1 half plus left parenthesis 1 plus 3 right parenthesis. space 1 half
                                                                     open square brackets because space space of space left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis space straight l space plus space left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis space straight m space plus left parenthesis straight z subscript 2 minus straight z subscript 1 right parenthesis space straight n close square brackets
                                              equals space fraction numerator 5 over denominator square root of 2 end fraction plus 1 half plus 4 over 2 space equals space fraction numerator 5 over denominator square root of 2 end fraction plus 5 over 2 space equals space fraction numerator 5 square root of 2 plus 5 over denominator 2 end fraction space equals 5 over 2 left parenthesis square root of 2 plus 1 right parenthesis
    Question 24
    CBSEENMA12033242

    If A and B are the points (– 1, 2, 1) and (4, 3, 5). Find the projection of AB on a line which makes angles of 120° and 135° with y-axis and z-axis respectively and acute angle with x-axis.

    Solution
    Let l, m, n be the direction cosines of the given line PQ. Then
                  straight m equals space cos space 120 degree space equals space cos space left parenthesis 180 degree space minus space 160 degree right parenthesis space equals space minus cos space 60 degree space equals space minus 1 half.
straight n space equals space cos space 135 space degree space equals space cos space left parenthesis 180 degree minus 45 degree right parenthesis space equals space minus cos space 45 degree space equals negative fraction numerator 1 over denominator square root of 2 end fraction
    Now,    straight l squared plus straight m squared plus straight n squared space equals space 1 space space space space space space space space space rightwards double arrow space space space space straight l squared plus 1 fourth plus 1 half space equals 1 space space space space rightwards double arrow space space space straight l squared space equals space 1 fourth
    therefore space space space straight l space equals space 1 half
    [∵    line PQ makes acute angle with x-axis]
    therefore  direction cosines of PQ are 1 half comma space minus 1 half space minus fraction numerator 1 over denominator square root of 2 end fraction
     Now A and B are (–1, 2, 1), (4, 3, 5) respectively
    therefore  projection of AB on PQ = left parenthesis 4 plus 1 right parenthesis. space open parentheses 1 half close parentheses plus space left parenthesis 3 minus 2 right parenthesis space open parentheses negative 1 half close parentheses plus left parenthesis 5 minus 1 right parenthesis. space open parentheses negative fraction numerator 1 over denominator square root of 2 end fraction close parentheses
                                                              open square brackets because space space of space left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis space straight l space plus left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis space straight m space plus space left parenthesis straight z subscript 2 minus straight z subscript 1 right parenthesis space straight n close square brackets
                                              equals negative 5 over 2 minus 1 half minus fraction numerator 4 over denominator square root of 2 end fraction space equals space 2 minus square root of 2
    Question 25
    CBSEENMA12033243

    A and B are the points (2, – 1, 3) and (4, 2, 5). Find the projection of AB on a line which is inclined at equal acute angles with the co-ordinate axes.

    Solution
    Let α be the angle which the line PQ makes with all the axes.
    therefore  its direction cosines are cos space straight alpha comma space space cosα comma space cosα.
    therefore space space cos squared straight alpha plus cos squared straight alpha plus cos squared straight alpha space equals space 1 space space space space space space space space space left square bracket straight l squared plus straight m squared plus straight n squared space equals space 1 right square bracket
    therefore space space 3 space cos squared space straight alpha space equals space 1 space space space space rightwards double arrow space space space space cos squared straight alpha space equals space 1 third space space space rightwards double arrow space space space cos space straight alpha space equals space plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction
    therefore    cos space straight alpha space equals space fraction numerator 1 over denominator square root of 3 end fraction                        open square brackets because space line space makes space acute space angle space straight alpha space with space each space axis close square brackets
    therefore                  straight l space equals straight m space equals space straight n space space equals fraction numerator 1 over denominator square root of 3 end fraction
    where l, m, n are direction cosines of line PQ.
    A, B are points (2, – 1, 3), (4, 2, 5).
    therefore    projection of AB on PQ = (4 - 2). fraction numerator 1 over denominator square root of 3 end fraction + (2+1).  fraction numerator 1 over denominator square root of 3 end fraction plus left parenthesis 5 minus 3 right parenthesis. space fraction numerator 1 over denominator square root of 3 end fraction
                                                       open square brackets because space space of space space left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis straight l space plus space left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis space straight m space plus space left parenthesis straight z subscript 2 minus straight z right parenthesis space straight n close square brackets
                                 equals space fraction numerator 2 over denominator square root of 3 end fraction plus fraction numerator 3 over denominator square root of 3 end fraction plus fraction numerator 2 over denominator square root of 3 end fraction space equals space fraction numerator 2 plus 3 plus 2 over denominator square root of 3 end fraction space equals fraction numerator 7 over denominator square root of 3 end fraction space units. space
    Question 26
    CBSEENMA12033244

    If P, Q, R, S are the points (– 2, 3, 4), (– 4, 4, 6), (4, 3, 5), (0, 1, 2), prove by projection that PQ is perpendicular to RS.

    Solution

    The given points are P (– 2, 3, 4), Q (– 4, 4, 6), R (4, 3, 5) and S (0, 1, 2).
    Direction ratios of RS are. 0 – 4, 1 – 3, 2 – 5 i.e., – 4, – 2, – 3
    ∴    direction-cosines of RS are
         negative fraction numerator 4 over denominator square root of 16 plus 4 plus 9 end root end fraction comma space space minus fraction numerator 2 over denominator square root of 16 plus 4 plus 9 end root end fraction comma space minus fraction numerator 3 over denominator square root of 16 plus 4 plus 9 end root end fraction space space space straight i. straight e. comma space space minus fraction numerator 4 over denominator square root of 29 end fraction comma space minus fraction numerator 2 over denominator square root of 29 end fraction comma space minus fraction numerator 3 over denominator square root of 29 end fraction
    therefore       projection of PQ on RS
                                  equals space open square brackets negative 4 minus left parenthesis negative 2 right parenthesis close square brackets space space space open parentheses negative fraction numerator 4 over denominator square root of 29 end fraction close parentheses plus left parenthesis 4 minus 3 right parenthesis space open parentheses negative fraction numerator 2 over denominator square root of 29 end fraction close parentheses plus left parenthesis 6 minus 4 right parenthesis space open parentheses negative fraction numerator 3 over denominator square root of 29 end fraction close parentheses
                                                                      open square brackets because space space space of space space space left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis space straight l space plus space left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis space straight m space plus space left parenthesis straight z subscript 2 minus straight z subscript 1 right parenthesis space straight n close square brackets
                                    equals space left parenthesis negative 2 right parenthesis space open parentheses negative fraction numerator 4 over denominator square root of 29 end fraction close parentheses plus left parenthesis 1 right parenthesis space open parentheses negative fraction numerator 2 over denominator square root of 29 end fraction close parentheses plus left parenthesis 2 right parenthesis space open parentheses negative fraction numerator 3 over denominator square root of 29 end fraction close parentheses
equals fraction numerator 8 over denominator square root of 29 end fraction minus fraction numerator 2 over denominator square root of 29 end fraction minus fraction numerator 6 over denominator square root of 29 end fraction equals 0
    ∴ PQ is perpendicular to RS.
    [∵ projection of a line perpendicular to it is zero]

    Question 27
    CBSEENMA12033245

    Show that the line through the points (1, –1, 2), (3, 4, –2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

    Solution

    Let P (1, –1, 2), Q (3, 4, –2), R (0, 3, 2) and S (3, 5, 6) be given points.
    Direction ratios of RS are 3 - 0, 5 - 3, 6 - 2 i.e. 3, 2, 4.
    ∴  direction cosines of RS are
            fraction numerator 3 over denominator square root of 9 plus 4 plus 16 end root end fraction comma space space fraction numerator 2 over denominator square root of 9 plus 4 plus 16 end root end fraction comma space fraction numerator 4 over denominator square root of 9 plus 4 plus 6 end root end fraction
    i.e.,    fraction numerator 3 over denominator square root of 29 end fraction comma space fraction numerator 2 over denominator square root of 29 end fraction comma space fraction numerator 4 over denominator square root of 29 end fraction
    Projection of PQ on RS
                               equals space left parenthesis 3 minus 1 right parenthesis space open parentheses fraction numerator 3 over denominator square root of 29 end fraction close parentheses plus space left parenthesis 4 plus 1 right parenthesis space open parentheses fraction numerator 2 over denominator square root of 29 end fraction close parentheses plus left parenthesis negative 2 minus 2 right parenthesis space open parentheses fraction numerator 4 over denominator square root of 29 end fraction close parentheses
space equals space fraction numerator 6 over denominator square root of 29 end fraction plus fraction numerator 10 over denominator square root of 29 end fraction minus fraction numerator 16 over denominator square root of 29 end fraction equals 0

    ∴  PQ is perpendicular to RS
    Hence the result.

    Question 28
    CBSEENMA12033246

    A, B, C, D are the points (1, – 1, 0), (2, 1, – 1), (– 3, 2, 2) and (0, – 2, – 1) respectively. Find the projection of AB on CD.

    Solution

    The given points are A (1, – 1, 0), B (2, 1, – 1), C (– 3, 2, 2) and D (0, – 2, – 1).
    Direction ratios of CD are 0 + 3, – 2 – 2, – 1 – 2  i.e.. 3, – 4, 3
    ∴ Direction ratios of CD are 0 + 3, – 2 – 2, – 1 – 2   i.e.. 3, –  4, 3
    ∴ direction cosines of CD are
                             fraction numerator 3 over denominator square root of 9 plus 16 plus 9 end root end fraction comma space fraction numerator negative 4 over denominator square root of 9 plus 16 plus 9 end root end fraction comma space fraction numerator negative 3 over denominator square root of 9 plus 16 plus 9 end root end fraction space space straight i. straight e. comma space space space fraction numerator 3 over denominator square root of 34 end fraction comma space minus fraction numerator 4 over denominator square root of 34 end fraction comma space minus fraction numerator 3 over denominator square root of 34 end fraction
    therefore space space space projection space of space AB space on space CD space equals space left parenthesis 2 minus 1 right parenthesis space open parentheses fraction numerator 3 over denominator square root of 34 end fraction close parentheses plus left parenthesis 1 plus 1 right parenthesis space open parentheses fraction numerator negative 4 over denominator square root of 34 end fraction close parentheses plus left parenthesis 1 minus 0 right parenthesis space open parentheses negative fraction numerator 3 over denominator square root of 34 end fraction close parentheses
                                                           open square brackets because space space of space space left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis space straight l space plus space left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis space straight m space plus space left parenthesis straight z subscript 2 minus straight z subscript 1 right parenthesis space straight n close square brackets
                                                                                                  (in magnitude)
    equals space fraction numerator 3 over denominator square root of 34 end fraction minus fraction numerator 8 over denominator square root of 34 end fraction plus fraction numerator 3 over denominator square root of 34 end fraction space equals negative fraction numerator 2 over denominator square root of 34 end fraction equals fraction numerator 2 over denominator square root of 34 end fraction

    Question 29
    CBSEENMA12033247

    The projection of a line segment on x, y and z-axes are respectively 12. 4 and 3. Find the length and the direction-cosines of the line segment.

    Solution

    Let l, m, n be the direction-cosines of the line and let the length of the line segment be r.
    ∵    projections of the line segment on the axis are 12, 4, 3,
    ∴   l r = 12, m r = 4, n r = 3
    Squaring and adding, we get,
    (l2 + m2 + n2) r2 = 144 + 16 + 9
    ∴   (1) (r)2 = 169,    ∴ r = 13
    therefore                                     straight l space equals 12 over 13 comma space space straight m space equals 4 over 13 comma space straight n space equals 3 over 13
      ∴    length of the line = 13 units
    and direction-cosines of line are 12 over 13 comma space 4 over 13 comma space 3 over 13. comma space

    Question 30
    CBSEENMA12033248

    The projections of a directed line segment on the co-ordinate axes are 6, -3, 2. Find its length and direction cosines. 

    Solution

    Let l, m, n be the direction cosines of the line and let the length of the line segment be r.
    ∵  projection of the line segment on the axes are 6, - 3, 2
    ∴ l r = 6, m r = – 3, n r = 2
    Squaring and adding, we get,
    (l2 + m2 + n2) r2 = 36 + 9 + 4
    ∴    r2 = 49 ⇒ r = 7
    therefore space space space straight l space equals space 6 over 7 comma space space straight m space equals negative 3 over 7 comma space straight n space equals 2 over 7
    therefore length of line  = 7  units. 
    and direction cosines of line are 6 over 7 comma space space minus 3 over 7 comma space 2 over 7.

    Question 31
    CBSEENMA12033249

    The projection of a line on the co-ordinate axes are 6, 2, 3. Find the length of the line and its direction cosines. Also, find the projection of the line segment joining (2, – 3, 1) to (4, 2, 3) on this line.

    Solution

    Let l, m, n be the direction cosines of the line PQ and let the length of the line segment be r.
    ∵    projections of the line segment on the axes are 6, 2, 3.
    ∴    l r = 6, m r = 2, n r = 3
    Squaring and adding. we get,
    (l2 + m2 + n2) r2 = 36 + 4 + 9
    ∵  r2 = 49 ⇒ r = 7
    therefore space space space space straight l space equals space 6 over 7 comma space straight m space equals space 2 over 7 comma space space straight n space equals 3 over 7

     ∴ length of line = 7 units
    and direction cosines of line PQ are 6 over 7 comma space 2 over 7 comma space 3 over 7.
    We are to find projection of line segment joining A (2, -3, 1) to B (4, 2, 3) on PQ
    therefore space space space projection space of space AB space on space PQ space equals space left parenthesis 4 minus 2 right parenthesis space open parentheses 6 over 7 close parentheses plus left parenthesis 2 plus 3 right parenthesis space open parentheses 2 over 7 close parentheses plus left parenthesis 3 minus 1 right parenthesis space open parentheses 3 over 7 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 12 over 7 plus 10 over 7 plus 6 over 7 space equals 28 over 7 space equals space 4
    Question 32
    CBSEENMA12033250

    A (– 1, 2, – 3), B (5, 0, – 6), C (0, 4, – 1) are three points. Show that the direction cosines of the bisectors of     are proportional to 25, 8, 5 and -11, AB space equals space square root of left parenthesis 5 plus 1 right parenthesis squared plus left parenthesis 0 minus 2 right parenthesis squared plus left parenthesis negative 6 plus 3 right parenthesis squared end root
space space space space space space equals space square root of 36 plus 4 plus 9 end root space equals space square root of 49 space equals space 7
AC space equals space square root of left parenthesis 0 plus 1 right parenthesis squared plus left parenthesis 4 minus 2 right parenthesis squared plus left parenthesis negative 1 plus 3 right parenthesis squared end root
space space space space space space space space equals space square root of 1 plus 4 plus 4 end root space equals space square root of 9 space equals space 3

    Solution
    A, B, C are the points (– 1, 2, – 3), (5, 0, – 6), (0, 4, – 1) respectively.
    AB space equals space square root of left parenthesis 5 plus 1 right parenthesis squared plus left parenthesis 0 minus 2 right parenthesis squared plus left parenthesis negative 6 plus 3 right parenthesis squared end root
space space space space space space space equals square root of 36 plus 4 plus 9 end root space equals space square root of 49 space equals space 7
AC space equals space square root of left parenthesis 0 plus 1 right parenthesis squared plus left parenthesis 4 minus 2 right parenthesis squared plus left parenthesis negative 1 plus 3 right parenthesis squared end root
space space space space space space space equals square root of 1 plus 4 plus 4 end root space equals space square root of 9 space equals space 3
                 Syntax error from line 1 column 252 to line 1 column 355. Unexpected '<mlongdiv '.
    because space space space BD over CD equals AB over AC equals 7 over 3
        

    ∴   D divides BC internally in the ratio 7 : 3 and E divides BC externally in the ratio 7 : 3
    therefore space space space straight D space is space open parentheses fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis 0 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 5 right parenthesis over denominator 7 plus 3 end fraction comma space fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 0 right parenthesis over denominator 7 plus 3 end fraction comma space fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis negative 1 right parenthesis plus left parenthesis negative 3 right parenthesis thin space left parenthesis negative 6 right parenthesis over denominator 7 plus 3 end fraction close parentheses
    i.e.,        open parentheses 15 over 10 comma space 28 over 10 comma space minus 25 over 10 close parentheses space space space straight i. straight e. comma space space space open parentheses 3 over 2 comma space 14 over 5 comma space minus 5 over 2 close parentheses
    E is open parentheses fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis 0 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis 5 right parenthesis over denominator 7 minus 3 end fraction comma space fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis 0 right parenthesis over denominator 7 minus 3 end fraction comma space fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis negative 1 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis negative 6 right parenthesis over denominator 7 minus 3 end fraction close parentheses
     i.e,  open parentheses negative 15 over 4 comma space 28 over 4 comma space 11 over 4 close parentheses space space space space straight i. straight e. comma space space space space open parentheses fraction numerator negative 15 over denominator 4 end fraction comma space 7 comma space 11 over 4 close parentheses
    Directionratios of AD are 3 over 2 plus 1 comma space space 14 over 5 minus 2 comma space space fraction numerator negative 5 over denominator 2 end fraction plus 3
    i.e.,     5 over 2 comma space space 4 over 5 comma space 1 half space space space or space space space 25 comma space 8 comma space 5
    Direction ratios of AE are  negative 15 over 4 plus 1 comma space space 7 minus 2 comma space space 11 over 4 plus 3
    i.e.,    negative 11 over 4 comma space 5 comma space 23 over 4 space space or space space space minus 11 comma space 20 comma space 33
    Question 33
    CBSEENMA12033251

    The cartesian equations of a line are fraction numerator straight x minus 5 over denominator 3 end fraction space equals space fraction numerator straight y plus 4 over denominator 7 end fraction space equals fraction numerator straight z minus 6 over denominator 2 end fraction. Find a vector equation for the line.

    Solution
    The cartesian equations of line are
          fraction numerator straight x minus 5 over denominator 3 end fraction space equals fraction numerator straight y plus 4 over denominator 7 end fraction space equals fraction numerator straight z minus 6 over denominator 2 end fraction
    ∴   line passes through (5, - 4, 6) and has direction-ratios 3, 7, 2
    space space space therefore space space space space straight a with rightwards arrow on top space equals space 5 straight i with hat on top space minus space 4 straight j with hat on top space plus space 6 straight k with hat on top space space and space space straight m with rightwards arrow on top space equals space 3 straight i with hat on top plus 7 straight j with hat on top space plus space 2 straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line
    ∴ the vector equation of line is
                      straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus space straight lambda space straight m with rightwards arrow on top
    or       straight r with rightwards arrow on top space equals space left parenthesis 5 space straight i with bar on top space minus space 4 stack space straight j with hat on top space plus space 6 straight k with hat on top right parenthesis space plus space straight lambda left parenthesis 3 space 1 with overparenthesis on top space plus space 7 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    where λ is a parameter.
    Question 34
    CBSEENMA12033252

    The Cartesian equation of a line is fraction numerator straight x plus 3 over denominator 2 end fraction space equals space fraction numerator straight y minus 5 over denominator 4 end fraction space equals fraction numerator straight z plus 6 over denominator 2 end fraction. Find the vector equation for the line. 

    Solution
    The Cartesian equation of line is 
                 fraction numerator straight x plus 3 over denominator 2 end fraction space equals space fraction numerator straight y minus 5 over denominator 4 end fraction space equals space fraction numerator straight z plus 6 over denominator 2 end fraction
    or         fraction numerator straight x minus left parenthesis negative 3 right parenthesis over denominator 2 end fraction space equals fraction numerator straight y minus 5 over denominator 4 end fraction space equals space fraction numerator straight z minus left parenthesis negative 6 right parenthesis over denominator 2 end fraction
    ∴   line passes through (– 3, 5, – 6) and has direction ratios 2, 4, 2.
    therefore space space space straight a with rightwards arrow on top space equals space minus 3 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 6 space straight k with hat on top space space and space space straight m with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 2 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line. 
    ∴ the vector equation of line is
                                    straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda straight m with rightwards arrow on top
    or                             straight r with rightwards arrow on top space equals space left parenthesis negative 3 space straight i with overparenthesis on top space plus space 5 space straight j with overparenthesis on top space minus space 6 space straight k with overparenthesis on top right parenthesis plus space straight lambda space left parenthesis 2 straight i with hat on top space plus space 4 straight j with hat on top space plus space 2 straight k with hat on top right parenthesis
    Question 35
    CBSEENMA12033253

    Find the cartesian equation of the line which passes through the point (-2, 4, -5) and is parallel to the line given by fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 4 over denominator 5 end fraction space equals fraction numerator straight z plus 8 over denominator 6 end fraction

    Solution

    Direction-ratios of the line fraction numerator straight x plus 3 over denominator 3 end fraction space equals fraction numerator straight y minus 4 over denominator 5 end fraction space equals fraction numerator straight z plus 8 over denominator 6 end fraction space space are space 3 comma space 5 comma space 6.
    ∴     equation of the line through (–2, 4, –5) and having direction ratios 3, 5, 6 are
    fraction numerator straight x plus 2 over denominator 3 end fraction space equals fraction numerator straight y minus 4 over denominator 5 end fraction space equals fraction numerator straight z plus 8 over denominator 6 end fraction

    Question 36
    CBSEENMA12033254

    Find the equations of a line which is parallel to the line fraction numerator straight x minus 2 over denominator 3 end fraction space equals fraction numerator straight y plus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 7 over denominator 9 end fraction and which passes through the point (3, 0, 5).

    Solution
    Direction-ratios of the line fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 7 over denominator 9 end fraction space space are space 3 comma space 1 comma space 9
    ∴      equations of line through (3, 0, 5) and having direction-ratios 3, 1, 9 are 
    fraction numerator straight x minus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 0 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 9 end fraction
    Question 37
    CBSEENMA12033255

    For the cartesian and vector equation of a line which passes through the point (1, 2, 3) and is parallel to the line fraction numerator negative straight x minus 2 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator 7 end fraction space equals space fraction numerator 2 straight z minus 6 over denominator 3 end fraction.

    Solution
    The given line is
                            fraction numerator negative straight x minus 2 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator 7 end fraction space equals space fraction numerator 2 straight z minus 6 over denominator 3 end fraction
    or                   fraction numerator straight x plus 2 over denominator negative 1 end fraction space equals space fraction numerator straight y plus 3 over denominator 7 end fraction space equals space fraction numerator straight z minus 3 over denominator begin display style 3 over 2 end style end fraction space space space space space space space or space space space space space fraction numerator straight x plus 2 over denominator negative 2 end fraction space equals space fraction numerator straight y plus 3 over denominator 14 end fraction space equals fraction numerator straight z minus 3 over denominator 3 end fraction
    Its direction ratios are –2, 14, 3
    ∴   cartesian equation of line through (1, 2, 3) and having direction ratios –2, 14, 3 are
              fraction numerator straight x minus 1 over denominator negative 2 end fraction space equals space fraction numerator straight y minus 2 over denominator 14 end fraction space equals fraction numerator straight z minus 3 over denominator 3 end fraction
    Now,     straight a with rightwards arrow on top space equals space straight i with overparenthesis on top space plus space 2 straight j with overparenthesis on top plus 3 stack straight k comma with overparenthesis on top space space space straight m with rightwards arrow on top space equals space minus 2 space straight i with overparenthesis on top space plus space 14 space straight j with hat on top space plus space 3 space straight k with hat on top
    ∴    vector equation of line is
                        straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda straight m with rightwards arrow on top
    or              straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top plus 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis plus straight lambda left parenthesis negative 2 space straight i with hat on top plus 14 space straight j with hat on top plus 3 space straight k with hat on top right parenthesis.
    Question 38
    CBSEENMA12033256

    Find the equation of line (vector and cartesian both) which is parallel to the vector 2 straight i with hat on top space minus straight j with hat on top plus 3 space straight k with hat on top and which passes through the point (5, -2, 4).

    Solution
    We know that the equation of a straight line passing through a fixed point with position vector straight a with rightwards arrow on top and parallel to the vector straight m with rightwards arrow on top is 
                                  straight r with rightwards arrow on top space equals straight a with rightwards arrow on top plus straight lambda straight m with rightwards arrow on top                         ...(1)
    where λ is a parameter.
    Here straight a with rightwards arrow on top space equals space 5 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 4 space straight k with hat on top  and  straight m with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top
    ∴ from (1), the vector equation of line is
    straight r with rightwards arrow on top space equals space open parentheses 5 space straight i with hat on top space minus space 2 stack space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space space plus space straight lambda space open parentheses 2 space straight i with overparenthesis on top space minus space straight j with overparenthesis on top plus space 3 space straight k with overparenthesis on top close parentheses                    ...(2)
    Now  straight r with rightwards arrow on top space equals space straight x straight i with hat on top space plus space straight y space straight j with hat on top space plus straight z space straight k with hat on top space space as space straight r with rightwards arrow on top is the position vector of (x, y, z).
    ∴ from (2), we get,
    straight x straight i with hat on top space plus space straight y space straight j with hat on top plus space straight z space straight k with hat on top space equals space left parenthesis 2 straight lambda plus 5 right parenthesis space straight i with hat on top space minus space left parenthesis straight lambda plus 2 right parenthesis space straight j with hat on top plus left parenthesis 3 space straight lambda space plus space 4 right parenthesis space straight k with overparenthesis on top
    Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space stack straight k comma with hat on top space we space get comma
    x = 2 λ + 5, y = – (λ + 2), z = 3 λ + 4
    This is the parametric form of the equation.
    Again, fraction numerator straight x minus 5 over denominator 2 end fraction space equals fraction numerator straight y plus 2 over denominator negative 1 end fraction equals fraction numerator straight z minus 4 over denominator 3 end fraction space equals straight lambda
    ∴ cartesian form of the line is   fraction numerator straight x minus 5 over denominator 2 end fraction space equals fraction numerator straight y plus 2 over denominator negative 1 end fraction space equals fraction numerator straight z minus 4 over denominator 3 end fraction
    Question 39
    CBSEENMA12033257

    Find the vector equation of the line passing through the point (2, –1, –1) which is parallel to the lines 6 x – 2 = 3 y + 1 = 2 z – 2.

    Solution

    Here straight a with rightwards arrow on top space equals space 2 straight i with overparenthesis on top space minus straight j with overparenthesis on top space minus straight k with overparenthesis on top
    The equation of line is
               6 straight x minus 2 space equals space 3 straight y plus 1 space equals space 2 straight z minus 2
    or       fraction numerator straight x minus begin display style 1 third end style over denominator begin display style 1 over 6 end style end fraction space equals space fraction numerator straight y plus begin display style 1 third end style over denominator begin display style 1 third end style end fraction space equals space fraction numerator straight z minus 1 over denominator begin display style 1 half end style end fraction space space space or space fraction numerator straight x minus begin display style 1 third end style over denominator 1 end fraction space equals fraction numerator straight y plus begin display style 1 third end style over denominator 2 end fraction space equals space fraction numerator straight z minus 1 over denominator 3 end fraction
    ∴     direction ratios of the line are 1, 2, 3.
    ∴     line is parallel to the vector
    straight b with rightwards arrow on top space equals space straight i with overparenthesis on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top
    ∴ vector equation of line is
    straight r with rightwards arrow on top space equals space left parenthesis 2 straight i with overparenthesis on top minus straight j with overparenthesis on top plus straight k with overparenthesis on top right parenthesis space plus space straight lambda left parenthesis straight i with overparenthesis on top plus 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis

    Sponsor Area

    Question 40
    CBSEENMA12033258

    The equation of a line is given by fraction numerator 4 minus straight x over denominator 2 end fraction space equals space fraction numerator straight y plus 3 over denominator 3 end fraction space equals fraction numerator straight z plus 2 over denominator 6 end fraction. Write the direction cosines of a line parallel to the above line. 

    Solution
    The equation of given line is
                                   fraction numerator 4 minus straight x over denominator 2 end fraction space equals space fraction numerator straight y plus 3 over denominator 2 end fraction space equals space fraction numerator straight z plus 2 over denominator 6 end fraction
    or                        fraction numerator straight x minus 4 over denominator negative 2 end fraction space equals space fraction numerator straight y plus 3 over denominator 3 end fraction space equals space fraction numerator straight z plus 2 over denominator 6 end fraction
    Its direction ratios are - 2, 3, 6
    ∴  direction ratios of a line parallel to given line are – 2, 3, 6.
    ∴  direction cosines of line are       fraction numerator negative 2 over denominator square root of 4 plus 9 plus 36 end root end fraction comma space fraction numerator 3 over denominator square root of 4 plus 9 plus 36 end root end fraction comma space fraction numerator 6 over denominator square root of 4 plus 9 plus 36 end root end fraction space space space straight i. straight e. space space minus fraction numerator 2 over denominator square root of 49 end fraction comma space fraction numerator 3 over denominator square root of 49 end fraction comma space fraction numerator 6 over denominator square root of 49 end fraction
    i.e.,   negative 2 over 7 comma space 3 over 7 comma space 6 over 7.
    Question 41
    CBSEENMA12033259

    The equation of a line is fraction numerator 2 straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y plus 4 over denominator 3 end fraction space equals fraction numerator 6 minus straight z over denominator 6 end fraction. Find the direction cosines of a line parallel to this line. 

    Solution
    The equation of given line is
                              fraction numerator 2 straight x minus 5 over denominator 4 end fraction space equals fraction numerator straight y plus 4 over denominator 3 end fraction space equals fraction numerator 6 minus straight z over denominator 6 end fraction
    or                 fraction numerator straight x minus begin display style 5 over 2 end style over denominator 2 end fraction space equals space fraction numerator straight y plus 4 over denominator 3 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 6 end fraction
    Its direction ratios are 2, 3, -6
    The direction ratios of a line parallel to given line are 2, 3. - 6
    therefore     direction cosines are fraction numerator 2 over denominator square root of 4 plus 9 plus 36 end root end fraction comma space fraction numerator 3 over denominator square root of 4 plus 9 plus 36 end root end fraction comma space fraction numerator negative 6 over denominator square root of 4 plus 9 plus 36 end root end fraction
    i.e.     fraction numerator 2 over denominator square root of 49 end fraction comma space fraction numerator 3 over denominator square root of 49 end fraction comma space fraction numerator negative 6 over denominator square root of 49 end fraction
    i.e.       2 over 7 comma space 3 over 7 comma space minus 6 over 7
    Question 42
    CBSEENMA12033260

    The cartesian equations of a line are 3 x + 1 = 6 y – 2 = 1 – z. Find the fixed point through which it passes, its direction ratios and also its vector equation.

    Solution
    The cartesian equations of line are
                              3 straight x plus 1 space equals space 6 straight y minus 2 space equals space 1 minus straight z
    or             3 open parentheses straight x plus 1 third close parentheses space equals space 6 space open parentheses straight y minus 1 third close parentheses space equals space minus left parenthesis straight z minus 1 right parenthesis
    or          fraction numerator straight x minus open parentheses negative begin display style 1 third end style close parentheses over denominator begin display style 1 third end style end fraction space equals space fraction numerator straight y minus begin display style 1 third end style over denominator begin display style 1 over 6 end style end fraction space equals space fraction numerator straight z minus 1 over denominator negative 1 end fraction.
    or              fraction numerator straight x minus open parentheses negative begin display style 1 third end style close parentheses over denominator 2 end fraction space equals space fraction numerator straight y minus begin display style 1 third end style over denominator 1 end fraction space equals space fraction numerator straight z minus 1 over denominator negative 6 end fraction
    This is symmetric form of the given line.
    This line passes through fixed point open parentheses negative 1 third comma space 1 third comma space 1 close parentheses and has direction ratios 2, 1, -6.
    Here straight a with rightwards arrow on top space equals space minus 1 third straight i with overparenthesis on top space plus space 1 third straight j with hat on top plus straight k with hat on top comma space space space space space space straight m with rightwards arrow on top space equals space 2 straight i with hat on top plus straight j with hat on top space minus space 6 straight k with hat on top
    therefore    vector equation of line is
                                         straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda straight m with rightwards arrow on top
    or                                   straight r with rightwards arrow on top space equals space open parentheses negative 1 third straight i with hat on top plus 1 third straight j with overparenthesis on top plus straight k with hat on top close parentheses space plus space straight lambda space left parenthesis 2 straight i with hat on top plus straight j with hat on top minus 6 straight k with hat on top right parenthesis
    Question 43
    CBSEENMA12033261

    Find the equation of the line which passes through the point (3, 4, 5) and is parallel to the vector 2 straight i with hat on top plus 2 straight j with hat on top minus 3 straight k with hat on top.

    Solution
    Since the line passes through the point (3, 4, 5) and is parallel to the vector 
    2 straight i with overparenthesis on top plus 2 space straight j with overparenthesis on top space minus space 3 space straight k with overparenthesis on top.
    therefore                         straight a with rightwards arrow on top space equals space 3 straight i with hat on top plus 4 straight j with hat on top plus 5 straight k with hat on top comma space space straight m with rightwards arrow on top space equals space 2 straight i with hat on top space plus space 2 straight j with hat on top space minus space 3 straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the line.
    ∴ the vector equation of line is straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda straight m with rightwards arrow on top
    or            straight r space equals space left parenthesis 3 straight i with hat on top space plus space 4 straight j with hat on top space plus space 5 straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis 2 straight i with hat on top space plus space 2 straight j with hat on top space minus space 3 straight k with hat on top right parenthesis
    Question 44
    CBSEENMA12033262

    Find the vector and Cartesian equations of the line through the point (5, 2, – 4) and which is parallel to the vector 3 straight i with overparenthesis on top space plus space 2 straight j with overparenthesis on top space minus space 8 space straight k with overparenthesis on top.

    Solution
    Since the line passes through the point (5, 2, 4) and is parallel to the vector 3 straight i with hat on top space plus space 2 straight j with hat on top space minus space 8 straight k with hat on top.
    therefore space space space space straight a with rightwards arrow on top space equals space 5 straight i with hat on top space plus space 2 straight j with hat on top space minus space 4 straight k with hat on top comma space space space space straight m with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 2 straight j with hat on top space minus space 8 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position  vector of any point on the line.
    ∴     the vector equation of line is
                                straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus space straight lambda straight m with rightwards arrow on top
    or                      straight r with rightwards arrow on top space equals space left parenthesis 5 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis space plus space straight lambda left parenthesis 3 straight i with hat on top space plus space 2 straight j with hat on top space minus space 8 straight k with hat on top right parenthesis
    Taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top comma space the equation of line is
                   straight x straight i with hat on top space plus space straight y straight j with hat on top space plus space straight z straight k with hat on top space equals space left parenthesis 5 plus 3 straight lambda right parenthesis space straight i with hat on top space plus space left parenthesis 2 plus 2 straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis negative 4 minus 8 space straight lambda right parenthesis space straight k with hat on top
    Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma space we get,
                            straight x space equals 5 plus 3 straight lambda comma space space straight y space equals space 2 plus 2 straight lambda comma space space space straight z space equals space minus 4 minus 8 straight lambda
    or              fraction numerator straight x minus 5 over denominator 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z plus 4 over denominator negative 8 end fraction space equals space left parenthesis straight lambda right parenthesis
    which is cartesian equation of line. 
    Question 45
    CBSEENMA12033263

    Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector 3 straight i with overparenthesis on top space plus space 2 straight j with overparenthesis on top space minus space 2 straight k with overparenthesis on top.

    Solution
    Since the line passes through the point (1, 2, 3) and is parallel to the vector 3 straight i with hat on top space plus space 2 straight j with hat on top space minus space 2 straight k with hat on top.
    therefore space space space space space space space space space space space space straight a with rightwards arrow on top space equals space straight i with hat on top space plus space 2 straight j with hat on top space plus space 3 space straight k with hat on top comma space space straight m with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
    Let  straight r with rightwards arrow on top be the position vector of any point on the line.
    ∴ the vector equation of line is
                               straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda straight m with rightwards arrow on top
    or                        straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space stack straight k right parenthesis with hat on top
    Question 46
    CBSEENMA12033264

    Find equation of line, which is parallel to 2 straight i with hat on top plus straight j with hat on top minus straight k with hat on top and passes through (1, 2, 3).

    Solution
    We know that the equation of a straight line passing through a fixed point with position vector straight a with rightwards arrow on top and parallel to the vector straight m with rightwards arrow on top is straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda straight m with rightwards arrow on top   ...(1)
    where λ is a parameter.
    Here straight a with rightwards arrow on top space equals space straight i with hat on top plus 2 space straight j with hat on top plus 3 space straight k with hat on top space space and space straight m with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    ∴     from (1), the vector equation of line is
    straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top plus 2 space straight j with hat on top plus 3 space straight k with hat on top right parenthesis space plus space straight lambda thin space left parenthesis 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis
    Question 47
    CBSEENMA12033265

    Find the equation of a line, which is parallel to straight i with hat on top plus straight j with hat on top plus straight k with hat on top and passes through (2, 3, 1).

    Solution
    We know that the equation of a straight line passing through a fixed point with position vector straight a with rightwards arrow on top and parallel to the vector straight m with rightwards arrow on top space is space straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda straight m with rightwards arrow on top
    where λ is a parameter.
    Here straight a with rightwards arrow on top space equals space 2 straight i with hat on top space plus space 3 straight j with hat on top space plus space straight k with hat on top space and space straight m with rightwards arrow on top space equals space straight i with hat on top plus straight j with hat on top plus straight k with hat on top
    ∴    from (1), the vector equation of line is
    straight r with rightwards arrow on top space equals space left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis
    Question 48
    CBSEENMA12033266

    Find equation of a line, which is parallel to 2 straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top and passes through (1, ,1, 1).

    Solution
    We know that the equation of a straight line passing through a fixed point with position vector straight a with rightwards arrow on top space and space parallel space to space the space vector space straight m with rightwards arrow on top space is space
    straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda space straight m with rightwards arrow on top                                                   ...(1)  where X is a parameter
    Here,
    straight a with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top space space space and space space straight m with rightwards arrow on top space equals space 2 straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top
    ∴ from (1), the vector equation of line is
    straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top plus straight j with hat on top space plus space stack straight k right parenthesis with hat on top space plus space straight lambda space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top right parenthesis
    Question 49
    CBSEENMA12033267

    Find the point on the line fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction at a distance 3 square root of 2 from the point (1, 2, 3).

    Solution
    Any point on the line  fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction space is space straight P left parenthesis 3 space straight r space minus space 2 comma space 2 straight r minus 1 comma space 2 straight r plus 3 right parenthesis.
    Distance of P from the point Q(1, 2, 3) is 3 square root of 2
    therefore                          PQ space equals space 3 square root of 2 space space space space space space space space space space space space space space space rightwards double arrow space space space PQ squared space equals space 18
    therefore              left parenthesis 3 straight r minus 2 minus 1 right parenthesis squared space plus space left parenthesis 2 straight r minus 1 minus 2 right parenthesis squared space space plus left parenthesis 2 straight r plus 3 minus 3 right parenthesis squared space equals space 18
    therefore space space space space left parenthesis 3 straight r minus 3 right parenthesis squared plus left parenthesis 2 straight r minus 3 right parenthesis squared plus left parenthesis 2 straight r right parenthesis squared space equals space 18
therefore space space space space 9 straight r squared minus 18 straight r plus 9 plus 4 straight r squared minus 12 straight r plus 9 plus 4 straight r squared space equals space 18
therefore space space space space 17 straight r squared minus 30 straight r space equals space 0 space space space or space space space straight r left parenthesis 17 straight r minus 30 right parenthesis space equals space 0
therefore space space space space space space space space space space space space space space space space space space space space space straight r space equals space 0 comma space space 30 over 17.
    when r = 0,  P is (-2, -1, 3)
    when straight r space equals space 30 over 7 comma space space space straight P space is space open parentheses 90 over 17 comma space minus 2 comma space 60 over 17 minus 1 comma space 60 over 17 plus 3 close parentheses space space space space straight i. straight e. space space space open parentheses 56 over 17 comma space 43 over 17 comma space 111 over 17 close parentheses
    therefore    required point is left parenthesis negative 2 comma space minus 1 comma space 3 right parenthesis space or space open parentheses 56 over 17 comma space 43 over 17 comma space 111 over 17 close parentheses.
    Question 50
    CBSEENMA12033268

    Find the vector and the Cartesian equations for the line through the points A (3, 4, –7) and B (5, 1, 6).

    Solution
    The line passes through the points A (3, 4, –7) and B (5, 1,6).
    therefore space space space space space space space straight a with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 4 space straight j with hat on top space minus space 7 space straight k with hat on top comma space space space straight b with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space straight j with hat on top space plus 6 space straight k with hat on top
    where straight a with rightwards arrow on top comma space straight b with rightwards arrow on top are position vectors of A, B respectively.
    therefore                            straight b with rightwards arrow on top minus straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 13 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line. 
    ∴   the vector equation of the line is
                      straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda left parenthesis straight b with rightwards arrow on top minus stack straight a right parenthesis with rightwards arrow on top
    or              straight r with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 4 straight j with hat on top space minus space 7 straight k with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space minus space 3 straight j with hat on top space plus space 13 straight k with hat on top right parenthesis
    Taking     straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top comma space space the space equation space of space line space is
    straight x space straight i with hat on top space plus straight y space straight j with hat on top space space plus space straight z space straight k with hat on top space equals space left parenthesis 3 space plus space 2 space straight lambda right parenthesis space straight i with hat on top space plus space left parenthesis 4 minus 3 space straight lambda right parenthesis space straight j with hat on top space space plus space left parenthesis negative 7 plus 13 space straight lambda right parenthesis space straight k with hat on top
    Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top we get,
                               straight x space equals space 3 plus 2 space straight lambda comma space space space straight y space equals space 4 minus 3 straight lambda comma space space space straight z space equals space minus 7 space plus space 13 space straight lambda
    rightwards double arrow space space space space space space space space fraction numerator straight x minus 3 over denominator 2 end fraction space equals space fraction numerator straight y minus 4 over denominator negative 3 end fraction space equals space fraction numerator straight z plus 7 over denominator 13 end fraction space left parenthesis space equals space straight lambda right parenthesis
    which is the Cartesian equation of line.
    Question 51
    CBSEENMA12033269

    Find a vector equation of the line through the points A (3, 4, – 7) and B (1, – 1, 6).

    Solution
    The line passes through the points A (3, 4, – 7), B (1, – 1, 6)
    therefore space space space space straight a with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 4 straight j with hat on top space minus space 7 straight k with hat on top comma space space space space straight b with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space 6 space straight k with hat on top
    where straight a with rightwards arrow on top comma space straight b with rightwards arrow on top are position vectors of A and B respectively.
    therefore     straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top space equals space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space 6 straight k with hat on top close parentheses space minus space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 7 space straight k with hat on top close parentheses space equals space minus 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space 13 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line. 
    ∴     the vector equation of the line is
    straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda open parentheses straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top close parentheses
    or   straight r with rightwards arrow on top space equals space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 7 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space 13 space straight k with hat on top close parentheses where λ is a parameter.
    Question 52
    CBSEENMA12033270

    Find the vector equation for the line passing through the points (– 1, 0, 2) and (3, 4, 6).

    Solution
    The line passes through the points A(– 1, 0, 2), B(3, 4, 6).
    therefore space space space space space space straight a with rightwards arrow on top space equals space minus straight i with hat on top space plus space 2 space straight k with hat on top comma space space straight b with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space space plus space 6 space straight k with hat on top
    where  straight a with rightwards arrow on top comma space straight b with rightwards arrow on top  are position vectors of A and B respectively.
    therefore space space space space straight b with rightwards arrow on top minus straight a with rightwards arrow on top space equals space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top close parentheses space minus space left parenthesis negative space straight i with hat on top space plus space 2 space straight k with hat on top right parenthesis space equals space 4 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 4 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line. 
    ∴     the vector equation of line is
                        straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda left parenthesis straight b with rightwards arrow on top minus straight a with rightwards arrow on top right parenthesis
    or               straight r with rightwards arrow on top space equals space left parenthesis negative straight i with hat on top space plus space 2 space straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis 4 space straight i with hat on top plus 4 space straight j with hat on top space plus space 4 space straight k with hat on top right parenthesis
    Question 53
    CBSEENMA12033271

    Find the vector and cartesian equations of the line that passes through the origin and (5,- 2, 3).

    Solution
    The line passes through the points A(0, 0, 0) and B(5, – 2, 3)
    therefore space space space space straight a with rightwards arrow on top space equals space 0 with rightwards arrow on top comma space space straight b with rightwards arrow on top space equals space 5 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top
    where straight a with rightwards arrow on top comma space straight b with rightwards arrow on top are position vectors of A, B respectively.
     therefore space space space space space straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top space equals space 5 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point  on the given line.
    ∴   the vector equation of line is
                                straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda left parenthesis straight b with rightwards arrow on top minus straight a with rightwards arrow on top right parenthesis
    or                        straight r with rightwards arrow on top space equals space 0 with rightwards arrow on top plus straight lambda left parenthesis 5 straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
    or                        straight r with rightwards arrow on top space equals space straight lambda left parenthesis 5 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
    Taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space space straight y space straight j with hat on top space plus space straight z space straight k with hat on top comma space the equation of line is
            straight x space straight i with hat on top space plus space straight y space straight j with hat on top space space plus straight z space straight k with hat on top space equals space 5 space straight lambda space straight i with hat on top space minus space space 2 space straight lambda space straight j with hat on top space plus space 3 space straight lambda space straight k with hat on top
    Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma space we space get comma
                straight x space equals space 5 straight lambda comma space space space straight y space equals space minus 2 straight lambda comma space space straight z space equals space 3 straight lambda
    or            fraction numerator straight x minus 0 over denominator 5 end fraction space equals space fraction numerator straight y minus 0 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 0 over denominator 3 end fraction space left parenthesis space equals space straight lambda right parenthesis
    which is cartesian equation of line.
    Question 54
    CBSEENMA12033272

    Find the vector and the cartesian equations of the line that passes through the points (3, – 2, – 5), (3, – 2, 6).

    Solution
    The line passes through the points A(3, 2, – 5) and B(3, –2, 6).
    therefore space space space space space space space straight a with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 5 space straight k with hat on top comma space space space space straight b with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top
    where straight a with rightwards arrow on top comma space straight b with rightwards arrow on top are position vectors of A, B respectively.
    therefore space space space space space space straight b with rightwards arrow on top minus straight a with rightwards arrow on top space space equals space 11 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line. 
    ∴     the vector equation of line is
                            straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda space left parenthesis straight b with rightwards arrow on top minus stack straight a right parenthesis with rightwards arrow on top
    or                      straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 5 space straight k with hat on top space plus space 11 space straight lambda space straight k with hat on top
    Taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top comma space the equation of line is
            straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space left parenthesis negative 5 space plus space 11 space straight lambda right parenthesis space straight k with hat on top
    Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma space space we space get comma
                            straight x space equals space 3 comma space space space straight y space equals space minus 2 comma space space space straight z space equals space minus 5 plus 11 space straight lambda
    or             fraction numerator straight x minus 3 over denominator 0 end fraction space equals space fraction numerator straight y plus 2 over denominator 0 end fraction space equals fraction numerator straight z plus 5 over denominator 11 end fraction space left parenthesis equals straight lambda right parenthesis
    which is cartesian equation of line.
    Question 55
    CBSEENMA12033273

    Find the vector equation of line joining the points whose vectors are 2 space straight i with hat on top minus straight j with hat on top plus straight k with hat on top space space and space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top.

    Solution

    Here,            straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top comma space space space space straight b with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top
    The vector equation of line is
                              straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda space left parenthesis straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top right parenthesis
    or                       straight r with rightwards arrow on top space equals space left parenthesis 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis negative straight i with hat on top space plus space 3 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis

    Question 56
    CBSEENMA12033274

    If the points (–1, 3, 2), (– 4, 2, –2) and (5, 5, λ) are collinear, then find the value of λ.

    Solution
    The equation of line through (–1,3, 2) and (– 4, 2, –2) is
                          fraction numerator straight x minus left parenthesis negative 1 right parenthesis over denominator negative 4 plus 1 end fraction space equals space fraction numerator straight y minus 3 over denominator 2 minus 3 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 2 minus 2 end fraction
    or                 fraction numerator straight x plus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 4 end fraction                            ...(1)
    Since points (–1, 3, 2), (– 4, 2, –2) and (5, 5, λ) are collinear
    ∴    point (5, 5, λ) lies on (1)
    therefore space space space space space space space space space space fraction numerator 5 plus 1 over denominator negative 3 end fraction space equals space fraction numerator 5 minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight lambda minus 2 over denominator negative 4 end fraction
therefore space space space space space space space space space space space minus 2 space equals space space minus 2 space equals space fraction numerator straight lambda minus 2 over denominator negative 4 end fraction
therefore space space space space space space space space straight lambda minus 2 space equals space 8 space space space space space space space rightwards double arrow space space space space straight lambda space equals space 10
    Question 57
    CBSEENMA12033275

    Show that the points whose position vectors are given by 
    2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top comma space space minus space 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space space 5 space straight i with hat on top space plus space 5 space straight k with hat on top are collinear. 

    Solution
    Given points have position vectors as
       2 straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top comma space space minus space 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space space 5 space straight i with hat on top space plus space 5 space straight k with hat on top.
    ∴ points are (2, 1, 3), (– 4, 3, – 1), (5, 0, 5).
    The equations of straight lines through the points (2, 1, 3) and (– 4, 3, – 1) are
        fraction numerator straight x minus 2 over denominator negative 4 minus 2 end fraction space equals space fraction numerator straight y minus 1 over denominator 3 minus 1 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 1 minus 3 end fraction space space space or space space fraction numerator straight x minus 2 over denominator negative 6 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 4 end fraction
    or     fraction numerator straight x minus 2 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction
    The points (5, 0, 5) will lie on it
     if fraction numerator 5 minus 2 over denominator 3 end fraction space equals space fraction numerator 0 minus 1 over denominator negative 1 end fraction space equals space fraction numerator 5 minus 3 over denominator 2 end fraction
    i.e.. if 1 = 1 = 1, which is true.
    ∴   the points (2, 1, 3), (– 4, 3, – 1), (5, 0, 5) are collinear
    ∴ points with position vectors 2 straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top comma space space minus 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space 5 space straight i with hat on top space plus space 5 space straight k with hat on top are collinear.
    Another Method:
    Let straight a with rightwards arrow on top space equals space 2 straight i with hat on top space plus space straight j with hat on top space plus space 3 straight k with hat on top comma space space straight b with rightwards arrow on top space equals space minus 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space 5 space straight k with hat on top.
    The equation of line through two points with positions vectors straight a with rightwards arrow on top space and space straight b with rightwards arrow on top is straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda open parentheses straight b with rightwards arrow on top minus straight a with rightwards arrow on top close parentheses
    or space space straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top space minus space 2 space straight i with hat on top space minus space straight j with hat on top space minus space space 3 space straight k with hat on top close parentheses
or space space straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 6 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses
    Now the point straight c with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space 5 space straight k with hat on top will lie on it
     if 5 space straight i with hat on top space plus space 5 space straight k with hat on top space equals space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 6 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses
    i.e.,  if 3 straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top space equals space minus 6 space straight lambda space straight i with hat on top space plus space 2 space straight lambda space straight j with hat on top space plus space 4 space straight lambda space straight k with hat on top
    i.e., if 3 equals negative 6 straight lambda comma space space minus 1 space equals space 2 straight lambda comma space space space 2 space equals space minus space 4 space straight lambda
    i.e., if  straight lambda space equals space minus 1 half
    therefore  for straight lambda space equals space minus 1 half comma space space space given space points space are space collinear. space
    Question 58
    CBSEENMA12033276

    Show that the point whose position vectors are given by negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space space and space space 7 straight i with hat on top space minus space straight k with hat on top are collinear. 

    Solution
    Given points have position vectors as negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space space and space 7 space straight i with hat on top space minus space straight k with hat on top.
    ∴ points are (–2, 3, 5), (1, 2, 3), (7, 0, –1)
    The equation of st. line through (–2, 3, 5), (1, 2, 3) is
    fraction numerator straight x plus 2 over denominator 1 plus 2 end fraction space equals space fraction numerator straight y minus 3 over denominator 2 minus 3 end fraction space equals space fraction numerator straight z minus 5 over denominator 3 minus 5 end fraction space space space space space or space space space fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 2 end fraction
    The point (7, 0, –1) will lie on it
    if  fraction numerator 7 plus 2 over denominator 3 end fraction space equals space fraction numerator 0 minus 3 over denominator negative 1 end fraction space equals space fraction numerator negative 1 minus 5 over denominator negative 2 end fraction
    i.e. if 3 = 3 = 3, which is true.
    ∴   the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
    ∴ points with position vectors negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top and 7 space straight i with hat on top space minus space straight k with hat on top are collinear. 
    Question 59
    CBSEENMA12033277

    Find the coordinates of the point where the line through A(3, 4, 1) and B (5, 1, 6) crosses the x y-plane.

    Solution
    The line passes through the points A (3, 4, 1) and B (5, 1, 6)
    therefore space space space space straight a with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space straight k with hat on top comma space space space straight b with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space straight j with hat on top space plus space 6 space straight k with hat on top
    where straight a with rightwards arrow on top comma space straight b with rightwards arrow on top are position vectors of A, B respectively.
     therefore space space space space straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point on the given line.
    ∴    the vector equation of the line is
                     straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda thin space left parenthesis straight b with rightwards arrow on top minus straight a with rightwards arrow on top right parenthesis
    or              straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda space left parenthesis 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis                 ...(1)
    Let P (x, y, 0) be the point where the line AB crosses the x y-plane. Now P lies on (1)
    therefore space space space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space space lies space on space left parenthesis 1 right parenthesis
therefore space space space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis
therefore space space space space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space equals space left parenthesis 3 plus 2 space straight lambda right parenthesis space straight i with hat on top space plus space left parenthesis 4 minus 3 space straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 1 plus 5 space straight lambda right parenthesis space straight k with hat on top space space space space space space space space space space space space space space space space space space space space space
    therefore                                 straight x space equals space 3 plus 2 space straight lambda                                                    ...(2)
                                         straight y space equals 4 minus 3 straight lambda                                                       ...(3)
                                          0 space equals space 1 plus 5 space straight lambda                                                    ...(4)
    From (4),   5 space straight lambda space equals space minus 1 space space space space space or space space space space space straight lambda space equals space minus 1 fifth
    From (2),        straight x space equals space 3 minus 2 over 5 space equals space 13 over 5
    From (3),     straight y space equals 4 plus 3 over 5 space equals space 23 over 5
    therefore point is  open parentheses 13 over 5 comma space 23 over 5 comma space 0 close parentheses
    Question 60
    CBSEENMA12033278

    Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane.

    Solution
    The line passes through (5, 1, 6) and (3, 4, 1)
    ∴   the equation of line is
                  fraction numerator straight x minus 5 over denominator 3 minus 5 end fraction space equals space fraction numerator straight y minus 1 over denominator 4 minus 1 end fraction space equals fraction numerator straight z minus 6 over denominator 1 minus 6 end fraction
    or          fraction numerator straight x minus 5 over denominator negative 2 end fraction space equals space fraction numerator straight y minus 1 over denominator 3 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 5 end fraction
    or        fraction numerator straight x minus 5 over denominator 2 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight z minus 6 over denominator 5 end fraction                                           ...(1)
    It meets yz-plane where x = 0
      ∴     putting x = 0 in (1), we get,
    fraction numerator 0 minus 5 over denominator 2 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight z minus 6 over denominator 5 end fraction
    therefore space space space space space space space space space space minus 5 over 2 space equals space fraction numerator straight y minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight z minus 6 over denominator 5 end fraction
therefore space space space space space space straight y minus 1 space equals space 15 over 2 comma space space straight z minus 6 space equals space minus 25 over 2
therefore space space space space space space space space space space space space space straight y space equals space 17 over 2 comma space space straight z space equals space minus 13 over 2
therefore space space space space point space is space open parentheses 0 comma space 17 over 2 comma space minus 13 over 2 close parentheses.
    Question 61
    CBSEENMA12033279

    Find the vector equation of a line passing through a point with position vector 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top and parallel to the line joining the points with position vectors negative straight i with hat on top space plus space 4 space straight j with hat on top space plus space straight k with hat on top and straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top. Also, find the cartesian equivalent of this equations. 

    Solution

    Let straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top comma space space minus space straight i with hat on top space plus space 4 space straight j with hat on top space plus space straight k with hat on top space space space and space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top be the position vectors of A, B, and C respectively.
    Now,    straight b with rightwards arrow on top space equals space BC with rightwards arrow on top space equals space straight P. straight V. space of space straight C space minus space straight P. straight V. space of space straight B
                      equals space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space minus space open parentheses negative straight i with hat on top space plus space 4 space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 2 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top
    The vector equation of line through A open parentheses straight a with rightwards arrow on top close parentheses and parallel to vector straight b with rightwards arrow on top is
                 straight r with rightwards arrow on top space equals space stack straight a space with rightwards arrow on top plus space straight lambda space straight b with rightwards arrow on top
    or           straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight lambda space space left parenthesis 2 straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis
    Now taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top comma space the equation of line is
                          straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight lambda space open parentheses 2 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses
    or          straight x straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space left parenthesis 2 straight lambda space plus space 2 right parenthesis space straight i with hat on top space minus space left parenthesis 2 straight lambda space plus space 1 right parenthesis space straight j with hat on top space plus space left parenthesis straight lambda plus 1 right parenthesis space straight k with hat on top
    Comparing the coefficients of x, y, z, we get,
                                   straight x space equals space 2 space straight lambda space space plus space 2 comma space space space space straight y space equals space minus left parenthesis 2 straight lambda plus 1 right parenthesis comma space space straight z space equals space straight lambda plus 1
    rightwards double arrow         fraction numerator straight x minus 2 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 1 over denominator 1 end fraction left parenthesis space equals space straight lambda right parenthesis
    which is cartesian equation of line.

     
    Question 62
    CBSEENMA12033280

    The cartesian equations of a line are 6 x – 2 = – 3 y + 1 = 2 z = 2. Find the direction ratios of the line and write down the vector equation of the line through (2, – 1, –1) which is parallel to the given line.

    Solution
    The equation of the line are 6 x – 2 = 3 y + 1 = 2 z – 2
    or   6 space open parentheses straight x minus 1 third close parentheses space equals space 3 open parentheses straight y plus 1 third close parentheses space equals space 2 left parenthesis straight z minus 1 right parenthesis
    or    fraction numerator straight x minus begin display style 1 third end style over denominator 1 end fraction space equals space fraction numerator straight y minus open parentheses negative begin display style 1 third end style close parentheses over denominator 2 end fraction space equals space fraction numerator straight z minus 1 over denominator 3 end fraction
    ∴     direction-ratios of the line are 1, 2, 3.
    therefore              straight m with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top
    Required line passes through (2, – 1, – 1)
    therefore space space space space straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top
    Let  straight r with rightwards arrow on top be the position vector of any point on the line. 
    ∴      the vector equation of required line is
     straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda straight m with rightwards arrow on top space space space or space space space straight r with rightwards arrow on top space equals space left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top right parenthesis space space plus space straight lambda space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses
    where λ is a parameter.
    Question 63
    CBSEENMA12033281

    The points A (4, 5, 10), B (2, 3, 4) and C (1, 2, – 1) are three vertices of a parallelogram ABCD. Find vector and cartesian equations for the sides AB and BC and find the coordinates of D.

    Solution
    A (4, 5, 10), B (2, 3, 4), C (1, 2, – 1) are three vertices of the parallelogram ABCD.

    Direction-ratios of AB are 2 – 4, 3 – 5, 4 – 10 i.e.. – 2, – 2, – 6 i.e., 1, 1, 3 and AB passes through A (4, 5, 10)
    ∴        its vector equation is
     straight r with rightwards arrow on top space equals space open parentheses 4 space straight i with hat on top space plus space 5 space straight j with hat on top space plus space 10 space straight k with hat on top close parentheses space plus space straight lambda space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
    Also Cartesian equations of AB are
    fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals fraction numerator straight z minus 10 over denominator 3 end fraction

    Direction ratios of BC are 1– 2, 2 – 3, – 1, – 4
    i.e. – 1, – 1, 5 i.e. 1, 1, 5 and BC passes through B (2, 3, 4)
    ∴    its vector equation is
    straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses
    Also cartesian equations of BC are
    fraction numerator straight x minus 2 over denominator 1 end fraction space equals space fraction numerator straight y minus 3 over denominator 1 end fraction space equals fraction numerator straight z minus 4 over denominator 5 end fraction

    Let (α, β, γ) be coordinates of D.
    Now mid-points of AC is same as that of BD.
    therefore space space space space open parentheses fraction numerator 4 plus 1 over denominator 2 end fraction comma space fraction numerator 5 plus 2 over denominator 2 end fraction comma space fraction numerator 10 minus 1 over denominator 2 end fraction close parentheses space equals space open parentheses fraction numerator straight alpha plus 2 over denominator 2 end fraction comma space space fraction numerator straight beta plus 3 over denominator 2 end fraction comma space fraction numerator straight gamma plus 4 over denominator 2 end fraction close parentheses
rightwards double arrow space space space space open parentheses 5 over 2 comma space 7 over 2 comma space 9 over 2 close parentheses space equals space open parentheses fraction numerator straight alpha plus 2 over denominator 2 end fraction comma space fraction numerator straight beta plus 3 over denominator 2 end fraction comma space fraction numerator straight gamma plus 4 over denominator 2 end fraction close parentheses space rightwards double arrow space space fraction numerator straight alpha plus 2 over denominator 2 end fraction space equals space 5 over 2 comma space space fraction numerator straight beta plus 3 over denominator 2 end fraction space equals 7 over 2 comma space fraction numerator straight gamma plus 4 over denominator 2 end fraction space equals 9 over 2
rightwards double arrow space space space straight alpha plus 2 space equals space 5 comma space space space straight beta plus 3 space equals space 7 comma space space space straight gamma plus 4 space equals 9 space space rightwards double arrow space space space space straight alpha space equals space 3 comma space space space straight beta space equals space 4 comma space space space space straight gamma space equals space 5 space space space space space rightwards double arrow space space space straight D space is space left parenthesis 3 comma space 4 comma space 5 right parenthesis.

    Question 64
    CBSEENMA12033282

    A line passes through the point with position vector 2 space straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top and is in direction straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top. Find equations for the line in vector and in cartesian form .

    Solution

    Here straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space space plus space 4 space straight k with hat on top comma space space space straight m with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top
    Let straight r with rightwards arrow on top be the position vector of any point P (x, y, z) on the line
    ∴    the vector equation of line is straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda space straight m with rightwards arrow on top
    or         straight r with rightwards arrow on top space equals space open parentheses 2 straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses
    This equation can be written as
        straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space left parenthesis 2 plus straight lambda right parenthesis space straight i with hat on top space plus space left parenthesis negative 1 plus space straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 4 minus 2 space straight lambda right parenthesis space straight k with hat on top
    Comparing coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma we get,
                       straight x space equals space 2 space plus space straight lambda comma space space space straight y space equals space minus 1 plus straight lambda comma space space straight z space equals space 4 minus 2 space straight lambda
    rightwards double arrow space                straight x minus 2 space equals space straight lambda comma space space space straight y plus 1 space equals space straight lambda comma space space space fraction numerator straight z minus 4 over denominator negative 2 end fraction space equals space straight lambda
    Equationing values of λ, we get,  fraction numerator straight x minus 2 over denominator 1 end fraction space equals space fraction numerator straight y plus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 4 over denominator negative 2 end fraction
    which are cartesian equations of the line.

    Question 65
    CBSEENMA12033283

    Find the vector equation of a line passing through a point with position vector straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top and parallel to the line joining the points with position vectors straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top and 2 space straight i with hat on top space plus space straight j with hat on top space plus space space 2 space straight k with hat on top. Also, find the cartesian equivalent of this equation. 

    Solution

    Let straight a with rightwards arrow on top space equals space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top be the position vector of A and straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top comma space space space straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top be position vectors of B and C.
    therefore space space space space space space straight b with rightwards arrow on top space equals space BC with rightwards arrow on top space equals space straight P. straight V. space of space straight C space minus space straight P. straight V. space of space straight B
space space space space space space space space space space space space space space equals space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space minus space open parentheses straight i with hat on top space minus space straight j with ¨ on top space plus space 4 space straight k with ¨ on top close parentheses space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
    The vector equation of line through straight A space open parentheses thin space straight a with rightwards arrow on top close parentheses space and parallel to vector straight b with rightwards arrow on top is
                     straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda space straight b with rightwards arrow on top
    or       straight r with rightwards arrow on top space equals space open parentheses straight i with rightwards arrow on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space plus straight lambda space open parentheses straight i with hat on top space plus space 2 space stack straight j space with hat on top space minus space 2 space straight k with hat on top close parentheses
    Now taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top, the equation of line is
                           straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space open parentheses straight i with hat on top space minus 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses straight i with hat on top plus 2 space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses
    or            straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space left parenthesis straight lambda plus 1 right parenthesis space straight i with hat on top space plus space left parenthesis 2 space straight lambda space minus space 2 right parenthesis space straight j with hat on top space minus space left parenthesis 2 straight lambda plus 3 right parenthesis space straight k with hat on top
    Comparing the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top we get, x = λ + 1, y = 2 λ – 2, z = – (2 λ + 3)
    or          fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y plus 2 over denominator 2 end fraction space equals space fraction numerator straight z plus 3 over denominator negative 2 end fraction space left parenthesis equals space straight lambda right parenthesis which is cartesian equation of line. 

    Question 66
    CBSEENMA12033284

    Find the angle between pair of lines:
                       straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    and             straight r with rightwards arrow on top space equals space 5 space straight i with hat on top space minus space 2 space straight k with hat on top space plus space straight mu space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis

    Solution
    The equations of two lines are
                                   straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    and                          straight r with rightwards arrow on top space equals space 5 space straight i with hat on top space minus space 2 space straight k with hat on top space plus space straight mu space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis
    therefore                           stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus 2 space straight k with hat on top comma space space space space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top
    Let θ be the angle between the lines.
    therefore space space space space space space cos space straight theta space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space. space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top close vertical bar space open vertical bar stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 6 right parenthesis over denominator square root of 1 plus 4 plus 4 end root space square root of 9 plus 4 plus 36 end root end fraction space equals space fraction numerator 3 plus 4 plus 12 over denominator square root of 9 space square root of 49 end fraction space equals space fraction numerator 19 over denominator 3 cross times 7 end fraction space equals space 19 over 21
therefore space space space space space space space space straight theta space equals space cos space to the power of negative 1 end exponent space open parentheses 19 over 21 close parentheses.
    Question 67
    CBSEENMA12033285

    Find the angle between the pair of lines:
    straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis
    and straight r with rightwards arrow on top space equals space 7 space straight i with hat on top space minus space 6 space straight k with hat on top space plus space straight mu space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis

    Solution
    The equations of two lines are
                  straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis
    and        straight r with rightwards arrow on top space equals space 7 space straight i with hat on top space minus space 6 space straight k with hat on top space plus space straight mu left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    therefore          straight b with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 6 space straight k with hat on top comma space space space straight b with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top
      Let θ be angle between the lines.
    therefore space space space space cos space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space stack straight b apostrophe with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar space open vertical bar straight b with rightwards arrow on top apostrophe close vertical bar end fraction
space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 2 right parenthesis space left parenthesis 2 right parenthesis space plus space left parenthesis 6 right parenthesis thin space left parenthesis 2 right parenthesis over denominator square root of 9 plus 4 plus 36 end root space square root of 1 plus 4 plus 4 end root end fraction space equals space fraction numerator 3 plus 4 plus 12 over denominator square root of 49 space square root of 9 end fraction space equals space fraction numerator 19 over denominator 7 cross times 3 end fraction space equals space 19 over 21
therefore space space space space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 19 over 21 close parentheses
    Question 68
    CBSEENMA12033286

    Find the angle between the pair of lines:
             straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space minus space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis
    and   straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space 5 space straight k with hat on top space plus space straight mu space left parenthesis 3 space straight i with hat on top space minus space 5 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis


    Solution
    The equations of two lines are
                straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space minus space straight j with hat on top space minus space 2 space stack straight k right parenthesis with hat on top
    and      straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space 5 space straight k with hat on top space plus space straight mu space left parenthesis 3 space straight i with hat on top space minus space 5 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis
    therefore space space space space space space space straight b with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space minus space 2 space straight k with hat on top comma space space stack straight b apostrophe with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 5 space straight j with hat on top minus space 4 space straight k with hat on top
    Let θ be angle between the lines.
    therefore space space space space space space cos space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space stack straight b apostrophe with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar space open vertical bar straight b with rightwards arrow on top apostrophe close vertical bar end fraction
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis negative 5 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis negative 4 right parenthesis over denominator square root of 1 plus 1 plus 4 end root space square root of 9 plus 25 plus 16 end root end fraction space equals space fraction numerator 3 plus 5 plus 8 over denominator square root of 6 space square root of 50 end fraction
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 16 over denominator square root of 6. space 5 square root of 2 end fraction space equals space 16 over 5 cross times fraction numerator 1 over denominator square root of 12 end fraction space equals space 16 over 5 cross times fraction numerator 1 over denominator 2 square root of 3 end fraction cross times fraction numerator square root of 3 over denominator square root of 3 end fraction space equals fraction numerator 8 square root of 3 over denominator 15 end fraction
therefore space space space space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses fraction numerator 8 square root of 3 over denominator 15 end fraction close parentheses.
    Question 69
    CBSEENMA12033287

    Find the angle between the pair of lines with direction ratios 2, 2, 1 and 4, 1, 8.

    Solution
    The direction ratios of the two lines are 2, 2, 1 and 4, 1, 8.
    Let θ be the angle between the two lines
    therefore space space space space space space space cos space straight theta space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 8 right parenthesis over denominator square root of left parenthesis 2 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis 1 right parenthesis end root space square root of left parenthesis 4 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 8 right parenthesis squared end root end fraction
                                         open square brackets because space space cos space straight theta space equals space fraction numerator straight a subscript 1 straight a subscript 2 plus straight b subscript 1 straight b subscript 2 plus straight c subscript 1 straight c subscript 2 over denominator square root of straight a subscript 1 squared plus straight b subscript 1 squared plus straight c subscript 1 squared end root space space square root of straight a subscript 2 squared plus straight b subscript 2 squared plus straight c subscript 2 squared end root end fraction close square brackets
                         equals space fraction numerator 8 plus 2 plus 8 over denominator 3 cross times 9 end fraction space equals fraction numerator 18 over denominator 3 cross times 9 end fraction space equals 2 over 3
    therefore                 straight theta space equals space cos to the power of negative 1 end exponent space open parentheses 2 over 3 close parentheses
    Question 70
    CBSEENMA12033288

    Find the angle between the pair of lines with direction ratios 2, 6, 3 and 1, 2, 2.

    Solution
    The direction ratios of two lines are 2, 6, 3 and 1, 2, 2.
    Let θ be the angle between the lines
    therefore space space space space space cos space straight theta space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 6 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis thin space 2 right parenthesis over denominator square root of 4 plus 36 plus 9 end root space square root of 1 plus 4 plus 4 end root end fraction space equals space fraction numerator 2 plus 12 plus 6 over denominator square root of 49 space square root of 9 end fraction space equals space fraction numerator 20 over denominator 7 cross times 3 end fraction space equals space 20 over 21
therefore space space space space space space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 20 over 21 close parentheses
    Question 71
    CBSEENMA12033289

    Find the angle between the lines whose direction ratios are a, b, c and b – c, c – a, a – b.

    Solution

    Let stack straight m subscript 1 with rightwards arrow on top space space and space stack straight m subscript 2 with rightwards arrow on top be vectors parallel to the two given lines.
    therefore space space space space space space space stack straight m subscript 1 with rightwards arrow on top space equals space straight a space straight i with hat on top space plus space straight b space straight j with hat on top space plus space straight c space straight k with hat on top
    and     stack straight m subscript 2 with rightwards arrow on top space equals space left parenthesis straight b minus straight c right parenthesis space straight i with hat on top space plus space left parenthesis straight c minus straight a right parenthesis space straight j with hat on top space plus space left parenthesis straight a minus straight b right parenthesis space straight k with hat on top
    Let θ be angle between given lines.
    ∴    θ is angle between stack straight m subscript 1 with rightwards arrow on top space space and space stack straight m subscript 2 with rightwards arrow on top.
    therefore space space space cos space straight theta space equals space fraction numerator stack straight m subscript 1 with rightwards arrow on top. space stack straight m subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight m subscript 1 with rightwards arrow on top close vertical bar space open vertical bar stack straight m subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator straight a space left parenthesis straight b minus straight c right parenthesis space plus space straight b space left parenthesis straight c minus straight a right parenthesis space plus space straight c space left parenthesis straight a minus straight b right parenthesis over denominator square root of straight a squared plus straight b squared plus straight c squared end root space square root of left parenthesis straight b minus straight c right parenthesis squared plus left parenthesis straight c minus straight a right parenthesis squared plus left parenthesis straight a minus straight b right parenthesis squared end root end fraction
space space space space space space space space space space space space space space space space space space equals space fraction numerator ab minus ca plus bc minus ab plus ca minus ab over denominator square root of straight a squared plus straight b squared plus straight c squared end root space square root of left parenthesis straight b minus straight c right parenthesis squared plus left parenthesis straight c minus straight a right parenthesis squared plus left parenthesis straight a minus straight b right parenthesis squared end root end fraction equals 0
therefore space space space space space straight theta space equals space straight pi over 2

    Question 72
    CBSEENMA12033290

    Find the angle between each of the following pairs of lines:
    fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 2 end fraction comma space space straight z space equals space 2 comma space space space fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator 2 straight y plus 3 over denominator 3 end fraction space equals space fraction numerator straight z plus 5 over denominator 2 end fraction

    Solution
    The equations of the two lines are             fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 0 end fraction comma space space space fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y plus begin display style 3 over 2 end style over denominator begin display style 3 over 2 end style end fraction space equals space fraction numerator straight z plus 5 over denominator 2 end fraction
    Direction-ratios of two lines are 3 comma space minus 2 comma space 0 space space and space 1 comma space space 3 over 2 comma space 2 space space space space or space space space 2 comma space 3 comma space 4.
    Let θ be the angle between the lines.
    therefore                      cos space straight theta space equals space fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis 0 right parenthesis thin space left parenthesis 4 right parenthesis over denominator square root of 9 plus 4 plus 0 end root space square root of 4 plus 9 plus 16 end root end fraction space space equals space 0
    rightwards double arrow                     straight theta space equals space 90 degree
    Question 73
    CBSEENMA12033291

    Find the angle between pair of lines:
                       fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 5 end fraction space equals space fraction numerator straight z plus 3 over denominator 4 end fraction

    and          fraction numerator straight x plus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 4 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 2 end fraction

    Solution
    The equation of lines are
                                    fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 5 end fraction space equals space fraction numerator straight z plus 3 over denominator 4 end fraction
    and                         fraction numerator straight x plus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 4 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 2 end fraction
    Direction-ratios of the two lines are 3, 5, 4 and 1,1, 2.
    Let θ be the angle between the lines.
    therefore space space space cos space straight theta space equals space fraction numerator left parenthesis 3 right parenthesis left parenthesis 1 right parenthesis space plus space left parenthesis 5 right parenthesis left parenthesis 1 right parenthesis space plus space left parenthesis 4 right parenthesis left parenthesis 2 right parenthesis over denominator square root of left parenthesis 3 right parenthesis squared plus left parenthesis 5 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space square root of left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root end fraction
space space space space space space space space space space space space space space space space space equals space fraction numerator 3 plus 5 plus 8 over denominator square root of 50 square root of 6 end fraction space equals space fraction numerator 16 over denominator 5 square root of 2 space square root of 6 end fraction space equals space fraction numerator 16 over denominator 5 square root of 2. space square root of 2 space square root of 3 end fraction space equals space fraction numerator 8 over denominator 5 square root of 3 end fraction space equals space fraction numerator 8 square root of 3 over denominator 15 end fraction
therefore space space space space straight theta space equals space cos space to the power of negative 1 end exponent space open parentheses fraction numerator 8 square root of 3 over denominator 15 end fraction close parentheses
    Question 74
    CBSEENMA12033292

    Find the angle between the following pair of lines:
    fraction numerator straight x minus 2 over denominator 2 end fraction space equals space fraction numerator straight y minus 1 over denominator 5 end fraction space equals fraction numerator straight z plus 3 over denominator negative 3 end fraction space space and space space fraction numerator straight x plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight y minus 4 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator 4 end fraction

    Solution
    The equations of lines are
                     fraction numerator straight x minus 2 over denominator 2 end fraction space equals space fraction numerator straight y minus 1 over denominator 5 end fraction space equals space fraction numerator straight z plus 3 over denominator negative 3 end fraction
    and            fraction numerator straight x plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight y minus 4 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator 4 end fraction
    Direction ratios of two lines are 2, 5, -3 and – 1, 8, 4.
    Let θ be the angle between the lines.
    therefore space space space cos space straight theta space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis negative 1 right parenthesis space plus space left parenthesis 5 right parenthesis thin space left parenthesis 8 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis 4 right parenthesis over denominator square root of 4 plus 25 plus 9 end root space square root of 1 plus 64 plus 16 end root end fraction space equals space fraction numerator negative 2 plus 40 minus 12 over denominator square root of 38 space square root of 81 end fraction
space space space space space space space space space space space space space space space space space equals fraction numerator 26 over denominator 9 square root of 38 end fraction
therefore space space space space space space space space space space straight theta space equals space cos to the power of negative 1 end exponent space open parentheses fraction numerator 26 over denominator 9 square root of 38 end fraction close parentheses space
    Question 75
    CBSEENMA12033293

    Find the angle between the following pair of lines:
    fraction numerator 5 minus straight x over denominator 3 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 2 end fraction comma space space straight z space equals space 5 space space space and space space straight x over 1 space equals space fraction numerator 1 minus straight y over denominator 3 end fraction space equals fraction numerator straight z minus 5 over denominator 2 end fraction

    Solution
    The equations of two lines are
                                fraction numerator 5 minus straight x over denominator 3 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 2 end fraction comma space space space straight z space equals space 5 space space space and space space space straight x over 1 space equals space fraction numerator 1 minus straight y over denominator 3 end fraction space equals space fraction numerator straight z minus 5 over denominator 2 end fraction
    or                    fraction numerator straight x minus 5 over denominator negative 3 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 0 end fraction space space space and space space space straight x over 1 space equals space fraction numerator straight y minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight z minus 5 over denominator 2 end fraction
    Direction ratios of two lines are –3, –2, 0 and 1, –3, 2.
    Let θ be angle between the lines
    therefore space space space space space cos space straight theta space equals space fraction numerator left parenthesis negative 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis negative 3 right parenthesis space plus space left parenthesis 0 right parenthesis thin space left parenthesis 2 right parenthesis over denominator square root of 9 plus 4 plus 0 end root space square root of 1 plus 9 plus 4 end root end fraction space equals space fraction numerator negative 3 plus 6 plus 0 over denominator square root of 13 space square root of 14 end fraction space
therefore space space space space space space cos space straight theta space equals space fraction numerator 3 over denominator square root of 182 end fraction space space space space space space space space rightwards double arrow space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses fraction numerator 3 over denominator square root of 182 end fraction close parentheses
    Question 76
    CBSEENMA12033294

    Find the angle between the following pair of lines:
     straight x over 2 space equals space straight y over 2 space equals space straight z over 1 space space and space space fraction numerator straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 8 end fraction


    Solution
    The equations of two lines are
    straight x over 2 space equals space straight y over 2 space equals space straight z over 1 space space space and space fraction numerator straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 8 end fraction
    Direction ratios of two lines are 2, 2, 1 and 4, 1, 8.
    Let θ be the angle between the lines
    therefore space space space space space cos space straight theta space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 8 right parenthesis over denominator square root of 4 plus 4 plus 1 end root space square root of 16 plus 1 plus 64 end root end fraction space equals space fraction numerator 8 plus 2 plus 8 over denominator square root of 9 space square root of 81 end fraction space equals space fraction numerator 18 over denominator 3 cross times 9 end fraction equals space 2 over 3
therefore space space space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 2 over 3 close parentheses
    Question 77
    CBSEENMA12033295

    Find the angle between the following pair of lines:
    fraction numerator straight x minus 5 over denominator 1 end fraction equals space fraction numerator 2 straight y plus 6 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 1 end fraction space space and space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 4 end fraction space equals space fraction numerator straight z minus 6 over denominator 5 end fraction
     


    Solution
    The equations of two lines are
                        fraction numerator straight x minus 5 over denominator 1 end fraction space equals space fraction numerator 2 straight y plus 6 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 1 end fraction space and space space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 4 end fraction space equals space fraction numerator straight z minus 6 over denominator 5 end fraction
    or               fraction numerator straight x minus 5 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 1 end fraction space space and space space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 4 end fraction space equals space fraction numerator straight z minus 6 over denominator 5 end fraction
    Direction ratios of two lines are 1, –1, 1 and 3, 4, 5.
    Let θ be angle between the lines.
    therefore space space space space cos space straight theta space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 5 right parenthesis over denominator square root of 1 plus 1 plus 1 end root space square root of 9 plus 16 plus 25 end root end fraction space equals space fraction numerator 3 minus 4 plus 5 over denominator square root of 3 space square root of 50 end fraction
                        equals space fraction numerator 4 over denominator square root of 3 space cross times space 5 square root of 2 end fraction space equals space fraction numerator 4 over denominator 5 square root of 6 end fraction
    therefore space space space space straight theta space equals space cos to the power of negative 1 end exponent space open parentheses fraction numerator 4 over denominator 5 square root of 6 end fraction close parentheses
    Question 78
    CBSEENMA12033296

    Find the angle between the lines
    straight x over 1 space equals fraction numerator negative straight y over denominator 0 end fraction space equals space fraction numerator straight z over denominator negative 1 end fraction space space and space space straight x over 3 space equals space straight y over 4 space equals straight z over 5

    Solution
    The given lines are
    straight x over 1 space equals space straight y over 0 space equals space fraction numerator straight z over denominator negative 1 end fraction space space space and space space straight x over 3 space equals space straight y over 4 space equals space straight z over 5
    Let  stack straight b subscript 1 with rightwards arrow on top comma space stack straight b subscript 2 with rightwards arrow on top be vectors parallel to these lines
    therefore space space space space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top
    Let θ be the angle between given lines.
    ∴   θ is angle between stack straight b subscript 1 with rightwards arrow on top space space and space space stack straight b subscript 2 with rightwards arrow on top
    therefore space space space space space space space cos space straight theta space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top. space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top close vertical bar space open vertical bar stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis 0 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 5 right parenthesis over denominator square root of 1 plus 0 plus 1 end root space square root of 9 plus 16 plus 25 end root end fraction
space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 3 minus 5 over denominator square root of 2 space square root of 50 end fraction space equals space fraction numerator negative 2 over denominator square root of 2 cross times 5 square root of 2 end fraction space equals space minus 1 fifth
    ∴   acute angle θ is given by
             cos space straight theta space equals space 1 fifth
    therefore space space space space space straight theta space equals cos to the power of negative 1 end exponent open parentheses 1 fifth close parentheses
    Question 79
    CBSEENMA12033297

    Find the value of p so that the lines
    fraction numerator 1 minus straight x over denominator 3 end fraction space equals space fraction numerator 7 straight y minus 14 over denominator 2 space straight p end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction space space and space space fraction numerator 7 minus 7 straight z over denominator 3 space straight p end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator 6 minus straight z over denominator 5 end fraction

    Solution
    The equations of two lines are
                               fraction numerator 1 minus straight x over denominator 3 end fraction space equals space fraction numerator 7 straight y minus 14 over denominator 2 space straight p end fraction space equals fraction numerator straight z minus 3 over denominator 2 end fraction space space and space space fraction numerator 7 minus 7 straight x over denominator 3 space straight p end fraction space equals fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator 6 minus straight z over denominator 5 end fraction
    or                        fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 2 over denominator begin display style fraction numerator 2 straight p over denominator 7 end fraction end style end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction space space and space space fraction numerator straight x minus 1 over denominator negative begin display style fraction numerator 3 straight p over denominator 7 end fraction end style end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 5 end fraction
    Direction ratios of two lines are
    negative 3 comma space space fraction numerator 2 straight p over denominator 7 end fraction comma space 2 space space and space minus fraction numerator 3 straight p over denominator 7 end fraction comma space 1 comma space minus 5
    ∵   lines are at right angle
    therefore         open parentheses negative 3 close parentheses space open parentheses negative fraction numerator 3 space straight p over denominator 7 end fraction close parentheses space plus space open parentheses fraction numerator 2 space straight p over denominator 7 end fraction close parentheses space left parenthesis 1 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis negative 5 right parenthesis space equals space 0
    therefore space space space space fraction numerator 9 space straight p over denominator 7 end fraction space plus space fraction numerator 2 space straight p over denominator 7 end fraction minus 10 space equals space 0 space space space space space space space space space rightwards double arrow space space space space fraction numerator 11 space straight p over denominator 7 end fraction space equals space 10
therefore space space space space space space space space space straight p space equals space 70 over 11

    Sponsor Area

    Question 80
    CBSEENMA12033298

    Show that the lines
    fraction numerator straight x minus 5 over denominator 7 end fraction space equals space fraction numerator straight y plus 2 over denominator negative 5 end fraction space equals straight z over 1 space and space straight x over 1 space equals space straight y over 2 space equals space straight z over 3 are prependicular to each other. 

    Solution
    The equations of two lines are
         fraction numerator straight x minus 5 over denominator 7 end fraction space equals space fraction numerator straight y plus 2 over denominator negative 5 end fraction space equals space straight z over 1 space and space straight x over 1 space equals straight y over 2 space equals space straight z over 3
    ∴   direction ratios of two lines are 7, –5, 1 and 1, 2, 3.
    Let θ be the angle between the lines
    therefore space space space space space cos space straight theta space equals space fraction numerator left parenthesis 7 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 5 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 3 right parenthesis over denominator square root of 49 plus 25 plus 1 end root space square root of 1 plus 4 plus 9 end root end fraction space equals fraction numerator 7 minus 10 plus 3 over denominator square root of 75 space square root of 14 end fraction space equals space fraction numerator 0 over denominator square root of 75 space square root of 14 end fraction space equals space 0
therefore space space space space space space space space straight theta space equals space 90 degree
    ∴ two lines are perpendicular to each other.
    Question 81
    CBSEENMA12033299

    If the lines fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 straight k end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction space and space fraction numerator straight x minus 1 over denominator 3 straight k end fraction space equals space fraction numerator straight y minus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 5 end fraction are prependicular, then find the value of k.

    Solution
    The given lines are
                     fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 space straight k end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction
    and      fraction numerator straight x minus 1 over denominator 3 space straight k end fraction space equals space fraction numerator straight y minus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 5 end fraction
    Direction ratios of two lines are – 3, 2k, 2 and 3 k, 1, –5
    Since the lines are perpendicular
    therefore space space space left parenthesis negative 3 right parenthesis thin space left parenthesis 3 straight k right parenthesis space plus space left parenthesis 2 straight k right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis negative 5 right parenthesis space equals space 0
therefore space space space space minus 9 straight k space plus space 2 straight k space minus space 10 space equals space 0 space space space space space space space space space space space space rightwards double arrow space minus 7 space straight k space equals space 10
therefore space space space space space straight k space equals space minus 10 over 7
    Question 82
    CBSEENMA12033300

    Show that the lines x = ay + b, z = cy + d and x = a' y + b' , z = c' y + d' are perpendicular to each other, if aa' + cc' + 1 = 0.

    Solution
    The equations of the lines are
                            x = ay + b,    z = cy + d
    and                  straight x space equals space straight a apostrophe straight y space plus space straight b apostrophe comma space space straight z space equals space straight c apostrophe straight y space plus space straight d apostrophe
    or                  fraction numerator straight x minus straight b over denominator straight a end fraction space equals space straight y over 1 space equals space fraction numerator straight z minus straight d over denominator straight c end fraction
    and            fraction numerator straight x minus straight b apostrophe over denominator straight a apostrophe end fraction space equals space straight y over 1 space equals space fraction numerator straight z minus straight d apostrophe over denominator straight c apostrophe end fraction
    ∴    direction ratios of two lines are a, 1, c and a', 1, c'.
    The two lines are perpendicular if
    (a) (a') + (1) (1) + (c) (c') = 0    [∵ a1 a2 + b1 b2 + c1 c2 = 0]
    i.e. if aa' + cc' + 1 = 0
    Question 83
    CBSEENMA12033301

    If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (– 4, 3, –6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.

    Solution

    Given points are A (1, 2, 3), B (4, 5, 7), C (– 4, 3, –6) and D (2, 9, 2).
    Direction ratios of AB are 4 – 1, 5 – 2, 7 – 3 i.e. 3, 3, 4
    Direction ratios of CD are 2 + 4, 9 – 3, 2 + 6 i.e. 6, 6, 8 i.e. 3, 3, 4
    Since direction ratios of AB and CD are proportional
    ∴ AB is parallel to CD.
    ∴ angle between them is 0°.

    Question 84
    CBSEENMA12033302

    Find the equations of the line passing through the point P(–1, 3, –2) and perpendicular to the lines
    straight x over 1 space equals space straight y over straight z space equals space straight z over 3 space space and space fraction numerator straight x plus 2 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z plus 1 over denominator 5 end fraction

    Solution
    The equations of given lines are
                      straight x over 1 space equals space straight y over 2 space equals space straight z over 3                                        ...(1)
    and          fraction numerator straight x plus 2 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z plus 1 over denominator 5 end fraction                       ...(2)
    Any line through P (– 1, 3, –2) is
    fraction numerator straight x plus 1 over denominator straight l end fraction space equals space fraction numerator straight y minus 3 over denominator straight m end fraction space equals space fraction numerator straight z plus 2 over denominator straight n end fraction                                        ...(3)
    where l, m, n are direction ratios of the line     
    Since (3) is perpendicular to (1) and (2)
    ∴ l + 2 m + 3 n = 0    ...(4)
    and – 3 l + 2 m + 5 n = 0    ...(5)
    Solving (4) and (5), we get,
              space fraction numerator l over denominator 10 minus 6 end fraction equals space fraction numerator straight m over denominator negative 9 minus 5 end fraction equals fraction numerator straight n over denominator 2 plus 6 end fraction

    therefore space space space space space straight l over 4 space equals space fraction numerator straight m over denominator negative 14 end fraction space equals space straight m over 8
rightwards double arrow space space space space space straight l over 2 space equals space fraction numerator straight m over denominator negative 7 end fraction space equals space straight n over 4
    ∴ from (3), the equations of line are
    fraction numerator straight x plus 1 over denominator 2 end fraction space space equals space fraction numerator straight y minus 3 over denominator negative 7 end fraction space equals space fraction numerator straight z plus 2 over denominator 4 end fraction.

    Question 85
    CBSEENMA12033303

    Find the vector equation of the line passing through the point (1, 2, – 4) and perpendicular to the two lines:
    fraction numerator straight x minus 8 over denominator 3 end fraction space space equals space fraction numerator straight y plus 19 over denominator negative 16 end fraction space equals space fraction numerator straight z minus 10 over denominator 7 end fraction space and space fraction numerator straight x minus 15 over denominator 3 end fraction space equals space fraction numerator straight y minus 29 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 5 end fraction.

    Solution

    Let a, b, c be the direction ratios of the line passing through the point (1, 2, – 4)
    ∴       equation of line is
      fraction numerator straight x minus 1 over denominator straight a end fraction space equals space fraction numerator straight y minus 2 over denominator straight b end fraction space equals space fraction numerator straight z plus 4 over denominator straight c end fraction                                   ...(1)
    Since this line is perpendicular to the lines
                     fraction numerator straight x minus 8 over denominator 3 end fraction space equals space fraction numerator straight y plus 19 over denominator negative 16 end fraction space equals space fraction numerator straight z minus 10 over denominator 7 end fraction space space and space fraction numerator straight x minus 15 over denominator 3 end fraction space equals space fraction numerator straight y minus 29 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 5 end fraction
    therefore space space space space space 3 straight a minus 16 straight b plus 7 straight c space equals space 0
    and 3 a + 8 b – 5 c = 0
    Solving these equations, we get,
                   fraction numerator straight a over denominator 80 minus 56 end fraction space equals space fraction numerator straight b over denominator 21 plus 15 end fraction space equals space fraction numerator straight c over denominator 24 plus 48 end fraction
    therefore                     straight a over 24 space equals space straight b over 36 space equals space straight c over 72
    therefore space space space space space straight a over 2 space equals space straight b over 3 space equals space straight c over 6
    ∴   from (1), the equations of line is
    fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z plus 4 over denominator 6 end fraction
    ∴ line passes through the point (1, 2, – 4) with position vector straight a with rightwards arrow on top space equals straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top is parallel to straight b with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top.
    ∴   equation of line is
                     straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda straight b with rightwards arrow on top
    or              straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis

    Question 86
    CBSEENMA12033304

    Show that, if the axes are rectangular, then the equations of the line through (α, β, γ) right angles to the lines
    straight x over straight l subscript 1 space equals space straight y over straight m subscript 1 space equals space straight z over straight n subscript 1 comma space space straight x over straight l subscript 2 space equals space straight y over straight m subscript 2 space equals space straight z over straight n subscript 2

    are fraction numerator straight x minus straight alpha over denominator straight m subscript 1 space straight n subscript 2 minus straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight y minus straight beta over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals fraction numerator straight z minus straight gamma over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction.

    Solution
    The equations of given lines are
                          straight x over straight l subscript 1 space equals space straight y over straight m subscript 1 space equals space straight z over straight n subscript 1                                      ...(1)
    and           straight x over straight l subscript 2 space equals space straight y over straight m subscript 2 space equals space straight z over straight n subscript 2                                           ...(2)
    Any line through  (α, β, γ) is
    fraction numerator straight x minus straight alpha over denominator straight l end fraction space equals space fraction numerator straight y minus straight beta over denominator straight m end fraction equals fraction numerator straight z minus straight gamma over denominator straight n end fraction
    where l, m, n are direction-ratios of the line
    Since (3) is perpendicular to (1)
    ∴ l l1 + m m1 + n n1 = 0    ....(4)
    Since (3) is perpendicular to (2)
    ∴ I l2 + m m2 + n n2 = 0
    Solving (4) and (5), we get,
    fraction numerator straight l over denominator straight m subscript 1 straight n subscript 2 space minus space straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight m over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals space fraction numerator straight n over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction
    ∴   from (3), the equations of line are
    fraction numerator straight x minus straight alpha over denominator straight m subscript 1 straight n subscript 2 minus straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight y minus straight beta over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals space fraction numerator straight z minus straight gamma over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction
    Question 87
    CBSEENMA12033305

    If the straight lines having direction cosines given by al + bm + cn = 0 and fmn + gnI + hIm = 0 are perpendicular, then show that straight f over straight a plus straight g over straight b plus straight h over straight c space equals space 0

    Solution
    Given that a I + b m + c n = 0,
    i.e.                     straight n space equals fraction numerator negative left parenthesis al plus bm right parenthesis over denominator straight c end fraction                           ...(1)
    Also,      straight f space straight m space straight n plus straight g space straight n space straight l plus straight h space straight l space straight m space equals space 0                           ...(2)
    Substituting value of n from (1) in (2), we get
                  fm open square brackets fraction numerator negative left parenthesis al plus bm right parenthesis over denominator straight c end fraction close square brackets space plus space straight g space straight l space open square brackets fraction numerator negative left parenthesis al space plus space bm right parenthesis over denominator straight c end fraction close square brackets space plus space straight h space straight l space straight m space equals space 0
    or          straight a space straight f space straight m space straight l space plus straight b space straight f space straight m squared space plus space straight a space straight g space straight l squared space plus space straight b space straight g space straight l space straight m space minus space straight h space straight c space straight l space straight m space equals space 0
    On dividing both sides by m2, we have
         straight a space straight g space open parentheses straight l over straight m close parentheses squared plus straight l over straight m left parenthesis straight a space straight f space plus space straight b space straight g space minus space straight c space straight h right parenthesis space plus space straight b space straight f space equals space 0
    If l1, m1, n1 and l2, m2 , nare the direction cosines of the two lines, then the roots of the equation (3) as straight l subscript 1 over straight m subscript 1 space and space straight l subscript 2 over straight m subscript 2 space space give
    fraction numerator straight l subscript 1 space straight l subscript 2 over denominator straight m subscript 1 space straight m subscript 2 end fraction space equals space fraction numerator straight b space straight f over denominator straight a space straight g end fraction space space space straight i. straight e. comma space space space space fraction numerator straight l subscript 1 space straight l subscript 2 over denominator begin display style straight f over straight a end style end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction                                   ...(4)
    Similarly, using (1) and (2) and by elimination of 1, we get
    fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator begin display style straight h over straight c end style end fraction                                                           ...(5)
    Combining (4) and (5), we have
                           fraction numerator straight l subscript 1 straight l subscript 2 over denominator begin display style straight f over straight a end style end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator begin display style straight h over straight c end style end fraction space equals space straight k space left parenthesis say right parenthesis
    therefore space space space space straight l subscript 1 space straight l subscript 2 space equals space fraction numerator straight k space straight f over denominator straight a end fraction comma space space space space space straight m subscript 1 space straight m subscript 2 space equals space straight k space fraction numerator straight k space straight g over denominator straight b end fraction comma space space straight n subscript 1 straight n subscript 2 space equals space fraction numerator straight k space straight h over denominator straight c end fraction                 ...(6)
    We know that the lines with direction cosines l1, m1, n1 and l2, m2, n2 are perpendicular if
    l1 l2 + m1m2 + n1n= 0    ....(7)
    From (6) and (7), we get,
    straight k open parentheses straight f over straight a close parentheses plus straight k open parentheses straight g over straight b close parentheses space plus space straight k space open parentheses straight h over straight c close parentheses space equals space 0 space space space space or space space space space straight f over straight a plus straight g over straight b plus straight h over straight c space equals space 0
    Question 88
    CBSEENMA12033306

    Find the coordinates of the foot of perpendicular drawn from the point A (1, 2, 1) to the line joining B (1, 4, 6) and (5, 4, 4). Also find the perpendicular distance of A from line BC.

    Solution
    The equation of line through B (1, 4, 6) and C (5, 4, 4) is
                          fraction numerator straight x minus 1 over denominator 5 minus 1 end fraction space equals fraction numerator straight y minus 4 over denominator 4 minus 4 end fraction space equals space fraction numerator straight z minus 6 over denominator 4 minus 6 end fraction
    or            fraction numerator straight x minus 1 over denominator 4 end fraction space equals space fraction numerator straight y minus 4 over denominator 0 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 2 end fraction space equals space straight k
    Any point D on it is (4 k+1 , 4, –2 k + 6)
    Let D be foot of perpendicular from A on BC.

    Direction ratios of AD are 4 k + 1 – 1, 4 – 2, – 2 k + 6 – 1
    i.e.. 4 k , 2, – 2 k + 5
    Direction ratios of BC are 4, 0, – 2
    Since AD is perpendicular to BC
    therefore space space space space space space left parenthesis 4 space straight k right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 0 right parenthesis space plus space left parenthesis negative 2 space straight k space plus 5 right parenthesis thin space left parenthesis negative 2 right parenthesis space equals space 0
therefore space space space space space 16 space straight k space plus space 0 space plus space 4 space straight k space minus space 10 space equals space 0 space space space space space space rightwards double arrow space space space 20 space straight k space equals space 10 space space space space space space space rightwards double arrow space space straight k space equals space 1 half
therefore space space space space straight D space is space space left parenthesis 2 plus 1 comma space space 4 comma space space minus 1 comma space plus 6 right parenthesis space straight i. straight e. space left parenthesis 3 comma space 4 comma space 5 right parenthesis
    ⊥ distance of A from BC = distance AD
    equals space square root of left parenthesis 3 minus 1 right parenthesis squared plus left parenthesis 4 minus 2 right parenthesis squared plus left parenthesis 5 minus 1 right parenthesis squared end root space equals space square root of 4 plus 4 plus 16 end root space equals square root of 24 space equals space 2 square root of 6

    Question 89
    CBSEENMA12033307

    Find the co-ordinates of the foot of the perpendicular drawn from the point A(1, 8, 4) to the line joining the points B (0, –1, 3) and C (2, – 3, – 1).

    Solution
    The equation of line through B (0, –1,3) and C (2, –3, – 1) is

    fraction numerator straight x minus 0 over denominator 2 minus 0 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 3 plus 1 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 1 minus 3 end fraction
    or    straight x over 2 space equals space fraction numerator straight y plus 1 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 4 end fraction
    or  straight x over 1 space equals space fraction numerator straight y plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 2 end fraction space equals space straight k comma space space space say
    Any point D on its (k, – k – 1, –2, k + 3)        

    Let D be foot of perpendicular form A on BC.
    Direction ratios of AD are
    k – 1, – k – 1 – 8, – 2 k + 3 – 4
    i.e. k – 1, – k – 9, –2 k – 1
    Direction ratios of BC are
    2 – 0, – 3 + 1, – 1 – 3 i.e. 2, –2, – 4
    i.e. 1, –1, –2.
    Since AD is perpendicular to BC
    ∴ (k – 1) (1) + (– k – 9) (–1) + (–2 k – 1) (– 2) = 0
    therefore space space straight k minus 1 space plus space straight k space plus 9 space plus space 4 space straight k space plus space 2 space equals space 0 space space space space rightwards double arrow space space 6 space straight k space equals space minus 10 space space rightwards double arrow space space straight k space equals space minus 5 over 3
therefore space space space foot space of space perpendicular space straight D space is space open parentheses negative 5 over 3 comma space 5 over 3 comma space minus 1 comma space 10 over 3 plus 3 close parentheses space space straight i. straight e. space open parentheses negative 5 over 3 comma space 2 over 3 comma space 19 over 3 close parentheses
     

     
    Question 90
    CBSEENMA12033308

    Find the foot of perpendicular from the point (0, 2, 3) on the line
    fraction numerator straight x plus 3 over denominator 5 end fraction space equals fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z plus 4 over denominator 3 end fraction

    Solution

    Let the given line AB be
         fraction numerator straight x plus 3 over denominator 5 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z plus 4 over denominator 3 end fraction
    Any point M on this line is (5 r – 3, 2 r + 1, 3 r – 4)
    Let this point M be the first of perpendicular from P (0, 2, 3) on AB.

    Direction-ratios of PM are
    5 r – 3 – 0, 2 r + 1 – 2, 3 r – 4 – 3
    i.e., 5 r – 3, 2 r – 1, 3 r – 7
    Direction -ratios of AB are 5, 2, 3.
    Since PM ⊥ AB
    ∴ (5 r – 3) (5) + (2 r – 1) (2) + (3 r – 7) (3) = 0
    ∴ 25 r – 15 + 4 r – 2 + 9 r – 21 = 0
    ∴ 38 r – 38 = 0 ⇒ r – 1 = 0 ⇒ r = 1
    ∴ M is (5 – 3, 2 + 1, 3 – 4) i.e.. (2, 3, – 1),
    which is required foot of perpendicular.

    Question 91
    CBSEENMA12033309

    Find the length of perpendicular from (2, 1, 3) on the line
    fraction numerator straight x minus 4 over denominator 5 end fraction space equals fraction numerator straight y minus 2 over denominator 4 end fraction space equals space fraction numerator straight z minus 3 over denominator 3 end fraction.

    Solution
    Let the given line AB be

    fraction numerator straight x minus 4 over denominator 5 end fraction space equals space fraction numerator straight y minus 2 over denominator 4 end fraction space equals space fraction numerator straight z minus 3 over denominator 3 end fraction
    Any point M on this line is
    (5 r + 4, 4 r + 2, 3 r + 3)
    Let this point M be the foot of perpendicular from P(2, 1, 3) on AB.
    Direction-ratios of PM are
    5 r + 4 – 2, 4 r + 2 – 1, 3 r + 3 – 3 i.e. 5 r + 2, 4 r + 1, 3 r
    Direction-ratios of AB are 5, 4, 3.
    Since PM ⊥ AB
    ∴  (5 r – 2) (5) + (4 r + 1) (4) + (3 r) (3) = 0
    ∴  25 r – 10 + 16 r + 4 + 9 r = 0
     rightwards double arrow space space space 50 straight r space equals space 6 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight r space equals space 3 over 25
    therefore    M is open parentheses 115 over 25 comma space 62 over 25 comma space 84 over 25 close parentheses
    ∴   required length of perpendicular = PM
    equals space square root of open parentheses 115 over 25 minus 2 close parentheses squared plus open parentheses 62 over 25 minus 1 close parentheses squared plus open parentheses 84 over 25 minus 3 close parentheses squared end root
equals space square root of open parentheses 65 over 25 close parentheses squared plus open parentheses 37 over 25 close parentheses squared plus open parentheses 9 over 25 close parentheses squared end root space equals space square root of 4245 over 625 plus 1369 over 625 plus 81 over 625 end root
equals space square root of 5675 over 625 end root space equals space square root of 227 over 25 end root space equals space fraction numerator square root of 227 over denominator 5 end fraction
    Question 92
    CBSEENMA12033310

    Find the length and foot of the perpendicular drawn from the point (3, 4, 5) on the line 
    fraction numerator straight x minus 2 over denominator 2 end fraction space equals space fraction numerator straight y minus 3 over denominator 5 end fraction space equals space fraction numerator straight z minus 1 over denominator 3 end fraction

    Solution
    Let the given line AB be fraction numerator straight x minus 2 over denominator 2 end fraction space equals space fraction numerator straight y minus 3 over denominator 5 end fraction space equals space fraction numerator straight z minus 1 over denominator 3 end fraction

    Any point M on this line is
    (2 r + 2, 5 r + 3, 3 r + 1)
    Let this point M be the foot of perpendicular from P (3, 4, 5) on AB
    Direction-ratios of PM are
    2 r + 2 – 3, 5 r + 3 – 4, 3 r + 1 – 5
    i.e. 2 r – 1, 5 r – 1, 3 – 4
    Direction-ratios of AB are 2, 5, 3
    Since PM ⊥ AB
    therefore space space space space left parenthesis 2 straight r minus 1 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 5 straight r minus 1 right parenthesis thin space left parenthesis 5 right parenthesis space plus space left parenthesis 3 straight r minus 4 right parenthesis thin space left parenthesis 3 right parenthesis space equals space 0
therefore space space space space 4 straight r minus 2 plus 25 straight r minus 5 plus 9 straight r minus 12 space equals space 0 space space space space space space rightwards double arrow space space 38 space straight r space space equals space 19
therefore space space space space space space space space space space space space straight r space equals space 1 half
therefore space space space space foot space of space perpendicular space straight M space is space open parentheses 1 plus 2 comma space 5 over 2 plus 3 comma space 3 over 2 plus 1 close parentheses space space space straight i. straight e. space space space space space open parentheses 3 comma space 11 over 2 comma space 5 over 2 close parentheses
    Required length of perpendicular = PM
    equals space square root of left parenthesis 3 minus 3 right parenthesis squared plus open parentheses 4 minus 11 over 2 close parentheses squared plus open parentheses 5 minus 5 over 2 close parentheses squared end root space equals space square root of 0 plus 9 over 4 plus 25 over 4 end root space equals space square root of 34 over 4 end root space equals space fraction numerator square root of 34 over denominator 2 end fraction.

    Question 93
    CBSEENMA12033311

    Find the perpendicular distance of the point (1, 0, 0) form the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 3 end fraction space equals space fraction numerator straight z plus 10 over denominator 8 end fraction

    Solution
    Let the given line AB be
    fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 3 end fraction space equals space fraction numerator straight z plus 10 over denominator 8 end fraction

    Any point M on this line is (2 r + 1, – 3 r – 1, 8 r – 10)
    Let this point M be the foot of perpendicular form P( 1,0, 0) on AB.
    Direction ratios of PM are
    2 r + 1 – 1, –3 r – 1 – 0,
    8 r – 10 – 0 i.e. 2 r, – 3 r – 1, 8 r – 10
    Direction-ratios of AB are 2, –3, 8
    Since PM ⊥ AB
    ∴  (2 r) (2) + (– 3r – 1) (–3) + (8 r – 10) (8) = 0
    ∴  4 r + 9 r + 3 + 64 r – 80 = 0
    ∴ 77 r = 77 ⇒ r = 1
    ∴ M is (3, –4, –2)
    Required distance  = PM = square root of left parenthesis 3 minus 1 right parenthesis squared plus left parenthesis 4 minus 0 right parenthesis squared plus left parenthesis negative 2 minus 0 right parenthesis squared end root
                                   equals space square root of 4 plus 16 plus 4 end root space equals space square root of 24 space equals space square root of 4 cross times 6 end root space equals space 2 square root of 6.

     

    Question 94
    CBSEENMA12033312

    Find the length of the perpendicular drawn from the point (1, ,2 3) on the line
    fraction numerator straight x minus 6 over denominator 3 end fraction space equals space fraction numerator straight y minus 7 over denominator 2 end fraction space equals space fraction numerator straight z minus 7 over denominator negative 2 end fraction

    Solution

    Let the given line AB be
         fraction numerator straight x minus 6 over denominator 3 end fraction space equals space fraction numerator straight y minus 7 over denominator 2 end fraction space equals space fraction numerator straight z minus 7 over denominator negative 2 end fraction

    Any point M on this line is
    (3 r + 6, 2 r + 7, –2 r + 7)
    Let this point M be the foot of perpendicular from P(1, 2, 3) on AB
    Direction ratios of PM are
    3 r + 6 – 1, 2 r + 7 – 2, – 2 r + 7 – 3 i.e. 3 r + 5, 2 r + 5, – 2 r + 4
    Direction ratios of AB are 3, 2, –2
    Since PM ⊥ AB
    ∴ (3 r + 5) (3) + (2 r + 5) (2) + (– 2 r + 4) (–2) = 0
    ∴ 9 r + 15 + 4 r + 10 + 4 r – 8 = 0
    ⇒ 17 r = –17 ⇒ r = – 1
    ∴ M is (3, 5, 9)
    ∴ required length of perpendicular = PM
    equals space square root of left parenthesis 3 minus 1 right parenthesis squared plus left parenthesis 5 minus 2 right parenthesis squared plus left parenthesis 9 minus 3 right parenthesis squared end root
equals space square root of 4 plus 9 plus 36 end root space equals space square root of 49 space equals space 7.

     
    Question 95
    CBSEENMA12033313

    Find the length and the foot of the perpendicular drawn from the point (2, – 1, 5) to the line fraction numerator straight x minus 11 over denominator 10 end fraction space equals space fraction numerator straight y plus 2 over denominator negative 4 end fraction space equals space fraction numerator straight z plus 8 over denominator negative 11 end fraction.

    Solution
    Let the given line AB be
    fraction numerator straight x minus 11 over denominator 10 end fraction space equals space fraction numerator straight y plus 2 over denominator negative 4 end fraction space equals space fraction numerator straight z plus 8 over denominator negative 11 end fraction
    Any point M on this line is
    (10 r + 11, – 4 r – 2, – 11 r – 8).
    Let this point be foot of perpendicular from P(2, – 1, 5) on AB.

    Direction ratios of PM are
    10 r + 11 – 2, – 4 r – 2 + 1, – 11 r – 8 – 5 i.e. 10 r + 9, – 4 r – 1, – 11 r – 13
    Direction ratios of AB are 10, – 4, – 11.
    Since PM ⊥ AB
    ∴  (10) (10 r + 9) + (–4) (–4 r – 1) + (–11) (– 11 r – 13) = 0
    ∴  100 r + 90 + 16 r + 4 + 121 r + 143 = 0
    ∴  237 r + 237 = 0 or 237 r = – 237 ⇒ r = – 1
    ∴  M is (– 10 + 11, 4 – 2, 11 – 8) i.e. (1, 2, 3)
    which is foot of perpendicular.
    Length of perpendicular = PM
    equals space square root of left parenthesis 2 minus 1 right parenthesis squared plus left parenthesis negative 1 minus 2 right parenthesis squared plus left parenthesis 5 minus 3 right parenthesis squared end root space equals space square root of 1 plus 9 plus 4 end root
equals space square root of 14 space units.

     

    Question 96
    CBSEENMA12033314

    Find the equation of the perpendicular drawn from the point (2, 4, – 1) to the line  fraction numerator straight x plus 5 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator 4 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 9 end fraction.

    Solution
    Let the given line AB be
    fraction numerator straight x plus 5 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator 4 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 9 end fraction
    Any point M on line is (r – 5, 4 r – 3, – 9 r + 6)
    Let this point M be the foot of perpendicular from P(2, 4, –1) on AB.

    Direction ratios of PM are
    r – 5 – 2, 4 r – 3 – 4, – 9 r + 6 + 1 i.e. r – 7, 4 r – 7, – 9 r + 7
    Direction ratios of AB are 1, 4, – 9
    Since PM ⊥ AB
    ∴  (1) (r – 7) + (4) (4 r – 7) + (– 9) (–9 r + 7) = 0
    ∴  r – 7 + 16 r – 28 + 81 r – 63 = 0
    ∴  98 r = 98 ⇒ r = 1
    ∴  Mis (1 – 5, 4 – 3, – 9 + 6) i.e. (– 4, 1, –3)
    The equation of PM is
                                  fraction numerator straight x minus 2 over denominator negative 4 minus 2 end fraction space equals space fraction numerator straight y minus 4 over denominator 1 minus 4 end fraction space equals space fraction numerator straight z plus 1 over denominator negative 3 plus 1 end fraction
    i.e.,                       fraction numerator straight x minus 2 over denominator negative 6 end fraction space equals space fraction numerator straight y minus 4 over denominator negative 3 end fraction space equals space fraction numerator straight z plus 1 over denominator negative 2 end fraction
    i.e.,                         fraction numerator straight x minus 2 over denominator 6 end fraction space equals space fraction numerator straight y minus 4 over denominator 3 end fraction space equals space fraction numerator straight z plus 1 over denominator 2 end fraction

     
    Question 97
    CBSEENMA12033315

    Find the length of perpendicular from (3, 2, 1) on the line 
    fraction numerator straight x minus 4 over denominator 5 end fraction space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 3 over denominator 4 end fraction

    Solution
    Let the given line AB be
          fraction numerator straight x minus 4 over denominator 5 end fraction space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 3 over denominator 4 end fraction

    Any point M on this line is
    (5 r + 4, 3 r + 2, 4 r + 3)
    Let this point M be the foot of perpendicular from P (3, 2, 1) on AB.
    Direction-ratios of PM are
    5 r + 4 – 3, 3 r + 2 – 2, 4 r + 3 – 1 i.e. 5 r + 1, 3 r, 4 r + 2
    Direction-ratios of AB are 5, 3, 4
    Since PM ⊥ AB
    ∴    5 (5 r + 1) + 3 (3 r) + 4 (4  + 2) = 0.
    ∴    25 r + 5 + 9 r + 16 r + 8 = 0 ⇒ 50 r = – 13
    therefore space space space space space space space space space space space straight r space equals space minus 13 over 50
therefore space space space space straight M space is space open parentheses 135 over 50 comma space 61 over 50 comma space 98 over 50 close parentheses
    ∴ required length of perpendicular = PM
    equals space square root of open parentheses 135 over 50 minus 3 close parentheses squared plus open parentheses 61 over 50 minus 2 close parentheses squared plus open parentheses 98 over 50 minus 1 close parentheses squared end root
equals space square root of 225 over 2500 plus 1521 over 2500 plus 2304 over 2500 end root space equals space square root of 4050 over 2500 end root space equals space square root of 81 over 50 end root space equals space fraction numerator 9 over denominator 5 square root of 2 end fraction

    Question 98
    CBSEENMA12033316

    Find the coordinates of the foot of perpendicular drawn from the point A (1, 2, 1) to the line
    fraction numerator straight x minus 1 over denominator 4 end fraction space equals space fraction numerator straight y minus 4 over denominator 0 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 2 end fraction

    Solution
    The equation of line BC
    or   fraction numerator straight x minus 1 over denominator 4 end fraction space equals space fraction numerator straight y minus 4 over denominator 0 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 2 end fraction space equals space straight k

    Any point D on it is
    (4 k + 1, 4, – 2 k + 6)
    Let D be foot of perpendicular from A on BC.
    Direction ratios of AD are
    4 k + 1–1, 4 – 2, – 2 k + 6 – 1 i.e., 4 k , 2, – 2 k + 5
    Direction ratios of BC are 4, 0, – 2
    Since AD is perpendicular to BC
    ∴    (4 k) (4) + (2) (0) + (– 2 k + 5) (–2) = 0
    therefore space space space space space 16 straight k plus 0 plus 4 straight k minus 10 space equals space 0 space space space space space space space rightwards double arrow space space space 20 space straight k space equals space space 10 space space space space space space space rightwards double arrow space space space straight k space equals space 1 half
therefore space space space space space straight D space is space left parenthesis 2 plus 1 comma space 4 comma space minus 1 comma space plus 6 right parenthesis space straight i. straight e. comma space left parenthesis 3 comma space 4 comma space 5 right parenthesis

    Question 99
    CBSEENMA12033317

    Find the image of the point (1, 6, 3) in the line straight x over 1 space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 3 end fraction.

    Solution
    The equations of given line are
    straight x over 1 space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 3 end fraction

    From P (1, 6, 3) , draw PM ⊥ AB and produce it to P' (α, β γ) such that M is mid-point of PP'. Then P' is image of P in line AB.
    Any point M as line AB is
    (r. 2 r + 1, 3 r + 2)
    Direction ratios of AB are 1, 2, 3
    Direction ratios of PM are r – 1 , 2 r + 1 – 6 , 3 r + 2 – 3
    i.e. r – 1, 2 r – 5, 3 r – 1
    ∵ PM ⊥ AB∴ (1) (r – 1) + (2) (2 r – 5) + (3) (3 r – 1) = 0
    ∴ i + 4 r – 10 + 9 r – 3 = 0
    ∴ 14 r = 14 ⇒ r = 1
    ∴ M is (1, 3, 5)
    Now M is mid-point of PP'
    therefore space space space space space fraction numerator straight alpha plus 1 over denominator 2 end fraction space equals space 1 comma space space space space fraction numerator straight beta plus 6 over denominator 2 end fraction space equals space 3 comma space space space fraction numerator straight gamma plus 3 over denominator 2 end fraction space equals space 5
therefore space space space straight alpha plus 1 space equals space 2 comma space space space space space space space space space straight beta plus 6 space equals space 6 comma space space space space straight gamma space plus space 3 space equals space 10
therefore space space space straight alpha space equals space 1 comma space space space space space space space space space space space straight beta space equals space 0 comma space space space space space space space space straight gamma space equals space 7
therefore space space space space image space is space left parenthesis 1 comma space 0 comma space 7 right parenthesis

    Question 100
    CBSEENMA12033318

    Find the area of the triangle whose vertices are (1, – 1, – 3), (4, – 3, 1), (3,– 1, 2).

    Solution
    Let A (1, – 1, – 3), B (4, – 3, 1), C (3, – 1, 2) be vertices of Δ ABC

    AB space equals space square root of left parenthesis 4 minus 1 right parenthesis squared plus left parenthesis negative 3 plus 1 right parenthesis squared plus left parenthesis 1 plus 3 right parenthesis squared end root space equals space square root of 9 plus 4 plus 16 end root space equals space square root of 29
AC space equals space square root of left parenthesis 3 minus 1 right parenthesis squared plus left parenthesis negative 1 plus 1 right parenthesis squared plus left parenthesis 2 plus 3 right parenthesis squared end root space equals space square root of 4 plus 0 plus 25 end root space equals space square root of 29

    Direction-ratios of AB are 4 – 1, – 3 + 1, 1 + 3 i.e.. 3, – 2, 4 respectively.
    Direction-ratios of AC are 3 – 1, –1 + 1, 2 + 3 i.e., 2, 0, 5 respectively.
    therefore space space space cos space straight A space equals space fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis space left parenthesis 0 right parenthesis space plus space left parenthesis 4 right parenthesis thin space left parenthesis 5 right parenthesis over denominator square root of 9 plus 4 plus 16 end root space square root of 4 plus 0 plus 25 end root end fraction space equals space fraction numerator 6 plus 0 plus 20 over denominator square root of 29 space square root of 29 end fraction space equals space 26 over 29
therefore space space sin space straight A space equals space square root of 1 minus space cos squared straight A end root space equals space square root of 1 minus open parentheses 26 over 29 close parentheses squared end root space equals space square root of 1 minus 676 over 841 end root space equals space square root of 165 over 841 end root space equals space fraction numerator square root of 165 over denominator 29 end fraction
    Area of increment ABC space equals space 1 half AB. space AC space sin space straight A space equals space 1 half square root of 29. space square root of 29. space fraction numerator square root of 165 over denominator 29 end fraction space equals space 1 half square root of 165 space sq. space units. space

    Question 101
    CBSEENMA12033319

    Find the area of the triangle whose vertices are (1, 2, 4), (-2, 1, 2), (2, 4, -3).

    Solution
    Let A (1, 2, 4), B (– 2, 1, 2), C (2, 4, – 3) be vertices of Δ ABC.

    AB space equals space square root of left parenthesis negative 2 minus 1 right parenthesis squared plus left parenthesis 1 minus 2 right parenthesis squared plus left parenthesis 2 minus 4 right parenthesis squared end root space equals space square root of 9 plus 1 plus 4 end root space equals space square root of 14
AC space equals space square root of left parenthesis 2 minus 1 right parenthesis squared plus left parenthesis 4 minus 2 right parenthesis squared plus left parenthesis negative 3 minus 4 right parenthesis squared end root space space equals square root of 1 plus 4 plus 49 end root space equals space square root of 54
    Direction-ratios of AB are – 2, – 1, 1 – 2, 2 – 4 i.e., – 3, – 1,– 2 respectively.
    Direction-ratios of AC are 2 – 1, 4 – 2, – 3 – 4 i.e., 1, 2, – 7 respectively.
    cos space straight A space equals space fraction numerator left parenthesis negative 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 2 right parenthesis space plus left parenthesis negative 2 right parenthesis thin space left parenthesis negative 7 right parenthesis over denominator square root of 9 plus 1 plus 4 end root square root of 1 plus 4 plus 49 end root end fraction space equals fraction numerator negative 3 minus 2 plus 14 over denominator square root of 14 space square root of 54 end fraction space equals space fraction numerator 9 over denominator square root of 14 space square root of 54 end fraction
sin space straight A space equals space square root of 1 minus cos squared straight A end root space equals space square root of 1 minus fraction numerator 81 over denominator 14 cross times 54 end fraction end root space equals space square root of fraction numerator 766 minus 81 over denominator 14 cross times 54 end fraction end root space equals fraction numerator square root of 675 over denominator square root of 14 space square root of 54 end fraction
    Area space of increment thin space ABC space equals space 1 half space AB. space AC. space sin space straight A space equals space 1 half square root of 14. space square root of 54. space fraction numerator square root of 675 over denominator square root of 14 space square root of 54 end fraction
                              equals space 1 half square root of 675 space sq. space units. space


    Tips: -

    Note on parallelopiped and cube
    (i) A parallelopipcd is a solid bounded by three pairs of parallel plane faces.
    (ii) A rectangular parallelopiped is parallelopiped whose faces are all rectangles.
    (iii) A cube is a parallelopiped whose faces are all squares.

    Question 102
    CBSEENMA12033320

    A line makes angle α, β, γ and δ with the diagonals of a cube, prove that
    cos squared straight alpha space plus space cos squared straight beta space plus space cos squared straight gamma space space plus cos squared straight delta space equals space 4 over 3.

    Solution
    Take O, a corner of cube OBLCMANP, as origin and OA, OB, OC, the three edges through it as the axes.

    Let OA = OB = OC = a, then the co-ordinates of O , A , B , C are (0, 0, 0), (a, 0, 0), (0, a, 0), (0, 0, a) respectively ; those of P, L, M, N are (a, a, a), (0, a, a), (a, 0, a), (a, a, 0) respectively.
    The four diagonals are OP, AL, BM, CN. Direction cosines of OP are proportional to a – 0, a – 0, a – 0, i.e., a, a, a, i.e., 1,1,1.
    Direction-cosines of AL are proportional to 0 – a, a – 0, a – 0 i.e., –a, a, a, i.e., – 1, 1, 1.
    Direction-cosines of BM are proportional to a – 0, 0 – a, a – 0, i.e., a – a, a i.e., 1, – 1, 1.
    Direction-cosines of CN are proportional to a – 0, a – 0, 0 – a i.e., a, a,– a i.e., 1, 1, – 1.
    therefore  direction -cosines of OP are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction
    Directon-cosines of AL are negative fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction
    Direction-cosines of BM are fraction numerator 1 over denominator square root of 3 end fraction comma space minus fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction
    Direction-cosines of CN are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space minus fraction numerator 1 over denominator square root of 3 end fraction
    Let l, m, n be direction-cosines of the line
    ∴    the line makes an angle α with OP.
    therefore              cos space straight alpha space equals space straight l open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses plus straight m space open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses space plus space straight n open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses
    or                 cos space straight alpha space equals space fraction numerator straight l plus straight m plus straight n over denominator square root of 3 end fraction                                         ...(1)
    Similarly        cos space straight beta space equals space fraction numerator negative straight l plus straight m plus straight n over denominator square root of 3 end fraction                                     ...(2)
                     cos space straight gamma space equals space fraction numerator straight l minus straight m plus straight n over denominator square root of 3 end fraction                                            ...(3)
    cos space straight delta space equals space fraction numerator straight l plus straight m minus straight n over denominator square root of 3 end fraction

    Squaring and adding (1), (2), (3) and (4), we get,
    cos2 α + cos2 β + cos2 γ + cos2 δ
                          equals space 1 third open square brackets left parenthesis straight l plus straight m plus straight n right parenthesis squared plus left parenthesis negative straight l plus straight m plus straight n right parenthesis squared plus left parenthesis straight l minus straight m plus straight n right parenthesis squared plus left parenthesis straight l plus straight m minus straight n right parenthesis squared close square brackets
space equals space 1 third open square brackets 4 space straight l squared plus space 4 space straight m squared plus space 4 space straight n squared close square brackets space equals space 4 over 3 left parenthesis straight l squared plus space straight m squared space plus space straight n squared right parenthesis space equals space 4 over 3 left parenthesis 1 right parenthesis
therefore space space space cos squared straight alpha space plus space cos squared straight beta space plus space cos squared straight gamma space plus space cos squared straight delta space equals space 4 over 3.

    Question 103
    CBSEENMA12033321

    If the edges of a rectangular parallelepiped are a, b, c, show that the angles between four diagonals are given by cos–1open parentheses fraction numerator straight a squared plus-or-minus straight b squared plus-or-minus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses.

    Solution
    Take O, a comer of the rectangular parallelopipied, as origin and OA, OB, OC, the three edges through it as the axes.

    Let ΔA = a, OB = b, OC = c, then the co-ordinates of O, A, B, C are (0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c) respectively.
    The co-ordinates of other points are shown in the figure.
    The four diagonals are OP, AL, BM, CN
    Direction-cosines of OP are a – 0, b – 0, c – 0 i.e., a, b. c respectively
    Direction-cosines of AL are 0 – a, b – 0, c – 0 i.e., – a, b. c respectively
    Direction-cosines of BM are a – 0, 0 – b, c – 0 i.e., a,– b, c respectively
    Direction-cosines of CN are a – 0, b – 0, 0 – c i.e., a, b, – c respectively.
    Let θ be the angle between OP and AL.
    therefore space space cos space straight alpha space equals space fraction numerator left parenthesis straight a right parenthesis left parenthesis negative straight a right parenthesis space plus space left parenthesis straight b right parenthesis thin space left parenthesis straight b right parenthesis space plus space left parenthesis straight c right parenthesis thin space left parenthesis straight c right parenthesis over denominator square root of straight a squared plus straight b squared plus straight c squared end root space square root of straight a squared plus straight b squared plus straight c squared end root end fraction space equals space fraction numerator negative straight a squared plus straight b squared plus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction
    therefore space space space space space straight alpha space equals space cos to the power of negative 1 end exponent open parentheses fraction numerator negative straight a squared plus straight b squared plus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses
    therefore angle between OP and AL = cos to the power of negative 1 end exponent open parentheses fraction numerator negative straight a squared plus straight b squared plus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses
    Similarly angle between OP and BM = cos to the power of negative 1 end exponent open parentheses fraction numerator straight a squared minus straight b squared plus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses
    and angle between OP and CN = cos to the power of negative 1 end exponent open parentheses fraction numerator straight a squared plus straight b squared minus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses
    Proceeding in this way, we see that angles between four diagonals are given by 
    cos to the power of negative 1 end exponent open parentheses fraction numerator straight a squared plus-or-minus straight b squared plus-or-minus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses.

    Question 104
    CBSEENMA12033322

    Find the angle between two diagonals of a cube.

    Solution
    Take O, a corner of cube OBLCMANP, as origin and OA, OB, OC, the three edges through it as the axes.

    Let OA = OB = OC = a, then the co-ordinates of O, A, B, C are (0, 0, 0), (a, 0, 0), (0, a, 0), (0, 0, a) respectively ; those of P, L, M, N are (a, a, a), (0, a, a), (a, 0, a), (a, a, 0) respectively.
    The four diagonals are OP, AL, BM, CN. Direction cosines of OP are proportional to a – 0, a – 0, a – 0, i.e., a, a, a, i.e., 1, 1, 1.
    Direction-cosines of AL are proportional to 0 – a, a – 0, a – 0    i.e., –a, a, a,  i.e., – 1, 1, 1.
    Direction-cosines of BM are proportional to a – 0, 0 – a, a – 0. i.e.. a – a, a    i.e., 1, – 1, 1.
    Direction-cosines of CN are proportional to a – 0, a – 0, 0 – a    i.e., a, a, – a    i.e., 1, 1, – 1.
    Let θ be the angle between AL and BM
     therefore space space space space space space cos space straight theta space equals space open vertical bar fraction numerator left parenthesis negative 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of 1 plus 1 plus 1 end root space square root of 1 plus 1 plus 1 end root end fraction close vertical bar space equals space open vertical bar fraction numerator negative 1 minus 1 plus 1 over denominator square root of 3. square root of 3 end fraction close vertical bar space equals space 1 third
therefore space space space space straight theta space equals space cos to the power of negative 1 end exponent 1 third
    Similarly the angle between other two diagonals is also cos 1 third.

    Question 105
    CBSEENMA12033323

    Show that the line joining the middle points of two sides of a triangle is parallel to the third side and half of it in length.

    Solution
    Let A (x, y1, z1). B (x2, y2, z2), C (x3, y3, z3) be the vertices of Δ ABC and D, E, F be mid-points of BC, CA and AB respectively.
                 therefore space space space straight E space is space open parentheses fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction comma space fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction comma space fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction close parentheses
    and straight F space is space open parentheses fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator 2 end fraction comma space fraction numerator straight y subscript 1 plus straight y subscript 2 over denominator 2 end fraction comma space fraction numerator straight z subscript 1 plus straight z subscript 2 over denominator 2 end fraction close parentheses

    Direction-ratios of BC are
    x– x2, y– y2, z3 – z2.
    Directions-ratios of FE are
              fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction minus fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator 2 end fraction comma space space fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction minus fraction numerator straight y subscript 1 plus straight y subscript 2 over denominator 2 end fraction comma space space fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction minus fraction numerator straight z subscript 1 plus straight z subscript 2 over denominator 2 end fraction
    or        fraction numerator straight x subscript 3 minus straight x subscript 2 over denominator 2 end fraction comma space space fraction numerator straight y subscript 3 minus straight y subscript 2 over denominator 2 end fraction comma space space fraction numerator straight z subscript 3 minus straight z subscript 2 over denominator 2 end fraction
    or      straight x subscript 3 minus straight x subscript 2 comma space space straight y subscript 3 minus straight y subscript 2 comma space space straight z subscript 3 minus straight z subscript 2
    which are the same as that of BC
    ∴    FE || BC.
    Also,
     FE space equals space square root of open parentheses fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction minus space fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator 2 end fraction close parentheses squared plus open parentheses fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction minus fraction numerator straight y subscript 1 plus straight y subscript 2 over denominator 2 end fraction close parentheses squared space plus space open parentheses fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction minus fraction numerator straight z subscript 1 plus straight z subscript 2 over denominator 2 end fraction close parentheses squared end root
space space space space space equals space 1 half square root of left parenthesis straight x subscript 3 minus straight x subscript 2 right parenthesis squared plus left parenthesis straight y subscript 3 minus straight y subscript 2 right parenthesis squared plus left parenthesis straight z subscript 3 minus straight z subscript 2 right parenthesis squared end root space equals space 1 half BC
    Hence the result. 

    Question 106
    CBSEENMA12033324

    A variable line in two adjacent positions has direction cosines < l, m, n > and < l + δl, m + δm, n + δn >. Show that the small angle δθ between two positions is given by
    (δθ )2 = (δl)2 + (δm)2 + (δn)2

    Solution

    Since < l, m, n > and < l + δl, m + δm, n + δn > are direction cosines of two lines
    ∴    l2 + m2 + n= 1    ...(1)
    and (l + δl)2 + (m + δm)2 + (n2 + δn)2 = 1
    or (l2 + m2 + n2) + 2 (l δl + m δm + n δn) + [(δl)+ (δm)2 + (δn)2] = 1
    or 1+2 (I δl + m δm + n δn) + [ (δl)2 + (δm)2 + (δn)2 ] = 1    [∵ of (1)]
    or (δl)2 + (δm)2 + (δn)2 = – 2 (lδ l + m δm) + n δn)    ....(2)
    Now δθ is angle between two lines
    ∴ cos δθ = l (l + δl) + m (m + δm) + n (n + δn)
    therefore space space space space 1 minus 2 space sin squared δθ over 2 space equals space left parenthesis straight l squared plus straight m squared plus straight n squared right parenthesis space plus space left parenthesis straight l space δl space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n right parenthesis
therefore space space space space 1 minus 2 space sin squared δθ over 2 space equals space 1 plus left parenthesis straight l space straight delta space straight l space space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n right parenthesis
therefore space space space space minus 2 open parentheses δθ over 2 close parentheses squared space equals space straight l space straight delta space straight l space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n space space space space space space space space space space space space space open square brackets because space space space space sin δθ over 2 space equals δθ over 2 space as space δθ over 2 space is space small close square brackets
therefore space space space space space space space space left parenthesis δθ right parenthesis squared space equals space minus 2 left parenthesis straight l space straight delta space straight l space space plus space straight m space straight delta space straight m space plus space straight n space straight delta space straight n right parenthesis
rightwards double arrow space space space space space space space space left parenthesis δθ right parenthesis squared space equals space left parenthesis δl right parenthesis squared plus left parenthesis δm right parenthesis squared plus left parenthesis δn right parenthesis squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 2 right parenthesis close square brackets

     
    Question 107
    CBSEENMA12033325

    Find the angle between the two lines whose direction cosines are given by the equations:
    l + m + n = 0,           l2 + m2 – n2 = 0

    Solution

    The given equation are
    l + m + n = 0    ...(1)
    and l2 + m2 – n2 = 0    ....(2)
    From (1), n = – (l + m)    ....(3)
    From (2) and (3), we get,
    l2 + m2 – (l + m)2 = 0 or – 2 l m = 0
    ⇒ l m = 0
    therefore                   either   l = 0
    therefore          1. l + 0 .m + 0. n = 0
    Also,            l+m+n = 0
    Solving, 
                        fraction numerator straight l over denominator 0 minus 0 end fraction space equals space fraction numerator straight m over denominator 0 minus 1 end fraction space equals space fraction numerator straight n over denominator 1 minus 0 end fraction
    therefore      straight l over 0 space equals space fraction numerator straight m over denominator negative 1 end fraction space equals space straight n over 1             
    or                      m = 0
    therefore       0.l + l.m + 0.n = 0
    Also,               l + m + n = 0
    Solving,
                         fraction numerator straight l over denominator 1 minus 0 end fraction space equals space fraction numerator straight m over denominator 0 minus 0 end fraction space equals space fraction numerator straight n over denominator 0 minus 1 end fraction
    therefore                           straight l over 1 space equals space straight m over 0 space equals space fraction numerator straight n over denominator negative 1 end fraction
    ∴  direction ratios of the two lines are 0, – 1, 1 ; 1, 0, – 1
    Let  θ be the angle between the lines
    therefore space space space space cos space straight theta space equals space fraction numerator left parenthesis 0 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 0 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative 1 right parenthesis over denominator square root of left parenthesis 0 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space square root of left parenthesis 1 right parenthesis squared plus left parenthesis 0 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root end fraction space equals negative 1 half
    ∴    acute angle θ between the lines is given by
    cos space straight theta space equals space 1 half space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight theta space equals space 60 degree
                           

    Question 108
    CBSEENMA12033326

    Find the angle between the two lines whose direction cosines are given by the equations:
    2 l – m + 2 n = 0 and m n + n l + l m = 0

    Solution

    The given equation are
    2 l – m + 2 n = 0    ...(1)
    and m n + n l + l m = 0    ....(2)
    From (1), m = 2 l + 2 n    ....(3)
    From (2) and (3), we get,
    n (2 l + 2 n) + n l + l (2 l + 2 n) = 0
    or 2 n l + 2 n2 + n l + 2 l2 + 2 n l = 0 or 2 l2 + 5 l n + 2 n2 = 0
    ⇒ (2 l + n) (l + 2 n) = 0
    therefore   either 2l+ n = 0
        i.e.  2l + 0 m + n = 0
        Also, 2l - m + 2n = 0
      Solving, we get,
             fraction numerator straight l over denominator 0 plus 1 end fraction space equals space fraction numerator straight m over denominator 2 minus 4 end fraction space equals space fraction numerator straight n over denominator negative 2 minus 0 end fraction
    therefore space space space space space straight l over straight l space equals space fraction numerator straight m over denominator negative 2 end fraction space equals space fraction numerator straight n over denominator negative 2 end fraction
    or            l + 2n = 0
    i.e.,        l + 0 m + 2 n = 0
    Also,
                  2l - m + 2n = 0
    Solving, we get, 
                    fraction numerator straight l over denominator 0 plus 2 end fraction space equals space fraction numerator straight m over denominator 4 minus 2 end fraction space equals space fraction numerator straight n over denominator negative 1 minus 0 end fraction
    therefore         straight l over 2 space equals space straight m over 2 space equals space fraction numerator straight n over denominator negative 1 end fraction   

     ∴  direction-ratios of two lines are 1, – 2, – 2 and 2, 2, – 1.
    Let θ be the angle between the lines
    therefore space space space cos space straight theta space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis negative 1 right parenthesis over denominator square root of 1 plus 4 plus 4 end root space square root of 4 plus 4 plus 1 end root end fraction fraction numerator 2 minus 4 plus 2 over denominator 3 cross times 3 end fraction space equals space 0
    ∴ θ = 90°
    Question 109
    CBSEENMA12033327

    Find the angle between the two lines whose direction cosines are given by the equations:
    l + m + n = 0 and 2 l + 2 m – m n = 0

    Solution

    The given equations are
    l + m + n = 0    ....(1)
    and 2 l + 2 m – m n = 0    ...(2)
    From (1), l = – (m + n)    ...(3)
    From (2) and (3), we get,
    – 2 (m + n) + 2 m – m n = 0 or – 2 n – m n = 0
    ⇒ n (2 + m) = 0
    Either n = 0
    i.e., 0 l + 0 m + n = 0
    Also,
             l + m + n = 0
    Solving, we get,
    fraction numerator straight l over denominator 0 minus 1 end fraction space equals space fraction numerator straight m over denominator 1 minus 0 end fraction space equals fraction numerator straight n over denominator 0 minus 0 end fraction
    therefore         straight l over 1 space equals space fraction numerator straight m over denominator negative 1 end fraction space equals space straight n over 0
    or   2 + m = 0  i.e.,   m = -2
    therefore    from (1), l - 2 + n = 0
    Now, l = 1,   n  = 1  satisfy it
    Also, l = 1,   m  =-2,   n = 1 satisfy (2)
    therefore    we have
              l = 1,   m = -2,   n = 1
    ∴ direction-ratios of two lines are 1, – 1, 0 and 1, –2, 1.
    Let θ be the angle between the lines
    therefore space space space cos space straight theta space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis negative 2 right parenthesis space plus space left parenthesis 0 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of 1 plus 1 plus 0 end root space square root of 1 plus 4 plus 1 end root end fraction space equals space fraction numerator 1 plus 2 plus 0 over denominator square root of 2 square root of 6 end fraction space equals space fraction numerator 3 over denominator 2 square root of 3 end fraction
    therefore space space cos space straight theta space equals space fraction numerator square root of 3 over denominator 2 end fraction space space space rightwards double arrow space space space space straight theta space equals space 30 space degree

    Question 110
    CBSEENMA12033328

    Show that the straight lines whose direction cosines are given by the equations uI + vm + wn = 0, a I2 + b m2 + cn2 = 0 are 
    (i) perpendicular if u2 (b + c) + v2 (c + a) + w2 (a + b) = 0
    (ii) parallel if straight u squared over straight a plus straight v squared over straight b plus straight w squared over straight c equals 0.

    Solution
    The direction-cosines of the two lines are given by the equations
    u l + v m + w n = 0        ....(1)
    and a I2 + b m2 + c n2 = 0    ....(2)
    from (1),  straight n space equals space minus fraction numerator straight u space straight l space plus space straight v space straight m over denominator straight w end fraction
    Putting this value of n in (2), we get,
    al squared plus bm squared plus straight c open parentheses negative fraction numerator ul plus vm over denominator straight w end fraction close parentheses squared space equals space 0
    or a wl2 + b w2 m2 + c (ul2 + v2 m2 + 2 u v l m) = 0
    or (a w2 + c u2) I2 + 2 c u v I m + (b w2 + c v2) m2 = 0
    Dividing both sides by m2, we get,
    left parenthesis straight a space straight w squared plus space straight c space straight u squared right parenthesis space straight l squared over straight m squared plus space 2 space straight c space straight u space straight v space straight l over straight m space plus space left parenthesis straight b space straight w squared plus space straight c space straight v squared right parenthesis space equals space 0                 ...(3)
    which is a quadratic in straight l over straight m.
    Let l1, m1, n; l2, m2, n2 be the direction-cosines of the two lines. Then straight l subscript 1 over straight m subscript 1 comma space straight l subscript 2 over straight m subscript 2 are the roots of the equation (3).
    (i) The lines will be perpendicular when 
           l1 l2 + m1 m2 + n1 n2 = 0    ....(4)
    From (3), straight l subscript 1 over straight m subscript 1. space straight l subscript 2 over straight m subscript 2 space equals space fraction numerator straight b space straight w squared plus space straight c space straight v squared over denominator straight a space straight w squared plus space straight c space straight u squared end fraction
    therefore space space space space space fraction numerator straight l subscript 1 space straight l subscript 2 over denominator bw squared plus straight c space straight v squared end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator straight c space straight u squared space plus space straight a space straight w squared end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator av squared plus bu squared end fraction space equals space straight k space left parenthesis say right parenthesis space space space left parenthesis By space symmetry right parenthesis

    ∴  l1 l2 = k (b w2 + c v2), m1 m2 = k (c u2 + a w2), n1 n2 = k (a v2 + b u2)
    ∴  l1 l2 + m1 m2 + n1 n2 = k [b w2'+ cv2 + c u2 + a w'2 + a v2 + b u2]
    ∴  lines are perpendicular
    If k (b w2 + cv2 + c u2 + a w2 + a v2 + b u2] = 0    [∵ of (4)]
    i.e., if b w2 + c v2 + c u2 + a w2 + a v2 + b u2 = 0
    i.e., if u2 (b + c) + v2 (c + a) + w2 (a + b) = 0
    (ii) The lines are parallel
    if l1 = l2, m1 = m2, n1 = n2
    i.e.,  if straight l subscript 1 over straight l subscript 2 space equals space straight m subscript 1 over straight m subscript 2 space space or space space space straight l subscript 1 over straight m subscript 1 space equals space straight l subscript 2 over straight m subscript 2
    i.e.,    if equation (3) has equal roots    
    i.e.,    if disc = 0
    i.e.,    if 4 c2 u2 v2 – 4 (a w2 + c u2) (b w2 + c v2) = 0
    i.e.,    lf c2 u2 v2 – a bw4 – acv2 w2 –bcu2 W – c2 u2 v2= 0
    i.e.,    if – a b w4 – a c v2 w2 – b c u2 w2 = 0
    i.e.,    if a b w2 + a c v2 + b c u2 = 0    [Dividing by – w2]
    i.e,  if straight w squared over straight c plus straight v squared over straight b plus straight u squared over straight a space equals space 0 space space space space space space space space space space space space space space space space space left square bracket Dividing space by space straight a space straight b space straight c right square bracket
    i.e., if straight u squared over straight a plus straight v squared over straight b plus straight w squared over straight c equals 0


    Question 111
    CBSEENMA12033329

    Show that the st. lines whose direction-cosines are given by the equations u I + v m + w n = 0,f m n + g n l + h l m = 0 are
    (i) perpendicular if straight f over straight u plus straight g over straight v plus straight h over straight w equals space 0
    (ii) parallel if square root of straight u space straight f space end root space plus space square root of straight v space straight g end root space plus space square root of straight w space straight h end root space space equals space 0

    Solution

    The direction-cosines of the two lines are given by the equations
    u l + v m + w n = 0    ....(1)
    f m n + g n l + h l m = 0    ....(2)
    From (1),  w n = -(u l +  v m),         therefore space space straight n space equals space open parentheses fraction numerator straight u space straight l space plus space space straight v space straight m over denominator straight w end fraction close parentheses
    Putting this value of n in (2), we get,
    negative straight f space straight m space open parentheses fraction numerator straight u space straight l space plus space straight v space straight m over denominator straight w end fraction close parentheses space minus space straight g space straight l space space open parentheses fraction numerator straight u space straight l space plus space straight v space straight m over denominator straight w end fraction close parentheses space plus space straight h space straight l space straight m space space equals space 0
    ∴    –f m (u l + v m)–g l(u l + v m) + h lm w = 0
    ∴    –u f l m  – v f m2 – u g l– v g l m + h l m w = 0
    ∴    – u g l– (u f + v g – h w) Im – v f m2 = 0
    or     u g l+ (u f + v g –h w )l m + v f m2 = 0
    or      straight u space straight g space open parentheses straight l over straight m close parentheses squared space plus space left parenthesis straight u space straight f space plus space straight v space straight g space minus space straight h space straight w right parenthesis space open parentheses straight l over straight m close parentheses squared plus space straight v space straight f space equals space 0                      ...(3)
    which is a quadratic is straight l over straight m
    Let straight l subscript 1 over straight m subscript 1 comma space straight l subscript 2 over straight m subscript 2 be its roots where l1 , m1 , n1 and l2, m2, n2 are the direction-cosines of the lines.
    (i) The two lines will be perpendicular when
    l1 l2 + m1 m2 + n1 n2  = 0    .....(4)
    From (3),   straight l subscript 1 over straight m subscript 1. space straight l subscript 2 over straight m subscript 2 space equals space fraction numerator straight v space straight f over denominator straight u space straight g end fraction
    therefore     fraction numerator straight l subscript 1 straight l subscript 2 over denominator straight v space straight f end fraction space equals fraction numerator straight m subscript 1 space straight m subscript 2 over denominator straight u space straight g end fraction
    or    fraction numerator straight l subscript 1 space straight l subscript 2 over denominator straight f divided by straight u end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator straight g divided by straight v end fraction space equals fraction numerator straight n subscript 1 space straight n subscript 2 over denominator straight h divided by straight w end fraction space equals space straight k space left parenthesis say right parenthesis                        (By symmetry)
    space therefore space space space space straight l subscript 1 space straight l subscript 2 space equals space fraction numerator straight k space straight f over denominator straight u end fraction comma space space straight m subscript 1 space straight m subscript 2 space equals space fraction numerator space straight k space straight g over denominator straight v end fraction comma space space straight n subscript 1 space straight n subscript 2 space equals space fraction numerator straight k space straight h over denominator straight w end fraction
    Putting in (4), we see that lines are perpendicular
    if  straight k straight f over straight u plus straight k straight g over straight v plus straight k straight h over straight w equals 0
    i.e., if straight f over straight u plus straight g over straight v plus straight h over straight w equals 0
    which is required condition. 

    (ii) The lines are parallel if l= l2, m1= m2, n1 = n2
    i.e.,   if straight l subscript 1 over straight l subscript 2 space equals space straight m subscript 1 over straight m subscript 2 space space space straight i. straight e. comma space space space if space straight l subscript 1 over straight m subscript 1 space equals space straight l subscript 2 over straight m subscript 2
    i.e.,    if the roots of (3) are equal
    i.e.,    if disc, of (3) = 0
    i.e.,    if (u f + v g – h w)2 – 4 (u g) (v f) = 0
    i.e.,    if (u f + v g – h w)2 = 4 u v f g
    i.e.,  if straight u space straight f plus space straight v space straight g space minus space straight h space straight w space equals space plus-or-minus 2 square root of straight u space straight v space straight f space straight g end root
    i.e.,  if uf space plus space straight v space straight g space plus-or-minus space 2 space square root of straight u space straight v space straight f space straight g end root space equals space straight h space straight w
    i.e., if square root of uf space plus-or-minus space space square root of straight v space straight g end root space equals space plus-or-minus space space square root of straight h space straight w end root
    i.e., if square root of straight u space straight f end root space plus-or-minus space square root of straight v space straight g end root space plus-or-minus space square root of straight h space straight w end root space equals space 0
    i.e., if  square root of straight u space straight f end root space plus space square root of straight v space straight g end root space plus space square root of space straight w space straight h end root space equals space 0 space space space space space space space space space space space space space space left parenthesis taking space plus ve space signs space only right parenthesis

     

    Question 112
    CBSEENMA12033330

    Find the shortest distance (S.D.) between the lines:
    stack straight r subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top space plus space straight lambda space left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space plus space stack straight k right parenthesis with hat on top
stack straight r subscript 2 with rightwards arrow on top space space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis.

    Solution
    The equation of two lines areequals space Projection space of space ST space on space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. straight n with rightwards arrow on top
                  stack straight r subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top space plus space straight lambda space left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis                         ...(1)
    and     stack straight r subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis                         ...(2)
    Comparing these equations with
                stack straight r subscript 1 with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space space stack straight r subscript 2 with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space space straight j with hat on top space plus space 4 space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space straight k with hat on top comma space space space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top

    Let S be a point on line (1) with position vectors stack straight a subscript 1 with rightwards arrow on top space space and space straight T be point on line (2) with position vectors stack straight a subscript 2 with rightwards arrow on top so that
               ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 5 space straight j with hat on top space minus space 5 space straight k with hat on top
    stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 cell negative 1 end cell 1 row 3 2 cell negative 4 end cell end table close vertical bar space equals space straight i with hat on top space open vertical bar table row cell negative 1 end cell 1 row 2 cell negative 4 end cell end table close vertical bar space minus space straight j with hat on top space open vertical bar table row 2 1 row 3 cell negative 4 end cell end table close vertical bar space plus space straight k with hat on top space open vertical bar table row 2 cell negative 1 end cell row 3 2 end table close vertical bar
                equals space left parenthesis 4 minus 2 right parenthesis space straight i with hat on top space minus space left parenthesis 8 minus 3 right parenthesis space straight j with hat on top space plus space left parenthesis 4 plus 3 right parenthesis space straight k with hat on top
equals space 2 space straight i with hat on top space plus space 11 space straight j with hat on top space plus space 7 space straight k with hat on top
    Let PQ with rightwards arrow on top be S.D. vector between given lines.
    therefore it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top. If straight n with rightwards arrow on top is unit vector along PQ with rightwards arrow on top, then
                          straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 174 end fraction left parenthesis 2 space straight i with hat on top space plus space 1 space space straight j with hat on top space plus space 7 space straight k with hat on top right parenthesis
    NOW S.D. = Projection of ST on PQ with rightwards arrow on top
                     = Projection of ST on straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
                     equals space left parenthesis straight i with hat on top space minus space 5 space straight j with hat on top space minus space 5 space straight k with hat on top right parenthesis. space fraction numerator 1 over denominator square root of 174 end fraction left parenthesis 2 space straight i with hat on top space plus space 11 space straight j with hat on top space plus space 7 space straight k with hat on top right parenthesis
equals space fraction numerator 1 over denominator square root of 174 end fraction open square brackets left parenthesis 1 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 5 right parenthesis thin space left parenthesis 11 right parenthesis space plus space left parenthesis negative 5 right parenthesis thin space left parenthesis 7 right parenthesis close square brackets
space equals space fraction numerator 88 over denominator square root of 174 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis in space magnitude right parenthesis
                     
    Question 113
    CBSEENMA12033331

    Find the shortest distance between the lines whose vector equations are
              straight r with rightwards arrow on top space equals left parenthesis space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight lambda left parenthesis straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    and    straight r with rightwards arrow on top space equals space 4 straight i with hat on top space plus 5 space straight j with hat on top space plus space 6 space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top right parenthesis

    Solution
    The equations of two lines are
                           straight r with rightwards arrow on top space equals left parenthesis space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight lambda left parenthesis straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space...(1)
    and                straight r with rightwards arrow on top space equals space 4 straight i with hat on top space plus 5 space straight j with hat on top space plus space 6 space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top right parenthesis                        ...(2)
    Comparing these equations with
    straight r with rightwards arrow on top space equals stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space space and space space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 4 space straight i with hat on top space plus space 5 space straight j with hat on top space plus space 6 space straight k with hat on top comma space space space stack straight b subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top
    Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that

    ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space space 3 space straight j with hat on top space plus space 3 space straight k with hat on top
    straight b with rightwards arrow on top subscript 1 cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 3 end cell 2 row 2 3 1 end table close vertical bar space equals space straight i with hat on top space open vertical bar table row cell negative 3 end cell 2 row 3 1 end table close vertical bar minus straight j with hat on top space open vertical bar table row 1 2 row 2 1 end table close vertical bar space plus straight k with overparenthesis on top space open vertical bar table row 1 cell negative 3 end cell row 2 3 end table close vertical bar
                  equals space left parenthesis negative 3 minus 6 right parenthesis space straight i with hat on top minus left parenthesis 1 minus 4 right parenthesis space straight j with hat on top space plus left parenthesis 3 plus 6 right parenthesis space straight k with hat on top space equals space minus 9 straight i with hat on top plus space 3 straight j with hat on top space plus space 9 straight k with hat on top
    open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times space stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 81 plus 9 plus 81 end root space equals space square root of 171
    Let PQ with rightwards arrow on top  be the S.D. vector between given lines. 
    Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top comma then
             straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space minus fraction numerator 1 over denominator square root of 171 end fraction left parenthesis negative 9 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 9 space straight k with hat on top right parenthesis
                equals space fraction numerator 1 over denominator square root of 19 end fraction left parenthesis negative 3 space straight i with hat on top space space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
    Now S.D. = Projection of 
    ST with rightwards arrow on top space on space PQ with rightwards arrow on top
    space equals space Projection space of space ST with rightwards arrow on top space space on space space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
space equals space left parenthesis 3 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space. space fraction numerator 1 over denominator square root of 19 end fraction left parenthesis negative 3 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
space equals space fraction numerator 1 over denominator square root of 19 end fraction open square brackets left parenthesis 3 right parenthesis space left parenthesis negative 3 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 3 right parenthesis close square brackets
space equals space fraction numerator 1 over denominator square root of 19 end fraction space left square bracket negative 9 plus 3 plus 9 right square bracket space equals space fraction numerator 3 over denominator square root of 19 end fraction


              
    Question 114
    CBSEENMA12033332

    Find the shortest distance between the lines
                                     straight r with rightwards arrow on top space equals space 6 space straight i with hat on top space plus space 2 space straight j with hat on top space space plus space 2 space straight k with hat on top space plus space straight lambda left parenthesis straight i with hat on top space minus space 2 straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
     and                          straight r with rightwards arrow on top space equals space minus 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu left parenthesis 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis
                  

    Solution
    The equations of two lines are
                               straight r with rightwards arrow on top space equals space 6 space straight i with bar on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight lambda left parenthesis straight i with hat on top space minus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis                      ...(1)
    and                    straight r with rightwards arrow on top space equals space minus 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu left parenthesis 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis                            ...(2)
    Comparing these equations with
    straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space 6 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space minus 4 space straight i with hat on top space minus space straight k with hat on top comma space space space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
    Let 'S be the point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be the point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that

                           ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space minus 10 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top
    Now,      stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 2 end cell 2 row 3 cell negative 2 end cell cell negative 2 end cell end table close vertical bar
                                 equals space straight i with hat on top space open vertical bar table row cell negative 2 end cell 2 row cell negative 2 end cell cell negative 2 end cell end table close vertical bar minus space straight j with hat on top space open vertical bar table row 1 2 row 3 cell negative 2 end cell end table close vertical bar space plus space straight k with hat on top space open vertical bar table row 1 cell negative 2 end cell row 3 cell negative 2 end cell end table close vertical bar
                                  equals space left parenthesis 4 plus 4 right parenthesis space straight i with hat on top space minus space left parenthesis negative 2 minus 6 right parenthesis space straight j with hat on top space plus space left parenthesis negative 2 plus 6 right parenthesis space straight k with hat on top space equals space 8 straight i with hat on top space plus space 8 straight j with hat on top space plus space 4 straight k with hat on top
    therefore             open vertical bar stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 64 plus 64 plus 16 end root space equals space square root of 144 space equals space 12
    Let PQ with rightwards arrow on top be the S.D. vector between given lines.
    Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
    If  straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top, then
                                   straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space 1 over 12 left parenthesis 8 straight i with hat on top space plus space space 8 straight j with hat on top space plus space space 4 straight k with hat on top right parenthesis space equals space 1 third left parenthesis 2 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis
    Now              straight S. straight D. space equals space Projection space of space ST with rightwards arrow on top space space on space space PQ with rightwards arrow on top
                                equals space Projection space of space ST with rightwards arrow on top space space on space space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space space straight n with rightwards arrow on top
    equals left parenthesis negative 10 space straight i with hat on top space minus space 2 space straight j with hat on top minus space 3 space straight k with hat on top right parenthesis. space 1 third left parenthesis 2 stack straight i space with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis
    equals space 1 third open square brackets left parenthesis negative 10 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis 1 right parenthesis close square brackets
    equals 1 third left parenthesis negative 20 minus 4 minus 3 right parenthesis space equals space minus 27 over 3 space equals space minus 9 space equals space 9 space units. space left parenthesis in space magnitude right parenthesis
                          
            
              
    Question 115
    CBSEENMA12033333

    Find the shortest distance between the lines:
    straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space plus space straight k with hat on top right parenthesis
    and straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight mu left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis

    Solution
    The equations of two lines are
                  straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space plus space straight k with hat on top right parenthesis
    and        straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight mu left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis
    Comparing these equations with
                          straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space straight r with rightwards arrow on top space equals stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma  we get
                         stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight k with hat on top comma space space stack straight a subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    stack straight a subscript 2 with rightwards arrow on top space minus space straight a with rightwards arrow on top space equals space straight i with hat on top
    stack straight b subscript 1 with rightwards arrow on top space cross times rightwards arrow
    Question 116
    CBSEENMA12033334

    Find the shortest distance between the lines whose vector equations are:
    straight r with rightwards arrow on top space equals space left parenthesis 1 minus straight t right parenthesis space straight i with hat on top space plus space left parenthesis straight t minus 2 right parenthesis space straight j with hat on top space plus space left parenthesis 3 minus 2 space straight t right parenthesis space straight k with hat on top
    and straight r with rightwards arrow on top space equals space left parenthesis straight s plus 1 right parenthesis space straight i with hat on top space plus space left parenthesis 2 straight s minus 1 right parenthesis straight j with hat on top space plus space left parenthesis 2 straight s plus 1 right parenthesis space straight k with hat on top

    Solution
    The equations of the two lines are
              straight r with rightwards arrow on top space equals space left parenthesis 1 minus straight t right parenthesis space straight i with hat on top space plus space left parenthesis straight t minus 2 right parenthesis space straight j with hat on top space plus space left parenthesis 3 minus 2 straight t right parenthesis space straight k with hat on top
    and    straight r with rightwards arrow on top space equals space left parenthesis straight s plus 1 right parenthesis space straight i with hat on top space plus space left parenthesis 2 straight s minus 1 right parenthesis space straight j with hat on top space minus space left parenthesis 2 straight s plus 1 right parenthesis space straight k with hat on top
    or       straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight t space left parenthesis negative straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis                        ...(1)
    and     straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top minus straight j with hat on top space minus space straight k with hat on top right parenthesis space plus space straight s thin space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis                                 ...(2)
    Comparing these equations with
    straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight t space space stack straight b subscript 1 with rightwards arrow on top space space space and space space space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight s space stack straight b subscript 2 with rightwards arrow on top
stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 2 space space straight j with hat on top space plus space 3 space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space minus space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space space equals straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
    Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that
              ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space straight j with hat on top space minus space 4 space straight k with hat on top
    Now, stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row cell negative 1 end cell 1 cell negative 2 end cell row 1 2 cell negative 2 end cell end table close vertical bar
                       equals space left parenthesis negative 2 plus 4 right parenthesis space straight i with hat on top space minus space left parenthesis 2 plus 2 right parenthesis space straight j with hat on top space space plus space left parenthesis negative 2 minus 1 right parenthesis space straight k with hat on top
space equals space 2 space straight i with hat on top space minus space 4 space straight j with hat on top space minus space 3 space straight k with hat on top
    therefore space space space open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 4 plus 16 plus 9 end root space equals square root of 29
    Let PQ with rightwards arrow on top  be the S.D. vector between the given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top,
    then
                 straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 29 end fraction left parenthesis 2 space straight i with hat on top space minus space 4 space straight j with hat on top space minus space 3 space straight k with hat on top right parenthesis
    Now S.D. = Projection of ST with rightwards arrow on top space on space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
                   equals space left parenthesis straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis. space fraction numerator 1 over denominator square root of 29 end fraction left parenthesis 2 space straight i with hat on top space minus space 4 space space straight j with hat on top space minus space space 3 space straight k with hat on top right parenthesis
                   equals space fraction numerator 1 over denominator square root of 29 end fraction left parenthesis 0 minus 4 plus 12 right parenthesis space equals space fraction numerator 8 over denominator square root of 29 end fraction space units. space
    Question 117
    CBSEENMA12033335

    Find the shortest distance between the lines whose vector equations are
            straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis
    and  straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 3 straight i with hat on top space minus space 5 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis


    Solution

    The equations of two lines are
                  straight r with rightwards arrow on top equals space straight i with hat on top space plus space straight j with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis                                   ...(1)
    and         straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 3 straight i with hat on top space minus space 5 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis             ...(2)
    Comparing these equations with
      stack straight r subscript 1 with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space space and space space stack straight r subscript 2 with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 2 with rightwards arrow on top space space space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space 2 space straight k with hat on top
    Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that
                   ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space straight k with hat on top
    Now,  stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 cell negative 1 end cell 1 row 3 cell negative 5 end cell 2 end table close vertical bar space equals space straight i with hat on top space left parenthesis negative 2 plus 5 right parenthesis space minus space straight j with hat on top space left parenthesis 4 minus 3 right parenthesis space plus space straight k with hat on top space left parenthesis negative 10 plus 3 right parenthesis space equals space 3 space straight i with hat on top space minus space straight j with hat on top space minus space 7 space straight k with hat on top
    therefore        open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 9 plus 1 plus 49 end root space equals space square root of 59
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top, then
                              straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 58 end fraction space left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top space minus space 7 space stack straight k right parenthesis with hat on top
    Now. S.D. = Projection of ST with rightwards arrow space on top space on space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
                        equals space left parenthesis straight i with hat on top space minus space straight k with hat on top right parenthesis. space fraction numerator 1 over denominator square root of 59 end fraction left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top space minus space 7 space straight k with hat on top right parenthesis space equals space fraction numerator 1 over denominator square root of 59 end fraction left parenthesis 3 minus 0 plus 7 right parenthesis space equals space fraction numerator 10 over denominator square root of 59 end fraction

    Question 118
    CBSEENMA12033336

    Find the shortest distance between the following lines.
               straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis
    and     straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis  

    Solution

    The equations of the two lines are
                 straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis                         ...(1)
    and      straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis                   ...(2)
    Comparing these equations with
                  straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top subscript 1 space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus 2 space straight j with hat on top space plus space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top comma space space space stack straight b subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top
    Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that

                            ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals straight i with hat on top space minus space 3 space straight j with hat on top space minus space 2 space straight k with hat on top
    Now,          stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 space with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 1 end cell 1 row 2 1 2 end table close vertical bar
                                    equals space left parenthesis negative 2 minus 1 right parenthesis space straight i with hat on top space minus space left parenthesis 2 minus 2 right parenthesis space straight j with hat on top space plus space left parenthesis 1 plus 2 right parenthesis space straight k with hat on top space equals space minus 3 space straight i with hat on top space plus space 3 space straight k with hat on top
    therefore space space space space space open vertical bar stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of left parenthesis negative 3 right parenthesis squared plus left parenthesis 0 right parenthesis squared plus left parenthesis 3 right parenthesis squared end root space equals space square root of 18 space equals space 3 square root of 2
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top, then
                     straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator 3 square root of 2 end fraction left parenthesis negative 3 space straight i with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space fraction numerator 1 over denominator square root of 2 end fraction left parenthesis negative straight i with hat on top space plus space straight k with hat on top right parenthesis
    Now, S.D.  = Projection space of space ST with rightwards arrow on top space on space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
                       equals thin space left parenthesis straight i with hat on top space minus space 3 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis. space fraction numerator 1 over denominator square root of 2 end fraction left parenthesis negative straight i with hat on top space plus space straight k with hat on top right parenthesis
                       equals space fraction numerator 1 over denominator square root of 2 end fraction left parenthesis negative 1 minus 2 right parenthesis space equals space minus fraction numerator 3 over denominator square root of 2 end fraction space equals space minus fraction numerator 3 square root of 2 over denominator 2 end fraction space equals space fraction numerator 3 square root of 2 over denominator 2 end fraction space units left parenthesis in space magnitude right parenthesis

    Question 119
    CBSEENMA12033337

    Find the shortest distance between the lines:
          straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space space 8 space straight j with hat on top space plus space 3 space straight k with hat on top space plus space straight lambda space left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis
    and straight r with rightwards arrow on top space equals space minus 3 space straight i with hat on top space minus space 7 space straight j with hat on top space plus space 6 space straight k with hat on top space plus space straight mu space open parentheses negative 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space.


    Solution
    The equations of the two lines are
              straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space space 8 space straight j with hat on top space plus space 3 space straight k with hat on top space plus space straight lambda space left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis                        ...(1)
    and    straight r with rightwards arrow on top space equals space minus 3 space straight i with hat on top space minus space 7 space straight j with hat on top space plus space 6 space straight k with hat on top space plus space straight mu space open parentheses negative 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space         ...(2)
        Comparing these equations with    
    straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
    stack straight a subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 8 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top
    stack straight a subscript 2 with rightwards arrow on top space equals space minus 3 space straight i with hat on top space minus space 7 space straight j with hat on top space plus space space 6 space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space minus 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 4 space straight k with hat on top
    Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that
     
                         ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space minus 6 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 3 space straight k with hat on top
    Now,     stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 3 cell negative 1 end cell 1 row cell negative 3 end cell 2 4 end table close vertical bar
                                equals space left parenthesis negative 4 minus 2 right parenthesis space straight i with hat on top space minus space left parenthesis 12 plus 3 right parenthesis space straight j with hat on top space plus space left parenthesis 6 minus 3 right parenthesis space straight k with hat on top space equals space minus 6 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 3 space straight k with hat on top
    therefore      open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 36 plus 225 plus 9 end root space equals space square root of 270 space equals space 3 square root of 30
    Let PQ with rightwards arrow on top  be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top, then 
              straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals fraction numerator 1 over denominator 3 square root of 30 end fraction left parenthesis negative 6 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space fraction numerator 1 over denominator square root of 30 end fraction left parenthesis negative space 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space straight k with hat on top right parenthesis
    Now S.D.  = Projection of ST with rightwards arrow on top space on space PQ with rightwards arrow on top = Projection of ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space stack ST. with rightwards arrow on top straight n with rightwards arrow on top
                     equals space open parentheses negative 6 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space. space fraction numerator 1 over denominator square root of 30 end fraction left parenthesis negative 2 straight i with hat on top space minus space 5 space straight j with hat on top space plus space straight k with hat on top right parenthesis
space equals space fraction numerator 1 over denominator square root of 30 end fraction left parenthesis 12 plus 75 plus 3 right parenthesis space equals space fraction numerator 90 over denominator square root of 30 end fraction space equals space fraction numerator 3 cross times 30 over denominator square root of 30 end fraction space equals space 3 square root of 30 space units

    Sponsor Area

    Question 120
    CBSEENMA12033338

    Find the shortest distance between the lines
      straight r with rightwards arrow on top space equals space left parenthesis straight lambda minus 1 right parenthesis space straight i with hat on top space plus space left parenthesis straight lambda plus 1 right parenthesis space straight j with hat on top space minus space left parenthesis straight lambda plus 1 right parenthesis space straight k with hat on top
    and straight r with rightwards arrow on top space equals space left parenthesis 1 minus straight mu right parenthesis space straight i with hat on top space plus space left parenthesis 2 straight mu minus 1 right parenthesis space straight j with hat on top space plus space left parenthesis straight mu space plus space 2 right parenthesis space straight k with hat on top
                                         
          



    Solution
    The equations of given lines are
              straight r with rightwards arrow on top space equals space left parenthesis straight lambda minus 1 right parenthesis space straight i with hat on top space plus space left parenthesis straight lambda plus 1 right parenthesis space straight j with hat on top space minus space left parenthesis straight lambda plus 1 right parenthesis space straight k with hat on top
    and    straight r with rightwards arrow on top space equals space left parenthesis 1 minus straight mu right parenthesis space straight i with hat on top space plus space left parenthesis 2 straight mu minus 1 right parenthesis space straight j with hat on top space plus space left parenthesis straight mu space plus space 2 right parenthesis space straight k with hat on top.
    or       straight r with rightwards arrow on top space equals space minus space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space space plus space straight lambda left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis                                 ...(1)
    and    straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top space plus space space straight mu left parenthesis negative straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis                            ...(2)
    Comparing these equations with straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda stack straight b subscript 1 with rightwards arrow on top space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu stack straight b subscript 2 with rightwards arrow on top comma
    we get,
           stack straight a subscript 1 with rightwards arrow on top space equals space minus straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space minus straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top
             
    Let S be the point on the line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be the point on the line (2) with position vector stack straight a subscript 2 with rightwards arrow on top comma so that
                    ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top
    Now, stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 1 cell negative 1 end cell row cell negative 1 end cell 2 1 end table close vertical bar space equals space left parenthesis 1 plus 2 right parenthesis space straight i with hat on top space minus space left parenthesis 1 minus 1 right parenthesis space straight j with hat on top space plus space left parenthesis 2 plus 1 right parenthesis space straight k with hat on top space equals space 3 space straight i with hat on top space plus space space 3 space straight k with hat on top
    therefore            open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 9 plus 0 plus 9 end root space equals space square root of 18 space equals space 3 space square root of 2
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top   is  a unit vector along PQ with rightwards arrow on top comma then 
                  straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator 3 square root of 2 end fraction space left parenthesis 3 space straight i with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space fraction numerator 1 over denominator square root of 2 end fraction left parenthesis straight i with hat on top space plus space straight k with hat on top right parenthesis
    Now, S.D. = Projection space of space ST with rightwards arrow on top space on space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top
                     equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space fraction numerator 1 over denominator square root of 2 end fraction left parenthesis straight i with hat on top space plus space straight k with hat on top right parenthesis
                     equals space fraction numerator 1 over denominator square root of 2 end fraction left parenthesis 2 plus 0 plus 3 right parenthesis space equals space fraction numerator 5 over denominator square root of 2 end fraction space equals space fraction numerator 5 square root of 2 over denominator 2 end fraction space units. space
    Question 121
    CBSEENMA12033339

    Find the shortest distance between the lines:
          straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 9 space straight k with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space minus space 7 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis
    and straight r with rightwards arrow on top space equals space left parenthesis 2 space straight mu minus 1 right parenthesis space straight i with hat on top space plus space left parenthesis 1 plus straight mu right parenthesis space straight j with hat on top space plus space left parenthesis 9 minus 3 space straight mu right parenthesis space straight k with hat on top

    Solution

    The equations of two lines are
                         straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 9 space straight k with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space minus space 7 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis
    and              straight r with rightwards arrow on top space equals space left parenthesis 2 straight mu minus 1 right parenthesis thin space straight i with hat on top space plus space left parenthesis 1 plus straight mu right parenthesis space straight j with hat on top space plus space left parenthesis 9 minus 3 space straight mu right parenthesis space straight k with hat on top
    or                 straight r with rightwards arrow on top space equals space minus straight i with hat on top space plus space straight j with hat on top space plus space 9 space straight k with hat on top space plus space straight mu open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses
    Comparing these equations with
                         straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space and space space space straight r with rightwards arrow on top space space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
                         stack straight a subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 15 space straight j with hat on top space plus space 9 space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 7 space straight j with hat on top space plus space space 5 space straight k with hat on top
                         stack straight a subscript 2 with rightwards arrow on top space space minus space stack straight a subscript 1 with rightwards arrow on top space equals space minus 4 space straight i with hat on top space plus space 16 space straight j with hat on top
    Now,   stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 cell negative 7 end cell 5 row 2 1 cell negative 3 end cell end table close vertical bar space equals space open vertical bar table row cell negative 7 end cell 5 row 1 cell negative 3 end cell end table close vertical bar straight i with hat on top space minus space open vertical bar table row 2 5 row 2 cell negative 3 end cell end table close vertical bar straight j with hat on top space plus space open vertical bar table row 2 cell negative 7 end cell row 2 1 end table close vertical bar straight k with hat on top
                            equals space left parenthesis 21 minus 5 right parenthesis space straight i with hat on top space minus space left parenthesis negative 6 minus 10 right parenthesis space straight j with hat on top space plus space left parenthesis 2 plus 14 right parenthesis space straight k with hat on top
equals space 16 space straight i with hat on top space plus space 16 space straight j with hat on top space plus space 16 space straight k with hat on top space equals space 16 space open parentheses straight i with hat on top plus space straight j with hat on top space plus space straight k with hat on top close parentheses
       therefore space space space space space space space open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space 16 square root of 1 plus 1 plus 1 end root space equals space 16 square root of 3
    S.D. = open vertical bar fraction numerator left parenthesis stack straight a subscript 2 with rightwards arrow on top minus stack straight a subscript 1 with rightwards arrow on top right parenthesis thin space left parenthesis stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top right parenthesis over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction close vertical bar space equals space space open vertical bar fraction numerator left parenthesis negative 4 space straight i with hat on top space plus space 1 space 6 space straight j with hat on top right parenthesis. space 16 space left parenthesis straight i with hat on top space plus straight j with hat on top space plus space straight k with hat on top right parenthesis over denominator 16 square root of 3 end fraction close vertical bar
            equals space fraction numerator 1 over denominator square root of 3 end fraction open square brackets left parenthesis negative 4 right parenthesis space left parenthesis 1 right parenthesis space plus space left parenthesis 16 right parenthesis thin space left parenthesis 1 right parenthesis space plus space open parentheses 0 close parentheses space left parenthesis 1 right parenthesis close square brackets space equals space fraction numerator 1 over denominator square root of 3 end fraction left parenthesis negative 4 plus 16 plus 0 right parenthesis
equals space fraction numerator 12 over denominator square root of 3 end fraction space equals 4 square root of 3

    Question 122
    CBSEENMA12033340

    Find the shortest distance between the lines:
                   straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space plus space straight lambda space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses
    and         straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight mu space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses.
          

    Solution
    The equations of the two lines are
                      straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space plus space straight lambda space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses                       ...(1)
    and            straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight mu space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses                    ...(2)
    Comparing these equations with
           straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top
    We get,
            stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top
    Let S be point on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that
       
                     ST with rightwards arrow on top space equals stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top
    Now, stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 3 4 row 3 4 5 end table close vertical bar
                          equals space left parenthesis 15 minus 16 right parenthesis space straight i with hat on top space minus space left parenthesis 10 minus 12 right parenthesis space straight j with hat on top space plus space left parenthesis 8 minus 9 right parenthesis space straight k with hat on top space equals negative straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top
     therefore space space space open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of left parenthesis negative 1 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root space equals square root of 6
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top
    then
                        straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals fraction numerator 1 over denominator square root of 6 end fraction left parenthesis negative straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top right parenthesis
    Now S.D. = Projection of ST with rightwards arrow on top space on space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top
                     equals space open parentheses straight i with hat on top space plus 2 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space. space fraction numerator 1 over denominator square root of 6 end fraction space open parentheses negative straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space fraction numerator 1 over denominator square root of 6 end fraction left parenthesis negative 1 plus 4 minus 2 right parenthesis space equals space fraction numerator 1 over denominator square root of 6 end fraction
                         equals space left parenthesis 15 minus 16 right parenthesis space straight i with hat on top space space minus space left parenthesis 10 minus 12 right parenthesis space straight j with hat on top space plus space left parenthesis 8 minus 9 right parenthesis space straight k with hat on top space equals space minus straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top
    Question 123
    CBSEENMA12033341

    Find the shortest distance between the lines:
                   straight r with rightwards arrow space on top equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space space 3 space straight k with hat on top space plus space straight lambda space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses
    and       straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight mu space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses.
                   

          

    Solution
    The equations of the two lines are
                        straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space plus space straight lambda space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses                   ...(1)
    and              straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight mu space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses                ...(2)
    Comparing these equations with straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space space space and space space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma we get
    stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space space space space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top comma space stack straight b subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top

    Let S be the point on the line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be the point on the line (2) with position vector stack straight a subscript 2 with rightwards arrow on top comma space so space that
    ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top
    Now, stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 3 4 row 3 4 5 end table close vertical bar space equals left parenthesis 15 minus 16 right parenthesis space straight i with hat on top space minus space left parenthesis 10 minus 12 right parenthesis space straight j with hat on top space plus space left parenthesis 8 minus 9 right parenthesis space straight k with hat on top
                     equals space minus straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top
    therefore          open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times space stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of left parenthesis negative 1 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root space equals space square root of 6
                                    equals space minus space straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top
    therefore space space space space space open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of left parenthesis negative 1 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root space equals square root of 6
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a vector along PQ with rightwards arrow on top comma then
                   straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 6 end fraction left parenthesis negative straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top right parenthesis
    Now. S.D. = Projection of ST with rightwards arrow on top space on space PQ with rightwards arrow on top = Projection of ST with rightwards arrow on top space on space straight n with rightwards arrow on top
                     space equals space ST with rightwards arrow on top. space straight n with rightwards arrow on top space equals space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses. space fraction numerator 1 over denominator square root of 6 end fraction space open parentheses negative straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses
                      equals space fraction numerator 1 over denominator square root of 6 end fraction left parenthesis negative 1 plus 4 minus 2 right parenthesis space equals space fraction numerator 1 over denominator square root of 6 end fraction
    Question 124
    CBSEENMA12033342

    Find the shortest distance between the lines:
                   straight r with rightwards arrow on top space equals space straight i with hat on top space minus space 7 space straight j with hat on top space minus space 2 space straight k with hat on top space plus space straight lambda space open parentheses stack straight i space with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses
    and         straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 2 space straight k with hat on top space plus space straight mu space open parentheses negative straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses
                              

          

    Solution
    The equations of two lines are
                    straight r with rightwards arrow on top space equals space straight i with hat on top space minus space 7 space straight j with hat on top space minus space 2 space straight k with hat on top space plus space straight lambda space open parentheses stack straight i space with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses                           ...(1)
    and           straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 4 space straight j with hat on top space minus space 2 space straight k with hat on top space plus space straight mu space open parentheses negative straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses                       ...(2)
    Comparing these equations with straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda stack straight b subscript 1 with rightwards arrow on top space space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space we space get comma
    stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space 7 space straight j with hat on top space minus space 2 space straight k with hat on top comma space space space space space stack straight b subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 2 space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space minus straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space space 11 space straight j with hat on top
    stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 3 2 row cell negative 1 end cell 2 1 end table close vertical bar space equals space left parenthesis negative 3 minus 4 right parenthesis space straight i with hat on top space minus space left parenthesis 1 plus 2 right parenthesis space straight j with hat on top space plus space left parenthesis 2 plus 3 right parenthesis space straight k with hat on top
                    equals space minus straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top
    open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 1 plus 9 plus 25 end root space equals space square root of 35
    S.D.  = open vertical bar fraction numerator left parenthesis stack straight a subscript 2 with rightwards arrow on top minus stack straight a subscript 1 with rightwards arrow on top right parenthesis. space open parentheses stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close parentheses over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction close vertical bar space equals space open vertical bar fraction numerator left parenthesis 2 space straight i with hat on top space plus space 11 space straight j with hat on top right parenthesis. space left parenthesis negative straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis over denominator square root of 35 end fraction close vertical bar
            equals space open vertical bar fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis negative 1 right parenthesis thin space plus space left parenthesis 11 right parenthesis thin space left parenthesis negative 3 right parenthesis space plus space left parenthesis 0 right parenthesis thin space left parenthesis 5 right parenthesis over denominator square root of 35 end fraction close vertical bar space equals space open vertical bar negative fraction numerator 35 over denominator square root of 35 end fraction close vertical bar space equals space square root of 35
    Question 125
    CBSEENMA12033343

    Find the shortest distance between the lines:
    straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis
    and straight r with rightwards arrow on top space equals straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space minus space straight mu open parentheses 2 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses
                   
          

    Solution
    The equations of the two lines are 
                          straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space straight lambda left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis                              ...(1)
    and                straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space minus space straight mu space open parentheses 2 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses                       ...(2)
    Line (1) passes through the point S with position vector stack straight a subscript 1 with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space 3 space straight j with hat on top and line (2) passes through the point T with position vector stack straight a subscript 2 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top. Also both lines are parallel to the vector
                          straight b with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 2 space straight k with hat on top
    Now        stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space straight k with hat on top
                straight b with rightwards arrow on top cross times open parentheses stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top close parentheses space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 2 cell negative 2 end cell row cell negative 3 end cell 4 cell negative 1 end cell end table close vertical bar
                                equals space left parenthesis negative 2 plus 8 right parenthesis space straight i with hat on top space minus space left parenthesis 1 minus 6 right parenthesis space straight j with hat on top space plus space left parenthesis 4 plus 6 right parenthesis space straight k with hat on top space equals space 6 space straight i with hat on top space plus space 7 space straight j with hat on top space plus space 10 space straight k with hat on top
    therefore                open vertical bar straight b with rightwards arrow on top close vertical bar space equals space square root of 1 plus 4 plus 4 end root space equals space square root of 9 space equals space 3
    Now, straight S. straight D. space equals space open vertical bar fraction numerator straight b with rightwards arrow on top cross times left parenthesis stack straight a subscript 2 with rightwards arrow on top minus stack straight a subscript 1 with rightwards arrow on top right parenthesis over denominator open vertical bar straight b with rightwards arrow on top close vertical bar end fraction close vertical bar space equals space 1 third open vertical bar 6 space straight i with hat on top space plus space 7 space straight j with hat on top space plus space 10 space straight k with hat on top close vertical bar space equals space 1 third square root of 36 plus 49 plus 100 end root
space space space space space space space space space equals space 1 third square root of 185
     
    Question 126
    CBSEENMA12033344

    Find the shortest distance between the lines:
             straight r with rightwards arrow on top space equals space left parenthesis 8 plus 3 space straight lambda right parenthesis space straight i with hat on top space minus space left parenthesis 9 plus 16 space straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 10 plus space 7 space straight lambda right parenthesis space straight k with hat on top
    and   straight r with rightwards arrow on top space equals space 15 space straight i with hat on top space plus space 29 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight mu space open parentheses 3 space straight i with hat on top space plus space 8 space straight j with hat on top space minus space 5 space straight k with hat on top close parentheses.


     
                   
          

    Solution
    The equation of the two lines are
                        straight r with rightwards arrow on top space equals space left parenthesis 8 plus 3 space straight lambda right parenthesis space straight i with hat on top space minus space left parenthesis 9 plus 16 space straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 10 plus 7 space straight lambda right parenthesis straight k with hat on top
    or                straight r with rightwards arrow on top space equals space 8 space straight i with hat on top space minus space 9 space straight j with hat on top space plus space 10 space straight k with hat on top space plus space straight lambda space open parentheses 3 space straight i with hat on top space minus space 16 space straight j with hat on top space plus space 7 space straight k with hat on top close parentheses
    and             straight r with rightwards arrow on top space equals space 15 space straight i with hat on top space plus space 29 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight mu space open parentheses 3 space straight i with hat on top space plus space 8 space straight j with hat on top space minus space 5 space straight k with hat on top close parentheses
    Comparing these equations with straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top and straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top, we get,
                       stack straight a subscript 1 with rightwards arrow on top space equals space 8 space straight i with hat on top space minus space 9 space straight j with hat on top space plus space 10 space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 16 space straight j with hat on top space plus space 7 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top space equals space 15 space straight i with hat on top space plus space 29 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space space stack straight b subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 8 space straight j with hat on top space minus space 5 space straight k with hat on top
stack straight a subscript 2 with rightwards arrow on top minus stack straight a subscript 1 with rightwards arrow on top space equals space 7 straight i with hat on top space plus space 38 space straight j with hat on top space minus space 5 space straight k with hat on top
    Now stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top space space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 3 cell negative 16 end cell 7 row 3 8 cell negative 5 end cell end table close vertical bar space equals space open vertical bar table row cell negative 16 end cell 7 row 8 cell negative 5 end cell end table close vertical bar space straight i with hat on top space minus space space open vertical bar table row 3 7 row 3 cell negative 5 end cell end table close vertical bar space straight j with hat on top space plus space open vertical bar table row 3 cell negative 16 end cell row 3 8 end table close vertical bar space straight k with hat on top
                           equals space left parenthesis 80 minus 56 right parenthesis space straight i with hat on top space minus space left parenthesis negative 15 minus 21 right parenthesis space straight j with hat on top space plus space left parenthesis 24 plus 48 right parenthesis space straight k with hat on top
equals space 24 space straight i with hat on top space plus space 36 space straight j with hat on top space plus space 72 space straight k with hat on top space equals space 12 left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis
    therefore            open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space 12 space square root of 4 plus 9 plus 36 end root space equals space 12 space cross times 7 space equals space 84
    S.D. = open vertical bar fraction numerator left parenthesis stack straight a subscript 2 with rightwards arrow on top minus stack straight a subscript 1 with rightwards arrow on top right parenthesis. space open parentheses stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close parentheses over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction close vertical bar space equals space open vertical bar fraction numerator left parenthesis 7 space straight i with hat on top space plus space 38 space straight j with hat on top space minus space 5 space straight k with hat on top right parenthesis. space 12 space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis over denominator 84 end fraction close vertical bar
           equals space 1 over 7 left parenthesis 14 plus 114 minus 30 right parenthesis space equals space 1 over 7 left parenthesis 98 right parenthesis space equals space 14
     
    Question 127
    CBSEENMA12033345

    Find the distance between the lines l1, and l2 given by
                          straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space space 6 space straight k with hat on top right parenthesis
    and                straight r with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 3 straight j with hat on top space minus space 5 space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis

    Solution
    The equations of two lines are
                             straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda space left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis             ...(1)
    and                   straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus 3 space straight j with hat on top space minus space 5 space straight k with hat on top space plus space straight mu space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis         ...(2)
    Line (1) passes through the point S with position vector stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top and line (2) passes through the point T with position vector stack straight a subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 5 space straight k with hat on top. Also both lines are parallel to the vector straight b with rightwards arrow on top space equals space 2 space straight i with hat on top space plus 3 space straight j with hat on top space plus 6 space straight k with hat on top.
    Now,          stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    straight b with rightwards arrow on top cross times space left parenthesis stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top right parenthesis space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 3 6 row 2 1 cell negative 1 end cell end table close vertical bar space equals space straight i with hat on top space open vertical bar table row 3 6 row 1 cell negative 1 end cell end table close vertical bar space minus space straight j with hat on top open vertical bar table row 2 6 row 2 cell negative 1 end cell end table close vertical bar space plus space straight k with hat on top open vertical bar table row 2 3 row 2 1 end table close vertical bar
                              equals space left parenthesis negative 3 minus 6 right parenthesis space straight i with hat on top space minus space left parenthesis negative 2 space minus space 12 right parenthesis space straight j with hat on top space plus space left parenthesis 2 minus 6 right parenthesis space straight k with hat on top
equals space minus 9 straight i with hat on top space plus space 14 space straight j with hat on top space minus space 4 space straight k with hat on top
               open vertical bar straight b with rightwards arrow on top close vertical bar space equals space square root of left parenthesis 2 right parenthesis squared plus left parenthesis 3 right parenthesis squared plus left parenthesis 6 right parenthesis squared end root space equals space square root of 4 plus 9 plus 36 end root space equals space square root of 49 space equals space 7
    Let d be the distance between the lines
    therefore space space space space space space straight d space equals space open vertical bar fraction numerator straight b with rightwards arrow on top cross times left parenthesis stack straight a subscript 2 with rightwards arrow on top minus stack straight a subscript 1 with rightwards arrow on top right parenthesis over denominator open vertical bar straight b with rightwards arrow on top close vertical bar end fraction close vertical bar space equals space fraction numerator open vertical bar negative 9 space straight i with hat on top space plus space 1 space 4 space straight j with hat on top space minus space 4 space straight k with hat on top close vertical bar over denominator 7 end fraction
                 equals space fraction numerator square root of left parenthesis negative 9 right parenthesis squared plus left parenthesis 14 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared end root over denominator 7 end fraction space equals space fraction numerator square root of 81 plus 196 plus 16 end root over denominator 7 end fraction
equals space fraction numerator square root of 293 over denominator 7 end fraction space equals space 1 over 7 square root of 293
    Question 128
    CBSEENMA12033346

    Find the shortest distance between the lines:
    fraction numerator straight x plus 1 over denominator 7 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 6 end fraction space equals space fraction numerator straight z plus 1 over denominator 1 end fraction space and space fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus 5 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 7 over denominator 1 end fraction

    Solution
    The equations of two lines are
       fraction numerator straight x plus 1 over denominator 7 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 6 end fraction space equals space fraction numerator straight z plus 1 over denominator 1 end fraction space and space fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus 5 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 7 over denominator 1 end fraction
    or     fraction numerator straight x minus left parenthesis negative 1 right parenthesis over denominator 7 end fraction space equals space fraction numerator straight y minus left parenthesis negative 1 right parenthesis over denominator negative 6 end fraction space equals space fraction numerator straight z minus left parenthesis negative 1 right parenthesis over denominator 1 end fraction space and space fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus 5 over denominator negative 2 end fraction space equals space fraction numerator straight z minus 7 over denominator 1 end fraction
    therefore            straight x subscript 1 space equals space minus 1 comma space space space straight y subscript 1 space equals space minus 1 comma space space straight z subscript 1 space equals space minus 1 semicolon space space straight a subscript 1 space equals space 7 comma space space straight b subscript 1 space equals space minus 6 comma space space straight c subscript 1 space equals space 1  
    and       straight x subscript 2 space equals space 3 comma space space space straight y subscript 2 equals 5 comma space space space straight z subscript 2 space equals space 7 semicolon space space space straight a subscript 2 space equals space 1 comma space space straight b subscript 2 space equals space minus 2 comma space space straight c subscript 2 space equals 1
             therefore space space space space straight x subscript 2 minus straight x subscript 1 space equals space 4 comma space space space space space straight y subscript 2 minus straight y subscript 1 space equals space 6 comma space space space straight z subscript 2 space minus space straight z subscript 1 space equals space 8
    therefore space space space space open vertical bar table row cell straight x subscript 2 minus straight x subscript 1 end cell cell straight y subscript 2 minus straight y subscript 1 end cell cell straight z subscript 2 minus straight z subscript 1 end cell row cell straight a subscript 1 end cell cell straight b subscript 1 end cell cell straight c subscript 1 end cell row cell straight a subscript 2 end cell cell straight b subscript 2 end cell cell straight c subscript 2 end cell end table close vertical bar space equals space open vertical bar table row 4 6 8 row 7 cell negative 6 end cell 1 row 1 cell negative 2 end cell 1 end table close vertical bar
                                 equals space 4 space open vertical bar table row cell negative 6 end cell 1 row cell negative 2 end cell 1 end table close vertical bar space minus space 6 space open vertical bar table row 7 1 row 1 1 end table close vertical bar space plus space 8 space open vertical bar table row 7 cell negative 6 end cell row 1 cell negative 2 end cell end table close vertical bar
                                  equals space 4 space left parenthesis negative 6 plus 2 right parenthesis space minus space 6 space left parenthesis 7 minus 1 right parenthesis space plus space 8 thin space left parenthesis negative 14 plus 6 right parenthesis
equals space 4 left parenthesis negative 4 right parenthesis space minus space 6 space left parenthesis 6 right parenthesis space plus space 8 space left parenthesis negative 8 right parenthesis
equals space minus 16 minus 36 minus 64 space equals space minus 116
    square root of left parenthesis straight b subscript 1 straight c subscript 2 minus straight b subscript 2 straight c subscript 1 right parenthesis squared plus left parenthesis straight c subscript 1 straight a subscript 2 minus straight c subscript 2 straight a subscript 1 right parenthesis squared plus left parenthesis straight a subscript 1 straight b subscript 2 minus straight a subscript 2 straight b subscript 1 right parenthesis squared end root
                                equals space square root of left parenthesis negative 6 plus 2 right parenthesis squared plus left parenthesis 1 minus 7 right parenthesis squared plus left parenthesis negative 14 plus 6 right parenthesis squared end root space equals space square root of 16 plus 36 plus 64 end root space equals space square root of 116
    therefore space space space straight S. straight D. space equals space open vertical bar fraction numerator negative 116 over denominator square root of 116 end fraction close vertical bar space equals fraction numerator 116 over denominator square root of 116 end fraction space equals square root of 116 space equals space square root of 4 cross times 29 end root space equals space 2 square root of 29.

    Question 129
    CBSEENMA12033347

    Determine whether the following pair of lines intersect:
          straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top right parenthesis
    and straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight mu left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis

    Solution
    The equations of two lines are
                   straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top right parenthesis                   ...(1)
    and       straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight mu left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis             ...(2)

    Comparing these equations with
     straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda stack straight b subscript 1 with rightwards arrow on top  and straight r with rightwards arrow on top space equals stack straight a subscript 2 with rightwards arrow on top plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space space we space get comma
     stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight k with hat on top comma
stack straight a subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    Let S be points on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on limit (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that
    ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top
                stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 0 1 row 1 1 cell negative 1 end cell end table close vertical bar space equals space left parenthesis 0 minus 1 right parenthesis space straight i with hat on top space minus space left parenthesis negative 2 minus 1 right parenthesis space straight j with hat on top space plus space left parenthesis 2 minus 0 right parenthesis space straight k with hat on top space equals space minus straight i with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top
open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 1 plus 9 plus 4 end root space equals space square root of 14
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top comma  then
               straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 14 end fraction left parenthesis negative straight i with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    Now S.D. = Projection of ST with rightwards arrow on top space space on space space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space stack ST. with rightwards arrow on top space straight n with rightwards arrow on top
                     equals space straight i with hat on top. space fraction numerator 1 over denominator square root of 14 end fraction left parenthesis negative straight i with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space equals space fraction numerator 1 over denominator square root of 14 end fraction left parenthesis negative 1 plus 0 plus 0 right parenthesis space equals space minus fraction numerator 1 over denominator square root of 14 end fraction
                      equals space fraction numerator 1 over denominator square root of 14 end fraction left parenthesis in space magnitude right parenthesis space not equal to 0
    ∴ given lines do not interesect.
    Question 130
    CBSEENMA12033348

    Determine whether the following pair of lines intersect:
               straight r with space rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space plus space straight lambda left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top right parenthesis
    and       straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu space left parenthesis 2 straight i with hat on top space plus space 3 space stack straight k right parenthesis with hat on top


    Solution

    The equations of two lines are
                 straight r with space rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space plus space straight lambda left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top right parenthesis                               ...(1)
    and        straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu space open parentheses 2 straight i with hat on top space plus space 3 space straight k with hat on top close parentheses                               ...(2)
    Comparing these equations with
             straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space space we space get comma
stack straight a subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top comma space space stack straight b subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space straight j with hat on top comma space space space stack straight a subscript 2 with rightwards arrow on top space space equals space 4 space straight i with hat on top space minus space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space 2 straight i with hat on top space plus space 3 space straight k with hat on top
    Let S be points on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight a subscript 2 with rightwards arrow on top so that

              ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space space minus space stack straight a subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space straight j with hat on top
    stack straight b subscript 1 with rightwards arrow on top space cross times stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 3 cell negative 1 end cell 0 row 2 0 3 end table close vertical bar
                    equals left parenthesis negative 3 minus 0 right parenthesis space straight i with hat on top space minus space left parenthesis 9 minus 0 right parenthesis space straight j with hat on top space plus space left parenthesis 0 plus 2 right parenthesis space straight k with hat on top space equals space minus 3 space straight i with hat on top space minus space 9 space straight j with hat on top space plus space 2 space straight k with hat on top
    therefore       open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 9 plus 81 plus 4 end root space equals space square root of 94
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top, then 
                   straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 94 end fraction space left parenthesis negative space 3 space straight i with hat on top space minus space space 9 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    Now S.D. = Projection of ST with rightwards arrow on top on PQ with rightwards arrow on top = Projection of ST with rightwards arrow on top on straight n with rightwards arrow on top = ST with rightwards arrow on top. space straight n with rightwards arrow on top
                     equals space left parenthesis 3 space straight i with hat on top space minus space straight j with hat on top right parenthesis. space fraction numerator 1 over denominator square root of 94 end fraction left parenthesis negative 3 space straight i with hat on top space minus space 9 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space equals space fraction numerator 1 over denominator square root of 94 end fraction left parenthesis negative 9 plus 9 plus 0 right parenthesis space equals space 0
    ∴ given lines interesect.
                                 

    Question 131
    CBSEENMA12033349

    Determine whether the following pair of lines intersect:
                                    fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y plus 1 over denominator 3 end fraction space equals straight z

                                 fraction numerator straight x plus 5 over denominator 5 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction comma space space straight z space equals space 2
               


    Solution
    The equations of given lines are:
                              fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y plus 1 over denominator 3 end fraction space equals straight z comma space space fraction numerator straight x plus 1 over denominator 5 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction semicolon space space straight z space equals space 2
    or                   fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space space equals fraction numerator straight z minus 0 over denominator 1 end fraction
    and       fraction numerator straight x plus 1 over denominator 5 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator 0 end fraction       
     
    The equations of two lines are
                       straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda open parentheses 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top close parentheses                 ...(1)
    and             straight r with rightwards arrow on top space equals space minus straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight mu open parentheses 5 space straight i with hat on top space plus space straight j with hat on top close parentheses        ...(2)
    Comparing these equations with
    straight r with rightwards arrow on top space equals space stack straight a subscript 1 with rightwards arrow on top space plus space straight lambda space stack straight b subscript 1 with rightwards arrow on top space and space straight r with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space plus space straight mu space stack straight b subscript 2 with rightwards arrow on top comma space space we space get comma
stack straight a subscript 2 with rightwards arrow on top space equals space minus straight i with hat on top space plus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top comma space space stack straight b subscript 2 with rightwards arrow on top space equals space 5 straight i with hat on top space plus space straight j with hat on top
    Let S be points on line (1) with position vector stack straight a subscript 1 with rightwards arrow on top and T be point on line (2) with position vector stack straight alpha subscript 2 with rightwards arrow on top so that
                                     ST with rightwards arrow on top space equals space stack straight a subscript 2 with rightwards arrow on top space minus space stack straight a subscript 1 with rightwards arrow on top space equals space minus 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top
    stack straight b subscript 1 with rightwards arrow on top space cross times space stack straight b subscript 2 with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 2 3 1 row 5 1 0 end table close vertical bar space equals space left parenthesis 0 minus 1 right parenthesis space straight i with hat on top space minus space left parenthesis 0 minus 5 right parenthesis space straight j with hat on top space plus space left parenthesis 2 minus 15 right parenthesis space straight k with hat on top space equals space minus straight i with hat on top space plus space 5 space straight j with hat on top space minus space 13 space straight k with hat on top
    therefore space space space space space open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 1 plus 25 plus 169 end root space equals space square root of 195
    Let PQ with rightwards arrow on top be the S.D. vector between given lines. Therefore, it is parallel to stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top.
    If straight n with rightwards arrow on top is a unit vector along PQ with rightwards arrow on top,  then
                       straight n with rightwards arrow on top space equals space fraction numerator stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight b subscript 1 with rightwards arrow on top cross times stack straight b subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 195 end fraction left parenthesis negative straight i with hat on top space plus space 5 space straight j with hat on top space minus space 13 space space straight k with hat on top right parenthesis
    Now S.D. = Projection of ST with rightwards arrow on top space on space PQ with rightwards arrow on top space equals space Projection space of space ST with rightwards arrow on top space on space straight n with rightwards arrow on top space equals space ST with rightwards arrow on top space. space straight n with rightwards arrow on top
                    equals space open parentheses negative 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses. space fraction numerator 1 over denominator square root of 195 end fraction left parenthesis negative space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 13 space straight k with hat on top right parenthesis
space equals space fraction numerator 1 over denominator square root of 195 end fraction left parenthesis 2 plus 15 minus 26 right parenthesis space equals negative fraction numerator 9 over denominator square root of 195 end fraction space equals space fraction numerator 9 over denominator square root of 195 end fraction left parenthesis in space magnitude right parenthesis space not equal to 0
    ∴ given lines do not intersect.
    Question 132
    CBSEENMA12033350

    Find the intercepts cut off by the plane x + 2y – 2z = 9 with the axes.

    Solution
    The equation of plane is
                           straight x plus 2 straight y minus 2 straight z space equals space 9 space space space space or space space space straight x over 9 plus fraction numerator 2 straight y over denominator 9 end fraction space minus space fraction numerator 2 straight z over denominator 9 end fraction space equals space 1
    or                straight x over 9 plus space fraction numerator straight y over denominator begin display style 9 over 2 end style end fraction plus fraction numerator straight z over denominator negative begin display style 9 over 2 end style end fraction space equals space 1
    which is of intercept form straight x over straight a plus straight y over straight b plus straight z over straight c equals 1
    therefore space space straight a space equals space 9 comma space space space straight b space equals space 9 over 2 comma space space straight c space equals space minus 9 over 2
therefore space space space space intercepts space are space 9 comma space 9 over 2 comma space minus 9 over 2.
    Question 133
    CBSEENMA12033351

    Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z-axis respectively.

    Solution
    Let the equation of plane be straight x over straight a plus straight y over straight b plus straight z over straight c equals 1
    Here a = 2,  b = 3, c = 4
    ∴    equation of plane is
                       straight x over 2 plus straight y over 3 plus straight z over 4 space equals space 1      or      6x + 4y + 3z = 12
                 
    Question 134
    CBSEENMA12033352

    Find the intercepts cut off by the plane 2x +  y – z = 5.

    Solution

    The equation of plane is  2x +  y – z = 5
    or           fraction numerator 2 straight x over denominator 5 end fraction plus straight y over 5 minus straight z over 5 space equals space 1 space space space space space space space space space or space space space space space fraction numerator straight x over denominator begin display style 5 over 2 end style end fraction plus straight y over 5 plus fraction numerator straight z over denominator negative 5 end fraction space equals space 1
    which is of intercept form straight x over straight a plus straight y over straight b plus straight z over straight c space equals space 1 where straight a equals 5 over 2 comma space space straight b space equals space 5 comma space space straight c space equals space minus 5.

    Question 135
    CBSEENMA12033353

    Find the intercept form of the equation of the plane x + 3 y – 7 z + 2 = 0.

    Solution
    The equation of plane is x + 3 y – 7 z + 2 = 0
    or           x + 3 y – 7 z = -2    or    fraction numerator straight x over denominator negative 2 end fraction plus fraction numerator 3 straight y over denominator negative 2 end fraction minus fraction numerator 7 straight z over denominator negative 2 end fraction space equals space 1
    or      fraction numerator straight x over denominator negative 2 end fraction plus fraction numerator straight y over denominator negative begin display style 2 over 3 end style end fraction plus fraction numerator straight z over denominator begin display style 2 over 7 end style end fraction space equals space 1
    which is of intercept form straight x over straight a plus straight y over straight b plus straight z over straight c equals space 1 where straight a space equals space minus 2 comma space space space straight b space equals space minus 2 over 3 comma space straight c space equals space 2 over 7.
    Question 136
    CBSEENMA12033354

    Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane..

    Solution

    Since the plane is parallel to plane ZOX i.e. y = 0
    ∴  its equation is of form
    y = k       ...(1)
    This plane makes intercept 3 on y-axis i.e. this plane passes through (0, 3, 0)
    ∴  3 = k
    Putting k = 3 in (1), we get,
    y = 3, which is required equation.

    Question 137
    CBSEENMA12033355

    Find a unit normal vector to the plane x + 2y + 3z – 6 = 0.

    Solution
    The equation of plane is x + 2y’ + 3z – 6 = 0
    Direction-ratios of a normal to the plane are 1, 2, 3.
    Dividing each by square root of left parenthesis 1 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis 3 right parenthesis squared end root space equals space square root of 14 comma the direction-cosines of a normal to the given plane are fraction numerator 1 over denominator square root of 14 end fraction comma space fraction numerator 2 over denominator square root of 14 end fraction comma space fraction numerator 3 over denominator square root of 14 end fraction
     ∴    the normal vector to the given plabne is fraction numerator 1 over denominator square root of 14 end fraction straight i with hat on top plus space fraction numerator 2 over denominator square root of 14 end fraction straight j with hat on top space plus space fraction numerator 3 over denominator square root of 14 end fraction straight k with hat on top.
    Question 138
    CBSEENMA12033356

    Find the normal form of the equation of the plane  3x– 4y + z + 5 = 0.

    Solution

    The equation of plane is 3x – 4y + z + 5 = 0
    or  3 x – 4 y + z = – 5
    or  – 3 x + 4 y – z = 5
    Dividing both sides by square root of left parenthesis negative 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root space equals space square root of 26 comma space space we space get
                          negative fraction numerator 3 over denominator square root of 26 end fraction straight x plus fraction numerator 4 over denominator square root of 26 end fraction straight y space minus space fraction numerator 1 over denominator square root of 26 end fraction straight z space equals space fraction numerator 5 over denominator square root of 26 end fraction
    which is of form lx + my + nz = p
    where  straight l equals fraction numerator negative 3 over denominator square root of 26 end fraction comma space space space straight m space equals space fraction numerator 4 over denominator square root of 26 end fraction comma space space straight n space equals negative fraction numerator 1 over denominator square root of 26 end fraction comma space space straight p space equals space fraction numerator 5 over denominator square root of 26 end fraction
    The direction-cosines of the normal to the plane are fraction numerator negative 3 over denominator square root of 26 end fraction comma space fraction numerator 4 over denominator square root of 26 end fraction comma space minus fraction numerator 1 over denominator square root of 26 end fraction.

    Question 139
    CBSEENMA12033357

    Find the value of k for which the planes 3 x– 6 y– 2 z = 7 and 2x + y'– k z = 5 are perpendicular to each other.

    Solution

    The equations of planes are
    3x – 6y – 2z–7 = 0
    and 2 x + y – k z – 5 = 0
    Since two planes are perpendicular to each other.
    ∴     (3) (2) + (–6) (1) + (–2) (–k) = 0    [∵a1a2 + b1,b2 + c1c2 = 0]
    ∴     6 – 6 + 2k = 0 ⇒ 2k = 0 ⇒ K = 0

    Question 140
    CBSEENMA12033358

    The foot of the perpendicular drawn from the origin to the plane is (4, 3, 2). Find the equation of the plane. 

    Solution

    The equation of plane through M (4, 3, 2) is
    a (x – 4) + b (Y–3) + c (z – 2) = 0    ...(1)
    The direction-ratios of the line through the points O (0, 0. 0) and M (4, 3, 2) are
    4 - 0,   3-0,   2-0     i.e. 4, 3, 2
    ∴    the line OM with direction-ratios 4, 3, 2 is normal to the plane (1)
    ∴   equation (1) of plane becomes
    4 (X – 4) + 3 (y – 3) + 2 (z – 2) = 0 open square brackets because space space straight a over 4 space equals space straight b over 3 space equals space straight c over 2 close square brackets
    or  4x – 16 + 3 Y – 9 + 2z – 4 = 0 or  4x + 3y + 2z – 29 = 0

    Question 141
    CBSEENMA12033359

    If O be the origin and the coordinates of P be (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP.

    Solution

    The equation of plane through P (1, 2, –3) is
    a (x – 1) + b (y – 2) +c (z +3) = 0 ...(1)
    The direction ratios of the line through the points O (0, 0, 0) and P (1, 2, –3) are 1 - 0, 2 - 0, - 3 - 0.
    i.e. ,1, 2,–3
    ∴ the line OP with direction ratios 1, 2, –3 is normal to the plane (1)
    ∴ equation (1) of plane becomes
    1(x – 1) + 2 (y – 2) – 3 (z + 3) = 0
    or x – 1 + 2y – 4-3z – 9  = 0 or x + 2y – 3z – 14 = 0.
    open square brackets because space straight a over 1 space equals straight b over 2 equals space fraction numerator straight c over denominator negative 3 end fraction close square brackets

    Question 142
    CBSEENMA12033360

    If the line drawn from (4, –1, 2) meets a plane at right angles at the point (–10, 5, 4), then find the equation of the plane.

    Solution

    The equation of plane through (–10, 5, 4) is
    A(x + 10) + B (y – 5) + C (z – 4) = 0    ...(1)
    The direction ratios of the line through the points (4, –1, 2) and (–10.5. 4) are –10 – 4, 5+1, 4-2. i.e.– 14, 6, 2 i.e. 7,–3,–1.
    ∵  the line with direction ratios 7, –3.–1 'is normal to the plane (1).
    ∴  equation (1) of plane becomes
                           7 left parenthesis straight x plus 10 right parenthesis space minus space 3 left parenthesis straight y minus 5 right parenthesis space minus space 1 space left parenthesis straight z minus 4 right parenthesis space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because straight A over 7 equals space fraction numerator straight B over denominator negative 3 end fraction equals fraction numerator straight C over denominator negative 1 end fraction close square brackets
    or           7 straight x plus 70 minus 3 straight y plus 15 minus straight z plus 4 space equals space 0
    or            7 straight x minus 3 straight y minus straight z plus 89 space equals space 0
    which is the required equation of plane. 

    Question 143
    CBSEENMA12033361

    Find the vector and Cartesian equation of the plane passing through the point (1, 2, 3) and perpendicular to the line with direction ratios 2, 3, - 4. 

    Solution

    Here  stack straight r subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space space straight n with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 4 space straight k with hat on top
    The vector equation of plane is open parentheses straight r with rightwards arrow on top space minus space stack straight r subscript 1 with rightwards arrow on top close parentheses. space straight n with rightwards arrow on top space equals space 0
    or   open square brackets straight r with rightwards arrow on top space minus space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis close square brackets. space space space left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis space equals space 0
    Take     straight r space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top
    therefore space space space space space open square brackets left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis space minus space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis close square brackets space. space left parenthesis space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis space equals space 0
    or   2 left parenthesis straight x minus 1 right parenthesis space plus space 3 space left parenthesis straight y minus 2 right parenthesis space minus space 4 space left parenthesis straight z minus 3 right parenthesis space equals space 0
    or    2 straight x plus 3 straight y minus 4 straight z space equals space minus 4
    which is Cartesian equation of plane.

    Question 144
    CBSEENMA12033362

    Find the vector and cartesian equations of the plane which passes through the point (5, 2, – 4) and perpendicular to  the line with direction ratios 2, 3, –1.

    Solution

    Here,  stack straight r subscript 1 with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top comma space straight n with rightwards arrow on top space equals space 2 space straight i with hat on top space space plus space 3 space straight j with hat on top space minus space straight k with hat on top
    The vector equation of plane is
                  left parenthesis straight r with rightwards arrow on top space minus space stack straight r subscript 1 with rightwards arrow on top right parenthesis. space straight n with rightwards arrow on top space equals space 0
    or      open square brackets straight r with rightwards arrow on top space minus space left parenthesis 5 space straight i with hat on top space plus space 2 space stack straight j space with hat on top space minus space 4 space straight k with hat on top right parenthesis close square brackets space. space open square brackets left parenthesis 2 stack straight i space with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top right parenthesis close square brackets space equals space 0
    Take straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top
    therefore space space space space space space open square brackets open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space minus space left parenthesis 5 space stack straight i space with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis space close square brackets. space space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top right parenthesis space equals space 0
    or  open square brackets left parenthesis straight x minus 5 right parenthesis space straight i with hat on top space space left parenthesis straight y minus 2 right parenthesis space straight j with hat on top space plus space left parenthesis straight z plus 4 right parenthesis space straight k with hat on top close square brackets space. space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top right parenthesis space equals space 0
    space or space space 2 space left parenthesis straight x minus 5 right parenthesis space plus space 3 space left parenthesis straight y minus 2 right parenthesis space minus space 1 space left parenthesis straight z plus 4 right parenthesis space equals space 0
space or space space 2 straight x minus 10 space plus space 3 straight y space minus space 6 space minus space straight z space minus 4 space space equals space 0
space or space space 2 straight x plus 3 straight y minus straight z space equals space 20
    which is the cartesian equation of the plane.

    Question 145
    CBSEENMA12033363
    Question 146
    CBSEENMA12033364

    Find the equation of a plane which passes through (2, –3, 1) and is perpendicular to the line through the points (3, 4, –1) and (2,–1, 5).

    Solution

    The equation of plane through (2, –3, 1) is
    A (x – 2) + B ( y + 3) + C (z – 1) = 0    ...(1)
    The direction ratios of the line through the points (3, 4, –1) and (2, –1.5) are 2 – 3,–1– 4 ,5 + 1 i.e. -1,-5, 6 i.e. 1, 5,–6.
    ∴    the line with direction ratios 1, 5, –6 is normal to the plane (1)
    ∴     1 (x – 2) + 5(y + 3)–6(z – 1) = 0     open square brackets because space space straight A over 1 space equals space straight B over 5 space equals space fraction numerator straight C over denominator negative 6 end fraction close square brackets
    or   x – 2 + 5y + 15 – 6z + 6 = 0
    or   x + 5 y – 6 z + 19 = 0
    which is required equation of plane.

    Question 147
    CBSEENMA12033365

    Find the cartesian equation of the following plane:
    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 2

    Solution

    The equation of plane is straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 2
    or  open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 2 space space space space space space space space space space space space open square brackets because space stack straight r space with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y straight j with hat on top space plus space straight z space straight k with hat on top close square brackets
    or   left parenthesis straight x right parenthesis space left parenthesis 1 right parenthesis space space plus space left parenthesis straight y right parenthesis space left parenthesis 1 right parenthesis space plus space left parenthesis straight z right parenthesis thin space left parenthesis negative 1 right parenthesis space equals space 2
    or    straight x plus straight y minus straight z space equals space 2
    which is cartesian equation of plane. 

    Question 148
    CBSEENMA12033366

    Find the cartesian equation of the following plane:
     straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses space equals space 1

    Solution
    The equations of piane is straight r with rightwards arrow on top space open parentheses 2 straight i with hat on top space plus space 3 straight j with hat on top space minus space 4 space straight k with hat on top close parentheses space equals space 1
    or      open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space. space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses space equals space 1 space space space space space space space open square brackets because straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close square brackets
    or  2x + 3y – 4z =1 which is cartesian equation of plane.
    Question 149
    CBSEENMA12033367

    Find the cartesian equation of the following plane:
    straight r with rightwards arrow on top. space open square brackets left parenthesis straight s minus 2 space straight t right parenthesis space straight i with hat on top space plus space left parenthesis 3 minus straight t right parenthesis space straight j with hat on top space plus space left parenthesis 2 straight s plus straight t right parenthesis space straight k with hat on top close square brackets space equals space 15
     

    Solution
    The equation of plane is
                    straight r with rightwards arrow on top. space open square brackets left parenthesis straight s minus 2 straight t right parenthesis space straight i with hat on top space plus space left parenthesis 3 minus straight t right parenthesis space straight j with hat on top space plus space left parenthesis 2 straight s plus straight t right parenthesis space straight k with hat on top close square brackets space equals space 15
    or       open parentheses straight x space straight i with hat on top space space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space space open square brackets left parenthesis straight s minus 2 space straight t right parenthesis space straight i with hat on top space plus space left parenthesis 3 minus straight t right parenthesis straight j with hat on top space plus space left parenthesis 2 straight s plus straight t right parenthesis space straight k with hat on top close square brackets space equals space 15
    or        left parenthesis straight s minus 2 space straight t right parenthesis space straight x space space plus space left parenthesis 3 minus straight t right parenthesis space straight y space plus space left parenthesis 2 straight s plus straight t right parenthesis space straight z space equals space 15
    Question 150
    CBSEENMA12033368

    Find the angle between the planes
    2x – y + z = 6 and x + y + 2z = 7

    Solution

    The equation of two planes are
    2 x – y + z = 6
    and x + y + 2 z = 7
    Let θ be the angle between the planes
    therefore space space space space space space cos space straight theta space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 2 right parenthesis over denominator square root of 4 plus 1 plus 1 end root space square root of 1 plus 1 plus 4 end root end fraction
space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 2 minus 1 plus 2 over denominator square root of 6 space square root of 6 end fraction space equals space 3 over 6 space equals space 1 half
therefore space space space space space space space straight theta space space equals space straight pi over 3

    Question 151
    CBSEENMA12033369

    Find equation of a plane parallel to 2x – 3y + z + 9 = 0 and also passing through origin.  

    Solution

    Equation of any plane parallel to the plane
    2x – 3y + z + 9 = 0 is
    2x – 3y  + z +  k = 0    ..(1)
    ∴  it passes through origin (0, 0, 0)
    ∴  0 – 0 + 0 + k = 0 ⇒ k = 0
    Putting k = 0 in (1), we get,
    2x – 3y + z = 0
    which is required equation of plane.

    Question 152
    CBSEENMA12033370

    Find the equation of the plane through P (1, 4, – 2) that is parallel to the plane – 2 x + y – 3 z = 0.

    Solution

    Equation of any plane parallel to the plane – 2x + y– 3 z = 0 is –2x + y –3 z = k    .... (1)
    ∴   it passes through P (1,4, - 2)
    ∴   –2 + 4 + 6 =  k ⇒ k = 8
    Putting k = 8 in (1), we get, – 2x + y–3 z = 8 which is the required equation.

    Question 153
    CBSEENMA12033371

    Find equation of the plane parallel to x + 3y – 2z + 7 = 0 and passing through the origin.   

    Solution

    Equation of any plane parallel to the plane
    x + 3y –2z + 7 =  0 is
    x + 3y – 2z + k=0    ...(1)
    ∵  it passes through origin (0, 0, 0)
    ∴ 0 + 0– 0 + k = 0 ⇒ k = 0
    Putting k = 0 in (1), we get,
    x + 3y –2z = 0
    which is required equation of plane.

    Question 154
    CBSEENMA12033372

    Find equation of a plane parallel to 3x – 2y + z – 11= 0 and passing through the origin. 

    Solution

    Equation of any plane parallel to the plane
    3x – 2y + z – 11 = 0 is
    3x - 2y + z + k = 0    ...(1)
    ∴  it passes through origin (0, 0, 0)
    0 - 0 + 0 + k = 0 ⇒ k = 0
    Putting k = 0 in (1), we get,
    3x –2y + z = 0
    which is required equation of plane.

    Question 155
    CBSEENMA12033373

    Find the equation of the plane through the point (3, 4,–1) which is parallel to the plane straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space plus space 7 space equals space 0.

    Solution
    The equation of plane is
    straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space plus space 7 space equals space 0
    Any plane parallel to it is
            straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space straight d                           ...(1)
    ∴   point (3, 4, – 1) lies on it
    therefore space space space straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space straight k with hat on top  satisfies (1)
    therefore space space space space open parentheses 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space straight k with hat on top close parentheses space. space open parentheses 2 space straight i with hat on top space minus space space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space straight d
rightwards double arrow space space space space left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 4 right parenthesis thin space left parenthesis negative 3 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 5 right parenthesis space equals space straight d
rightwards double arrow space space space space 6 minus 12 minus 5 space equals space straight d space space space space rightwards double arrow space straight d space equals space minus 11
    Putting this value of d in (1), we get
                           straight r with rightwards arrow on top space. space open parentheses 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space minus 11
    or                    straight r with rightwards arrow on top. open parentheses 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses plus 11 space equals space 0 space
    which is required equation of plane. 
    Question 156
    CBSEENMA12033374

    Find the equation of the plane passing through (a, b, c) and parallel to the plane

    Solution

    The equation of any plane through (a, b, c) is
    A (x – a) + B (y – b) + C (z – c) = 0    ...(1)
    Consider the plane
    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 2
    ∴    normal to the plane is the vector straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top
    ∴   normal to the plane has direction ratios 1, 1, 1.
    therefore space space space space space space space space space space straight A over 1 space equals space straight B over 1 space equals space straight C over 1 space equals space straight k space space left parenthesis say right parenthesis
    ∴   A = k, B = k, C = k
    Putting values of A, B. C in (1), we get,
    k (x – a) + k (y – b) + k (z – c) = 0
    or x – a  + y – b + z – c = 0
    or x + y + z – a –b – c = 0
    which is required equation of plane.

     

    Question 157
    CBSEENMA12033375

    Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x – 3y + 4z – 6 = 0.

    Solution

    The equation of plane is
    2x – 3y + 4z – 6 = 0    ...(1)
    Direction ratios of the normal to the plane (1) are 2, –3, 4.
    Dividing each by square root of left parenthesis 2 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space equals space square root of 4 plus 9 plus 16 end root space equals square root of 29 comma we get the direction cosines of the normal as fraction numerator 2 over denominator square root of 29 end fraction comma space minus fraction numerator 3 over denominator square root of 29 end fraction comma space fraction numerator 4 over denominator square root of 29 end fraction.
    ∴ dividing (1) throughout by square root of 29 comma we get, fraction numerator 2 over denominator square root of 29 end fraction straight x plus fraction numerator negative 3 over denominator square root of 29 end fraction straight y plus fraction numerator 4 over denominator square root of 29 end fraction straight z space equals space fraction numerator 6 over denominator square root of 29 end fraction
    This is of the form l x + m y + n z = p, where p is the distance of the plane from the origin.
    therefore distance of plane from the origin = fraction numerator 6 over denominator square root of 29 end fraction.
    Let (x1, y1, z1) be the coordinates of the foot of perpendicular drawn from origin 0(0, 0, 0) to the plane (1).

    ∴ direction ratios of OP are .x1– 0, y, –0, –0 i.e. x1, y1, z1
    ∴  Direction cosines of OP are
    fraction numerator 2 over denominator square root of 29 end fraction comma space space minus fraction numerator 3 over denominator square root of 29 end fraction comma space fraction numerator 4 over denominator square root of 29 end fraction

    Since direction cosines and direction ratios of a line are proportional
    therefore space space space space fraction numerator straight x subscript 1 over denominator begin display style fraction numerator 2 over denominator square root of 29 end fraction end style end fraction space space equals space fraction numerator straight y subscript 1 over denominator negative begin display style fraction numerator 3 over denominator square root of 29 end fraction end style end fraction space equals space fraction numerator straight z subscript 1 over denominator begin display style fraction numerator 4 over denominator square root of 29 end fraction end style end fraction space equals space straight k
therefore space space space space space space space space space space space straight x subscript 1 space equals space fraction numerator 2 space straight k over denominator square root of 29 end fraction comma space space space space space straight y subscript 1 space equals space minus fraction numerator 3 space straight k over denominator square root of 29 end fraction comma space space space straight z subscript 1 space equals space fraction numerator 4 space straight k over denominator square root of 29 end fraction
    Since P(x1, y1, z1) lies on plane (1)
    therefore space space space space space 2 cross times fraction numerator 2 space straight k over denominator square root of 29 end fraction space minus 3 cross times fraction numerator negative 3 space straight k over denominator square root of 29 end fraction plus 4 cross times fraction numerator 4 straight k over denominator square root of 29 end fraction space equals 6
    therefore space 4 space straight k space plus space 9 space straight k space plus space 16 space straight k space equals space 6 space square root of 29 space space space rightwards double arrow space space space 29 space straight k space equals space 6 square root of 29 space space space rightwards double arrow space space space straight k space equals fraction numerator 6 over denominator square root of 29 end fraction
therefore space space space space space space space straight x subscript 1 space equals space fraction numerator 2 over denominator square root of 29 end fraction cross times fraction numerator 6 over denominator square root of 29 end fraction space equals space 12 over 29 comma space space space straight y subscript 1 space equals space minus fraction numerator 3 over denominator square root of 29 end fraction cross times fraction numerator 6 over denominator square root of 29 end fraction space equals space minus 18 over 29 comma
space space space space space space space space space space space space straight z subscript 1 space equals space fraction numerator 4 over denominator square root of 29 end fraction cross times fraction numerator 6 over denominator square root of 29 end fraction space equals space 24 over 29
therefore space space space foot space of space perpendicular space is space space open parentheses 12 over 29 comma space minus 18 over 29 comma space 24 over 29 close parentheses

    Tips: -

    If d is the distance from the origin and l, m, n are the direction cosines of the normal to the plane through the origin, then the foot of the perpendicular is (ld, md, nd).
    Question 158
    CBSEENMA12033376

    Find the distance of the plane 2x – 3 y + 4 z – 6 = 0 from the origin.

    Solution
    The equation of plane is
    2 x – 3 y + 4 z – 6 = 0    ...(1)
    Direction ratios of the normal to the plane (1) are 2, – 3, 4.
    Dividing each by square root of left parenthesis 2 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space equals space square root of 4 plus 9 plus 16 end root space equals space square root of 29 comma space we get the direction cosines of the normal as fraction numerator 2 over denominator square root of 29 end fraction comma space minus fraction numerator 3 over denominator square root of 29 end fraction comma space fraction numerator 4 over denominator square root of 29 end fraction.
    ∴ dividing (1) throughout by  square root of 29 comma we get,
    fraction numerator 2 over denominator square root of 29 end fraction straight x plus fraction numerator negative 3 over denominator square root of 29 end fraction straight y space plus space fraction numerator 4 over denominator square root of 29 end fraction straight z space equals space fraction numerator 6 over denominator square root of 29 end fraction
    This is of the form lx + my + nz = p, where p is the distance of the plane from the origin.
    ∴    distance of plane from the origin = fraction numerator 6 over denominator square root of 29 end fraction.
    Question 159
    CBSEENMA12033377

    In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
    z = 2

    Solution

    The equation of plane is
    z = 2 or 0x + 0y + 1.z = 2
    It is of form lx + my + nz = p
    where l = 0, m = 0, n = 1, p = 2
    ∴   direction cosines of the normal to the plane are 0, 0, 1 and distance from origin = 2.

    Question 160
    CBSEENMA12033378

    In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
    x + y + z = 1

    Solution
    The equation of plane is x + y + z = 1
    Dividing both sides by square root of left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space equals space square root of 3 comma space space we space get comma
    fraction numerator 1 over denominator square root of 3 end fraction straight x plus fraction numerator 1 over denominator square root of 3 end fraction straight y space plus space fraction numerator 1 over denominator square root of 3 end fraction straight z space equals space fraction numerator 1 over denominator square root of 3 end fraction
    It is of form lx + my + nz = p
    where straight l space equals space fraction numerator 1 over denominator square root of 3 end fraction comma space space straight m space equals space fraction numerator 1 over denominator square root of 3 end fraction comma space space straight n space equals space fraction numerator 1 over denominator square root of 3 end fraction comma space space straight p space equals space fraction numerator 1 over denominator square root of 3 end fraction
    ∴   direction cosines of the normal to the plane are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction and distance from origin equals space fraction numerator 1 over denominator square root of 3 end fraction.
    Question 161
    CBSEENMA12033379

    In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
    2x + 3 y – z = 5

    Solution
    The equation of plane is
    2x + 3y – z = 5
    Dividing both sides by square root of left parenthesis 2 right parenthesis squared plus left parenthesis 3 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared end root space equals space square root of 4 plus 9 plus 1 end root space equals space square root of 14 comma space space we space get comma
                           fraction numerator 2 over denominator square root of 14 end fraction straight x plus fraction numerator 3 over denominator square root of 14 end fraction straight y space minus space fraction numerator 1 over denominator square root of 14 end fraction straight z space equals space fraction numerator 5 over denominator square root of 14 end fraction
    It is of form lx + my + nz = p where
                straight l equals space fraction numerator 2 over denominator square root of 14 end fraction comma space space straight m space equals space fraction numerator 3 over denominator square root of 14 end fraction comma space space straight n space equals space minus fraction numerator 1 over denominator square root of 14 end fraction comma space space straight p space equals space fraction numerator 5 over denominator square root of 14 end fraction
    ∴  direction cosines of the normal to the plane are fraction numerator 2 over denominator square root of 14 end fraction comma space fraction numerator 3 over denominator square root of 14 end fraction comma space minus fraction numerator 1 over denominator square root of 14 end fraction and distance from origin  = fraction numerator 5 over denominator square root of 14 end fraction.
    Question 162
    CBSEENMA12033380

    In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
    5y + 8 = 0

    Solution

    The equation of plane is
    5y + 8 = 0    or  5y = – 8
    or  0x – 5 y + 0z = 8
    Dividing both sides by square root of left parenthesis 0 right parenthesis squared plus left parenthesis 5 right parenthesis squared plus left parenthesis 0 right parenthesis squared end root space equals space 5 comma space space space we space get comma
    0x - y + 0 z = 8 over 5
    It is of the form lx + my + nz = p, where l = 0,  m = -1,  n = 0,  straight p space equals space 8 over 5
    ∴ direction cosines of the normal to the plane are 0, – 1, 0 and distance from origin = 8 over 5.

    Question 163
    CBSEENMA12033381

    In the following cases, find the coordinates of the foot of the perpendicular
    drawn from the origin.
     2x + 3y + 4z – 12 = 0

    Solution

    The equation of given plane is
    2 x + 3 y + 4 z – 12 = 0    ...(1)
    Dividing both sides by square root of left parenthesis 2 right parenthesis squared plus left parenthesis 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space equals space square root of 4 plus 9 plus 16 end root space equals space square root of 29 comma space space we space get comma
    fraction numerator 2 over denominator square root of 29 end fraction straight x plus fraction numerator 3 over denominator square root of 29 end fraction straight y plus fraction numerator 4 over denominator square root of 29 end fraction straight z space equals space fraction numerator 12 over denominator square root of 29 end fraction space which space of space normal space form. space
    ∴ direction cosines of the normal OP are fraction numerator 2 over denominator square root of 29 end fraction comma space fraction numerator 3 over denominator square root of 29 end fraction comma space fraction numerator 4 over denominator square root of 29 end fraction where O is origin and P(x1,y1, z1) is foot of perpendicular.
    Direction ratios of OP are x– 0, y1 – 0, – 0 i.e. x1, y1, z1.
    Since direction cosines and direction ratios of a line are proportional.
    therefore space space space fraction numerator straight x subscript 1 over denominator begin display style fraction numerator 2 over denominator square root of 29 end fraction end style end fraction space equals space fraction numerator straight y subscript 1 over denominator begin display style fraction numerator 3 over denominator square root of 29 end fraction end style end fraction space equals space fraction numerator straight z subscript 1 over denominator begin display style fraction numerator 4 over denominator square root of 29 end fraction end style end fraction space equals space straight k comma space say.
    therefore space space space space space space space space space space space space space space straight x subscript 1 space equals space fraction numerator 2 over denominator square root of 29 end fraction straight k comma space space space straight y subscript 1 space equals space fraction numerator 3 over denominator square root of 29 end fraction straight k comma space space space straight z subscript 1 space equals space fraction numerator 4 over denominator square root of 29 end fraction straight k
therefore space space space space straight P space is space open parentheses fraction numerator 2 over denominator square root of 29 end fraction straight k comma space space fraction numerator 3 over denominator square root of 29 end fraction straight k comma space space fraction numerator 4 over denominator square root of 29 end fraction straight k close parentheses
    Since P lies on plane (1)
                       fraction numerator 4 over denominator square root of 29 end fraction straight k space plus space fraction numerator 9 over denominator square root of 29 end fraction straight k space plus space fraction numerator 16 over denominator square root of 29 end fraction straight k space equals space 12
    therefore space space space space fraction numerator 29 over denominator square root of 29 end fraction straight k space space equals space 12 space space space space space space rightwards double arrow space space space space space square root of 29 space straight k space equals space 12 space space space space space rightwards double arrow space space space space space straight k space equals space space fraction numerator 12 over denominator square root of 29 end fraction
    therefore space space foot space of space perpendicular space straight P space is space open parentheses 24 over 29 comma space 36 over 29 comma space 48 over 29 close parentheses.

    Question 164
    CBSEENMA12033382

    In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
    3 y + 4 z – 6 = 0

    Solution

    The equation of plane is
    0x + 3 y + 4 z = 6    ...(1)
    Dividing both sides by square root of left parenthesis 0 right parenthesis squared plus left parenthesis 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space equals space square root of 0 plus 9 plus 16 end root space equals space square root of 25 space equals space 5 comma space we space get comma
    0 straight x plus 3 over 5 straight y plus 4 over 5 straight z space equals space 6 over 5
    It is of form  lx + my + nz = p where l = 0,  straight m space equals 3 over 5 comma space straight n space equals space 4 over 5 comma space straight p space equals space 6 over 5
    ∴ direction cosines of the normal OP are 0, 3 over 5 comma space 4 over 5 where O is origin and P (x1, y1, z1) is foot of perpendicular.
    Direction ratios of OP are x1– 0, y1 – 0, z1 – 0 i.e. x1, y1, z1.
    Since direction cosines and direction ratios of a line are proportional.
    therefore space space space space space space space straight x subscript 1 over 0 space equals space fraction numerator straight y subscript 1 over denominator begin display style 3 over 5 end style end fraction space equals fraction numerator straight z subscript 1 over denominator begin display style 4 over 5 end style end fraction space equals space straight k comma space space say
therefore space space space space space space space space straight x subscript 1 space equals space 0 comma space space space straight y subscript 1 space equals space 3 over 5 straight k comma space space space straight z subscript 1 space equals space 4 over 5 straight k
therefore space space space space straight P space is space open parentheses 0 comma space 3 over 5 straight k comma space space 4 over 5 straight k close parentheses
    Since P lies on plane (1)
    therefore space space space space 3 space open parentheses 3 over 5 straight k close parentheses space plus space 4 open parentheses 4 over 5 straight k close parentheses space equals space 6
therefore space space space space space 9 space straight k space plus space 16 space straight k space equals space 30 space space space space space or space space space 25 space straight k space equals space 30 space space space space rightwards double arrow space space space space straight k space equals space 6 over 5
therefore space space space space space straight P space is space open parentheses 0 comma space 18 over 25 comma space 24 over 25 close parentheses comma space which space is space foot space of space perpendicular. space

    Question 165
    CBSEENMA12033383

    In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
    x + y + z = 1

    Solution
    The equation of plane is
    x + y + z = 1     ...(1)
    Dividing both sides by square root of left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space equals space square root of 3 comma space space space we space get comma
    fraction numerator 1 over denominator square root of 3 end fraction straight x plus fraction numerator 1 over denominator square root of 3 end fraction straight y plus fraction numerator 1 over denominator square root of 3 end fraction straight z space equals space fraction numerator 1 over denominator square root of 3 end fraction
    ∴ direction ratios of the normal OP to the plane are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma where O is origin and P (x1, y1, z1) is foot of perpendicular.
    Direction ratios of OP are x1 – 0, y1 – 0, z1– 0 i.e. x1, y1, z1.
    Since direction cosines and direction ratios of a line are proportional.
    therefore space space space space space space space space fraction numerator straight x subscript 1 over denominator begin display style fraction numerator 1 over denominator square root of 3 end fraction end style end fraction space equals space fraction numerator straight y subscript 1 over denominator begin display style fraction numerator 1 over denominator square root of 3 end fraction end style end fraction space equals fraction numerator straight z subscript 1 over denominator begin display style fraction numerator 1 over denominator square root of 3 end fraction end style end fraction space equals space straight k comma space space say
therefore space space space space space space space space straight x subscript 1 space equals space fraction numerator 1 over denominator square root of 3 end fraction straight k. space space space space space straight y subscript 1 space equals space fraction numerator 1 over denominator square root of 3 end fraction straight k comma space space space space straight z subscript 1 space equals space fraction numerator 1 over denominator square root of 3 end fraction straight k
therefore space space space space straight P space is space open parentheses fraction numerator 1 over denominator square root of 3 end fraction straight k comma space fraction numerator 1 over denominator square root of 3 end fraction straight k comma space fraction numerator 1 over denominator square root of 3 end fraction straight k close parentheses
    Since P lies on plane (1)
    therefore space space space space fraction numerator straight k over denominator square root of 3 end fraction plus fraction numerator straight k over denominator square root of 3 end fraction plus fraction numerator straight k over denominator square root of 3 end fraction space equals space 1 space space space or space space straight k plus straight k plus straight k space equals space square root of 3 space space space or space space 3 space straight k space equals space square root of 3 space space rightwards double arrow space space straight k space equals space fraction numerator 1 over denominator square root of 3 end fraction
therefore space space space straight P space is space open parentheses 1 third comma space 1 third comma space 1 third close parentheses comma space which space is space foot space of space perpendicular. space
    Question 166
    CBSEENMA12033384

    In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
    5y + 8 = 0

    Solution

    The equation of plane is
    5 y + 8 = 0 or 5 y = – 8 or – 5 y = 8
    Dividing both sides by square root of left parenthesis 0 right parenthesis squared plus left parenthesis negative 5 right parenthesis squared plus left parenthesis 0 right parenthesis squared end root space equals space 5 comma space we space get comma space space straight y space equals space 8 over 5     ...(1)
    ∴    direction ratios of the normal OP to the plane are 0, – 1, 0 where O is origin and P(x1, y1, z1) is foot of perpendicular.
    Direction ratios of OP are x1– 0, y1 – 0, z1 – 0 i.e. x1, y1, z1.
    Since direction cosines and direction ratios of a line are proportional.
    therefore space space space space space space straight x subscript 1 over 0 space equals space fraction numerator straight y subscript 1 over denominator negative 1 end fraction space equals space straight z subscript 1 over 0 space equals space straight k comma space space space say.
    therefore space space space space space space space straight x subscript 1 space equals space 0 comma space space space space straight y subscript 1 space equals space minus straight k comma space space space straight z subscript 1 space equals space 0
    therefore space space space space straight P space is space left parenthesis 0 comma space space minus straight k comma space space 0 right parenthesis
    Since P lies on plane (1)
     therefore space space space space space space straight k space equals space 8 over 5
therefore space space space space space straight P space is space open parentheses 0 comma space space minus 8 over 5 comma space 0 close parentheses.

     

    Question 167
    CBSEENMA12033385

    Find the direction cosines of the perpendicular from the origin to the plane
    straight r with rightwards arrow on top. space open parentheses 6 space straight i with hat on top space minus space 3 space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space plus space 1 space equals 0

    Solution
    The equation of plane is
    straight r with rightwards arrow on top. space open parentheses 6 straight i with hat on top space minus space 3 straight j with hat on top space minus space 2 straight k with hat on top close parentheses space plus space 1 space equals 0 space space space space space space space space or space space space space space space straight r with rightwards arrow on top. space open parentheses 6 space straight i with hat on top space minus space 3 space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space minus 1               ...(1)
    Now, open vertical bar 6 space straight i with hat on top space minus space 3 space straight j with hat on top space minus space 2 space straight k with hat on top close vertical bar space space equals space square root of 36 plus 9 plus 4 end root space equals space 7
    therefore space space space 6 over 7 straight i with hat on top space minus space 3 over 7 straight j with hat on top space minus space 2 over 7 straight k with hat on top space is space straight a space unit space vector. space
    ∴   equation (1) of the plane can be written as
    straight r with rightwards arrow on top. space open parentheses 6 over 7 straight i with hat on top space minus space 3 over 7 straight j with hat on top space minus space 2 over 7 straight k with hat on top close parentheses space equals space minus 2 over 7 space space or space space straight r with rightwards arrow on top space. space open parentheses negative 6 over 7 straight i with hat on top space plus space 3 over 7 straight j with hat on top space plus space 2 over 7 straight k with hat on top close parentheses space equals space 2 over 7
    which is of the form space straight r with rightwards arrow on top. space straight n with rightwards arrow on top space equals space straight p
    ∴         perpendicular vector from the origin to the plane is
    straight n with rightwards arrow on top space equals space minus 6 over 7 straight i with hat on top space plus space 3 over 7 straight j with hat on top space plus space 2 over 7 straight k with hat on top
    therefore  direction cosines of straight n with rightwards arrow on top space space are space minus 6 over 7 comma space 3 over 7 comma space 2 over 7
    Question 168
    CBSEENMA12033386

    Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector 2 space straight i with hat on top space plus space 6 space straight j with hat on top space minus space 3 space straight k with hat on top.

    Solution

    Let straight n with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 6 space straight j with hat on top space minus space 3 space straight k with hat on top
    therefore space space space space space straight n with hat on top space equals space fraction numerator straight n with rightwards arrow on top over denominator open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 2 straight i with hat on top space plus space 6 straight j with hat on top space minus space 3 space straight k with hat on top over denominator square root of 4 plus 36 plus 9 end root end fraction space equals space 1 over 7 open parentheses 2 straight i with hat on top space plus space 6 straight j with hat on top space minus space 3 straight k with hat on top close parentheses
                equals space 2 over 7 straight i with hat on top space plus space 6 over 7 straight j with hat on top space minus space 3 over 7 straight k with hat on top             
    ∴ required equation of plane is
               straight r with rightwards arrow on top. space space open parentheses 2 over 7 straight i with hat on top space plus space 6 over 7 straight j with hat on top space minus space 3 over 7 straight k with hat on top close parentheses space equals 5
    or     straight r with rightwards arrow on top space. space open parentheses 2 space straight i with hat on top space plus space 6 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space equals space 35

    Question 169
    CBSEENMA12033387

    Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector 3 straight i with hat on top space plus space 5 space straight j with hat on top space minus space 6 space straight k with hat on top.

    Solution

    Here   p = 7
    and    straight n with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 6 space straight k with hat on top
    therefore     straight n with hat on top space equals space fraction numerator straight n with rightwards arrow on top over denominator open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 3 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 6 space straight k with hat on top over denominator square root of 9 plus 25 plus 36 end root end fraction space equals space fraction numerator 1 over denominator square root of 70 end fraction left parenthesis 3 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 6 space straight k with hat on top right parenthesis
    The vector equation of plane is
                                 straight r with rightwards arrow on top. space straight n with hat on top space equals space straight p
    or               straight r with rightwards arrow on top. space open parentheses fraction numerator 3 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 6 space straight k with hat on top over denominator space square root of 70 end fraction close parentheses space equals space 7.

    Question 170
    CBSEENMA12033388

    Find the vector equation of the plane which is at a distance of fraction numerator 6 over denominator square root of 29 end fraction from the origin and its normal vector from the origin is 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space space 4 space straight k with hat on top. Also find its cartesian form. 

    Solution

    Here    straight p space equals space fraction numerator 6 over denominator square root of 29 end fraction
    and    straight n with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top
    therefore space space space space open vertical bar straight n with rightwards arrow on top close vertical bar space equals space square root of left parenthesis 2 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root space equals space square root of 4 plus 9 plus 16 end root space equals space square root of 29
therefore space space space space space space straight n with hat on top space equals space fraction numerator straight n with rightwards arrow on top over denominator open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 1 over denominator square root of 29 end fraction left parenthesis 2 straight i with hat on top space minus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top right parenthesis
    The required equation of plane is
                     straight r with rightwards arrow on top. space straight n with hat on top space equals space straight p
    or               straight r with rightwards arrow on top. space fraction numerator 1 over denominator square root of 29 end fraction space left parenthesis 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top right parenthesis space equals space fraction numerator 6 over denominator square root of 29 end fraction
    or              stack straight r. with rightwards arrow on top left parenthesis 2 space straight i with hat on top space minus space space 3 space straight j with hat on top space plus space 4 space straight k with hat on top right parenthesis space equals space 6
    Taking straight r with rightwards arrow on top space equals space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top comma space we space get
                   left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space space open parentheses 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space equals space 6
    or 2x – 3 y + 4 z = 6, which is cartesian equation of plane.

    Question 171
    CBSEENMA12033389

    Find the equation of the plane which is parallel to the x-axis and has intercepts 5 and 7 on the y and z-axis, respectively.

    Solution
    Let the equation of plane be
              straight x over straight a plus straight y over straight b plus straight z over straight c equals 1                                     ...(1)
    Here b = 5,    c = 7                                               ...(2)
    Since the plane is parallel to x-axis whose direction ratios are 1, 0, 0
    ∴   normal to the plane must be perpendicular to the x-axis. But the direction ratios of the normal to the plane are 1 over straight a comma space 1 over straight b comma space 1 over straight c.
    therefore space space space space 1 over straight a cross times 1 plus space 1 over straight b cross times 0 space plus space 1 over straight c cross times 0 space equals space 0 space space space space space space space rightwards double arrow space space space space space 1 over straight a space equals space 0              ...(3)
    From (1) and (2), (3), we have
    straight y over 5 plus straight z over 7 space equals space 1 space space space space or space space 7 straight y space plus space 5 straight z space equals space 35
    which is required equation of plane.
    Question 172
    CBSEENMA12033390

    Find the D.C.’s of the perpendicular from origin to the plane  straight r with rightwards arrow on top. space open parentheses negative 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top close parentheses plus 14 space equals space 0.  Find also the distance of the plane from the origin. 

    Solution
    The equation of plane is
                            straight r with rightwards arrow on top. space left parenthesis negative 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis space plus space 14 space equals space 0
    or                 straight r with rightwards arrow on top. space left parenthesis 2 straight i with hat on top space plus space 3 straight j with hat on top space minus space 6 straight k with hat on top right parenthesis space equals space 14
    Now,      open vertical bar 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 6 space straight k with hat on top close vertical bar space equals space square root of 4 plus 9 plus 36 end root space equals space square root of 49 space equals space 7
    therefore         2 over 7 straight i with hat on top space plus space 3 over 7 straight j with hat on top space minus space 6 over 7 straight k with hat on top space is space straight a space unit space vector
    therefore space space space equation space left parenthesis 1 right parenthesis space of space plane space can space be space written space as space straight r with rightwards arrow on top. space open parentheses 2 over 7 straight i with hat on top space plus space 3 over 7 straight j with hat on top space minus space 6 over 7 straight k with hat on top close parentheses space equals space 1
    which is of the form space straight r with rightwards arrow on top. space straight n with rightwards arrow on top space equals space straight p
    therefore space space space straight n with rightwards arrow on top space equals space 2 over 7 straight i with hat on top space space plus 3 over 7 straight j with hat on top space minus space 6 over 7 straight k with hat on top comma which is perpendicular vector from the origin
    ∴ direction cosines of straight n with rightwards arrow on top are 2 over 7 comma space 3 over 7 comma space minus 6 over 7
    Perpendicular distance = p = 1
    Question 173
    CBSEENMA12033391

    A plane meets the coordinate axes in A, B, C and (α, β, γ) is the centroid of the triangle ABC. Then, show that the equation of the plane is straight x over straight alpha plus straight y over straight beta plus straight z over straight gamma space equals space 3.

    Solution
    Let the equation of plane be
    straight x over straight a plus straight y over straight b plus straight z over straight c space equals 1                                                 ...(1)
    It meets x = axis in A where y = 0, z = 0
    Putting y = 0, z = 0 in (1), we get,
    straight x over straight a space equals 1 comma space space space space space space space space therefore space space straight x space equals straight a
    ∴  A is (a, 0, 0)
    Similarly B, C are (0, b, 0), (0, 0, c) respectively.
    ∵ (α, β,γ) is centroid of ΔABC
    therefore space space space space straight alpha space equals space fraction numerator straight a plus 0 plus 0 over denominator 3 end fraction comma space space space straight beta space equals fraction numerator 0 plus straight b plus 0 over denominator 3 end fraction comma space space straight gamma space equals space fraction numerator 0 plus 0 plus straight c over denominator 3 end fraction
    therefore space space space straight alpha space equals space straight a over 3 comma space space straight beta space equals straight b over 3 comma space space straight gamma space equals space straight c over 3
therefore space space space straight a space equals space 3 space straight alpha comma space space straight b space equals space 3 space straight beta comma space space straight c space equals space 3 space straight gamma
    Putting values of a, b, c in (1), we get,
          fraction numerator straight x over denominator 3 space straight alpha end fraction plus fraction numerator straight y over denominator 3 space straight beta end fraction plus fraction numerator straight z over denominator 3 space straight gamma end fraction space equals space 1
    or   straight x over straight alpha plus straight y over straight beta plus straight z over straight gamma space equals space 3
    which is required equation of plane.
    Question 174
    CBSEENMA12033392

    A plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (1, – 2, 3). Show that the equation of the plane is 6x-3y + 2z= 18.

    Solution
    Let the equation of plane be straight x over straight a plus straight y over straight b plus straight z over straight c equals 1                        ...(1)
    It meets the x-axis in A where y = 0, z = 0
    Putting y = 0 , z = 0 in (1), we get, straight x over straight a equals 1 comma space space space space space space space therefore space space straight x space equals straight a
    ∴  A is (a, 0, 0)
    Similarly B, C are (0, b, 0), (0, 0, c) respectively.
    ∵ (1, – 2, 3) is centroid of triangle ABC
    therefore space space fraction numerator straight a plus 0 plus 0 over denominator 3 end fraction equals space space 1 comma space space space fraction numerator 0 plus straight b plus 0 over denominator 3 end fraction space equals space minus 2 comma space space space space fraction numerator 0 plus 0 plus straight c over denominator 3 end fraction space equals 3
    therefore space space space space space straight a space equals space 3 comma space space straight b space equals negative 6 comma space space straight c space equals 9
    Putting values of a, b, c in (1),  we get, straight x over 3 plus fraction numerator straight y over denominator negative 6 end fraction plus straight z over 9 space equals space 1
    or  6 x – 3 y + 2 z = 18, which is required equation.
    Question 175
    CBSEENMA12033393

    A plane meets the co-ordinate axes at A, B, C such that the centroid of triangle ABC is the point (a, b, c). Show that the equation of the plane is straight x over straight a plus straight y over straight b plus straight z over straight c equals 3.

    Solution
    Let the equation of plane be straight x over straight alpha plus straight y over straight beta plus straight z over straight gamma equals 1                ....(1)
    It meets x-axis in A where y = 0,  z = 0
    Putting y = 0,   z = 0 in (1), we get x / α = 1,    ∴ x = α
    ∴ A is (α, 0, 0)
    Similarly B, C are (0,β, 0), (0, 0, γ) respectively
    ∴    (a, b, c) is centroid of triangle ABC
    therefore space space space straight a space equals space fraction numerator straight alpha plus 0 plus 0 over denominator 3 end fraction comma space space straight b space equals space fraction numerator 0 plus straight beta plus 0 over denominator 3 end fraction comma space space straight c space equals space fraction numerator 0 plus 0 plus straight gamma over denominator 3 end fraction.
therefore space space space straight a space equals space straight alpha over 3 comma space space space straight b space equals space straight beta over 3 comma space space straight c space equals space straight gamma over 3
therefore space space space space straight alpha space equals space 3 space straight a comma space space space space space straight beta space equals space 3 space straight b comma space space space straight gamma space equals space 3 space straight c
    Putting values of α, β, γ in (1), we get, fraction numerator straight x over denominator 3 space straight a end fraction plus fraction numerator straight y over denominator 3 space straight b end fraction plus fraction numerator straight z over denominator 3 space straight c end fraction equals 1
    or       straight x over straight a plus straight y over straight b plus straight z over straight c equals 3 comma
    which is required equation of plane
    Question 176
    CBSEENMA12033394

    Find the vector equation of the following planes in scalar product form:
    straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses

    Solution
    The equation of plane is straight r with rightwards arrow on top space equals space straight i with hat on top space space minus space straight j with hat on top space plus space straight lambda open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses
    or  straight x straight i with hat on top space space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space open parentheses 1 plus straight lambda space plus space straight mu close parentheses space straight i with hat on top space plus space open parentheses negative 1 plus straight lambda space minus space 2 space straight mu close parentheses straight j with hat on top space plus space open parentheses straight lambda plus space 3 space straight mu close parentheses space straight k with hat on top
    Equating the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma we get,
    x = 1 + λ + μ    ....(1)
    y = – 1 + λ – 2 μ    ...(2)
    z = λ + 3 μ    ...(3)
    We are to eliminate λ and μ from (1), (2), (3).
    Subtracting (2) from (1), we get,
    x – y = 2 + 3 μ    ... (4)Subtracting (3) from (1), we get,
    x – z = 1 – 2 μ    ... (5)
    Multiplying (4) by 2 and (5) by 3 , we get,
    2 x – 2 y = 4 + 6 μ    ...(6)
    3 x – 3 z = 3 – 6 μ    ...(7)
    Adding (6) and (7), we get, 5 x – 2 y – 3 z = 7
    This can be written as open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space open parentheses 5 space straight i with hat on top space space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space equals space 7
    or   straight r with rightwards arrow on top. space open parentheses 5 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space equals space 7 which is the required equation. 
     
    Question 177
    CBSEENMA12033395

    Find the vector equation of the following planes in scalar product form:
    straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight k with hat on top space plus space straight lambda space straight i with hat on top space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space space straight j with hat on top space minus space straight k with hat on top close parentheses

    Solution
    The equation of plane is straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight k with hat on top space plus space straight lambda space straight i with hat on top space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space space straight j with hat on top space minus space straight k with hat on top close parentheses
    or  straight x straight i with hat on top space plus space straight y straight j with hat on top space plus space straight z straight k with hat on top space equals space open parentheses 2 plus straight lambda plus straight mu close parentheses straight i with hat on top space minus space 2 space straight mu space straight j with hat on top space plus space left parenthesis negative 1 minus straight mu right parenthesis space straight k with hat on top
    Equating the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma we get,
    x = 2 + λ + μ    ... (1)
    y = 2 μ    ...(2)
    z = – 1– μ    ...(3)
    From (2), straight mu equals negative straight y over 2
    Putting this value of μ in (3), we get,
    straight z equals negative 1 plus straight y over 2 space space space space space space space or space space space space 2 space straight z space equals space minus 2 plus straight y space space space or space space space straight y minus 2 space straight z space equals space 2
    This can be written as open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space open parentheses straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 2
    or     straight r with rightwards arrow on top. space open parentheses straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 2
    which is the required equation. 
    Question 178
    CBSEENMA12033396

    Find the vector equation of the plane in scalar product form
    straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses 4 straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses.

    Solution
    The equation of plane is
                straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis space plus space straight mu space left parenthesis 4 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis
    or     straight x straight i with hat on top space plus space straight y straight j with hat on top space plus space straight z space straight k with hat on top space equals space open parentheses 1 plus straight lambda plus 4 straight mu close parentheses straight i with hat on top space plus space left parenthesis negative 1 plus straight lambda minus 2 straight mu right parenthesis space straight j with hat on top space plus space left parenthesis straight lambda plus 3 straight mu right parenthesis space straight k with hat on top
    Equating the coefficients of straight i with hat on top comma space straight j with hat on top comma space straight k with hat on top comma space space we space get comma
    x = 1 + λ + 4 μ    ...(1)
    y = – 1 + λ – 2 μ    ...(2)
    z = λ + 3 μ    ...(3)
    We are to eliminate λ and μ from (1), (2), (3)
    Subtracting (2) from (1), we get,
    x – y =2 + 6 μ        ...(4)
    Subtracting (3) from (1), we get,
    x – z = 1 + n    ...(5)
    Multiplying (4) by 1, (5) by –6, we get,
    x – y = 2 + 6 μ    ...(6)
    – 6 x + 6 z = – 6 – 6 μ    .....(7)
    Adding (6) and (7), we get,
    – 5 x – y + 6 z = – 4
    or  5 x + y – 6 z = 4
    or  open parentheses straight x straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses 5 space straight i with hat on top space plus space straight j with hat on top space minus space 6 space straight k with hat on top close parentheses space equals 4
    or   straight r with rightwards arrow on top. space left parenthesis 5 straight i with hat on top space plus space straight j with hat on top space minus space 6 space straight k with hat on top right parenthesis space equals space 4 comma which is required vector equation of plane. 

    Question 179
    CBSEENMA12033397

    Find the vector equation in scalar product form of the plane that contains the lines.
                        straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top space plus space straight j with hat on top right parenthesis space plus space straight s space left parenthesis straight i with hat on top space plus 2 space straight j with hat on top space minus space straight k with hat on top right parenthesis
    and               straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top plus straight j with hat on top close parentheses plus straight t open parentheses negative straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses

    Solution
    The equation of lines are
                        straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight s space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses                                 ...(1)
    and               straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top plus straight j with hat on top close parentheses plus straight t open parentheses negative straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses                                ...(2)
    Both the lines (1) and (2) pass through the point (1, 1, 0) whose position vector is straight i with hat on top space plus space straight j with hat on top.
    Hence both the lines are intersecting and are coplanar. 
    The equation of any plane containing the line (1) is
                            A (x - 1) + B (y - 1) + C (z - 0) = 0                               ...(3)
    where  A+ 2 B - C = 0                                                                             ...(4)
                                                                       open square brackets because space plane space is space perp. space to space the space vector space straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close square brackets
    Now plane is also normal to the vector negative straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top as plane is perp. to line (2).
     ∴    – A + B – 2 C = 0        ... (5)
    Solving (4) and (5), we get, fraction numerator straight A over denominator negative 4 plus 1 end fraction space equals fraction numerator straight B over denominator 1 plus 2 end fraction space equals fraction numerator straight C over denominator 1 plus 2 end fraction    left enclose table row 1 2 cell negative 1 end cell row cell negative 1 end cell 1 cell negative 2 end cell end table end enclose
    or   fraction numerator straight A over denominator negative 3 end fraction space equals straight B over 3 space equals space straight C over 3
    or  straight A over 1 space equals space fraction numerator straight B over denominator negative 1 end fraction space equals fraction numerator straight C over denominator negative 1 end fraction space equals space straight lambda space left parenthesis say right parenthesis
    therefore space space space space space straight A space equals space straight lambda comma space space straight B space equals space minus straight lambda comma space space space straight C space equals space minus straight lambda
    Putting these values of A, B, C in (3), we get, (x - 1) - (y – 1) – (z – 0) = 0 or x – y – z = 0
    This can be written as open parentheses straight x straight i with hat on top space plus space straight y space straight j with overparenthesis on top space plus space straight z space straight k with overparenthesis on top close parentheses space open parentheses straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 0
    or  straight r with rightwards arrow on top. space open parentheses straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 0
    Question 180
    CBSEENMA12033398

    Find the vector equation of the straight line passing through (1, 2, 3) and perpendicular to the plane straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space 5 space straight k with hat on top close parentheses space plus space 9 space equals 0 space.

    Solution
    The required line passes through (1, 2, 3)
    therefore space space space space space space space space straight a with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top
    Since required line is perpendicular to the plane
    straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 5 space straight k with hat on top right parenthesis space plus space 9 space equals 0
           <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
          therefore space space equation space of space line space is
                           straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top space plus space straight lambda straight b with rightwards arrow on top
    or                    straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space space 3 space straight k with hat on top close parentheses space plus space straight lambda space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 5 space straight k with hat on top right parenthesis
    Question 181
    CBSEENMA12033399

    Find the vector equation of the line through the origin which is perpendicular to the plane straight r with rightwards arrow on top. space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 3.

    Solution
    The equation of plane is straight r with rightwards arrow on top. space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 3
    ∴ direction-ratios of the normal are 1,–2, 1
    Also normal passes through origin (0, 0, 0)
    ∴  vector equation of line is
                  straight r with rightwards arrow on top space space equals space left parenthesis 0 space straight i with hat on top space plus space 0 space straight j with hat on top space plus space 0 space straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis
    or           straight r with rightwards arrow on top space equals space straight lambda open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space space where space straight lambda space is space straight a space space parameter.
    Question 182
    CBSEENMA12033400

    Find the vector and cartesian equations of the planes:
    that passes through the point (1, 0, – 2) and the normal to the plane is straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top.

    Solution

    Here, stack straight r subscript 1 with rightwards arrow on top space equals straight i with hat on top space minus space 2 space straight j with hat on top comma space space space space space space straight n with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    The vector equation of line is
                      left parenthesis stack straight r space with rightwards arrow on top space minus space stack straight r subscript 1 with rightwards arrow on top right parenthesis. space straight n with rightwards arrow on top space equals space 0
    or     open square brackets straight r with rightwards arrow on top space minus space open parentheses straight i with hat on top space minus space 2 space straight k with hat on top close parentheses close square brackets. space left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space equals space 0
    Take straight r equals straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top
    therefore space space space space open square brackets left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis space minus space left parenthesis straight i with hat on top space minus space 2 space straight k with hat on top right parenthesis close square brackets. space space left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space equals space 0
    or       open square brackets open parentheses straight x minus 1 close parentheses space straight i with hat on top space plus space straight y space straight j with hat on top space plus space left parenthesis straight z plus 2 right parenthesis space straight k with hat on top close square brackets. space space left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space equals space 0
    or       left parenthesis straight x minus 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis straight y right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis straight z plus 2 right parenthesis thin space left parenthesis negative 1 right parenthesis space equals space 0
    or         straight x minus 1 plus straight y minus straight z minus 2 space equals space 0
    or          straight x plus straight y minus straight z space equals space 3
    which is cartesian equation of plane. 

    Question 183
    CBSEENMA12033401

    Find the vector and cartesian equations of the planes:
    that passes through the point (1, 4, 6) and the normal vector to the plane is straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top.

    Solution

    Here,  stack straight r subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top comma space space space straight n with rightwards arrow on top space equals space straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top
    The vector equation of plane is
                           open parentheses straight r with rightwards arrow on top space minus space stack straight r subscript 1 with rightwards arrow on top close parentheses. space space straight n with rightwards arrow on top space equals space 0
    or        open square brackets straight r with rightwards arrow on top space minus space left parenthesis straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis close square brackets space. space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 0
    Take  straight r space equals space straight x space straight i with hat on top space space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top
    therefore space space space space open square brackets left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis space minus space left parenthesis straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis close square brackets. space left parenthesis straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 0
    or  open square brackets left parenthesis straight x minus 1 right parenthesis space straight i with hat on top space plus space left parenthesis straight y minus 4 right parenthesis space straight j with hat on top space plus space left parenthesis straight z minus 6 right parenthesis space straight k with hat on top close square brackets. space space left parenthesis straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 0
    or   left parenthesis straight x minus 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis straight y minus 4 right parenthesis thin space left parenthesis negative 2 right parenthesis space plus space left parenthesis straight z minus 6 right parenthesis thin space left parenthesis 1 right parenthesis space equals space 0
    or    straight x minus 1 minus 2 straight y plus 8 plus straight z minus 6 space equals space 0
    or     straight x minus 2 straight y plus straight z plus 1 space equals space 0
    which is cartesian equation of plane. 

    Question 184
    CBSEENMA12033402

    Find the vector equation of the line passing through the point (3, 1, 2) and perpendicular to the plane straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 4. Find also the point of intersection of this line and plane. 

    Solution
    The equation of plane is straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 4                      ....(1)
    Vector along the normal to the plane is 2 straight i with hat on top minus straight j with hat on top plus straight k with hat on top
    Now required line passes through point (3, 1, 2) with position vector 3 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top and is parallel to the vector 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top.
                                    straight r with rightwards arrow on top space equals space open parentheses 3 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space plus straight lambda space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses              ...(2)
            ∴ equation of line is                                                         open square brackets because space straight r with rightwards arrow on top space equals straight a with rightwards arrow on top space plus straight lambda straight m with rightwards arrow on top close square brackets
    Now line (2) meets plane (1) when
            open curly brackets 3 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight lambda space left parenthesis 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis close curly brackets space. space left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 4
    straight i. straight e. space space space when space open curly brackets left parenthesis 3 plus 2 straight lambda right parenthesis straight i with hat on top space plus space left parenthesis 1 minus straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 2 plus straight lambda right parenthesis space straight k with hat on top close curly brackets. space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 4
straight i. straight e. space when space space 2 space left parenthesis 3 plus 2 space straight lambda right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 1 minus straight lambda right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 2 plus straight lambda right parenthesis space equals space 4
straight i. straight e. space when space 6 plus 4 straight lambda minus 1 plus straight lambda plus 2 plus straight lambda space equals space 4
straight i. straight e. space when space 6 straight lambda space equals space minus 3 space comma space space space space space straight i. straight e. comma space when space space straight lambda space space equals space minus 1 half
    Putting this value of λ in (2), we get the position vector of the point of intersection of (1) and (2) as
                        straight r with rightwards arrow on top space equals space open parentheses 3 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space minus space 1 half left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 2 space straight i with hat on top space plus space 3 over 2 straight j with hat on top space plus 3 over 2 straight k with hat on top
    therefore space space space required space point space is space open parentheses 2 comma space 3 over 2 comma space 3 over 2 close parentheses.
    Question 185
    CBSEENMA12033403

    Find the angle between the two planes
    3 x – 6 y + 2 z = 7 and 2 x + 2 y – 2 z = 5.

    Solution

    The equations of given planes are
    3 x – 6 + 2 z = 7
    and 2 x + 2 y – 2 z = 5
    ∴  a= 3, b1 = – 6, c= 2
    and a2 = 2, b2 = 2, c2 = – 2
    Now,      
                 cos space straight theta space equals space open vertical bar fraction numerator straight a subscript 1 straight a subscript 2 plus straight b subscript 1 straight b subscript 2 plus straight c subscript 1 straight c subscript 2 over denominator square root of straight a subscript 1 squared plus straight b subscript 1 squared plus straight c subscript 1 squared end root space square root of straight a subscript 2 squared plus straight b subscript 2 squared plus straight c subscript 2 squared end root end fraction close vertical bar
space space space space space space space space space space equals open vertical bar fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus left parenthesis negative 6 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis negative 2 right parenthesis over denominator square root of left parenthesis 3 right parenthesis squared plus left parenthesis negative 6 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root space square root of left parenthesis 2 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root end fraction close vertical bar
space space space space space space space space space space equals open vertical bar fraction numerator 6 minus 12 minus 4 over denominator square root of 9 plus 36 plus 4 end root space square root of 4 plus 4 plus 4 end root end fraction close vertical bar space equals space open vertical bar fraction numerator negative 10 over denominator square root of 49 space square root of 12 end fraction close vertical bar
space space space space space space space space space space space equals space fraction numerator 10 over denominator 7 cross times 2 square root of 3 end fraction space equals fraction numerator 5 over denominator 7 square root of 3 end fraction space equals fraction numerator 5 square root of 3 over denominator 21 end fraction
therefore space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses fraction numerator 5 square root of 3 over denominator 21 end fraction close parentheses.

    Question 186
    CBSEENMA12033404

    Find the angle between the two planes
    2 x + y – 2 z = 5 and 3x – 6 y – 2 z = 7 using vector method.

    Solution

    The equations of two planes are
    2x + y – 2 z = 5 and 3x – 6y –2 z = 7
    These equations can be written as
                 open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 5
    and        open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses 3 space straight i with hat on top space minus space 6 space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 7
    or             straight r with rightwards arrow on top. space stack straight n subscript 1 with rightwards arrow on top space equals space 5 space space and space space straight r with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top space equals space 7
    therefore space space space space space space space space space space stack straight n subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space space minus space 2 space straight k with hat on top space space and space stack straight n subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 6 space straight j with hat on top space minus space 2 space straight k with hat on top
therefore space space space space space space open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space equals space square root of left parenthesis 2 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root space equals space square root of 4 plus 1 plus 4 end root space equals space square root of 9 space equals space 3
and space space space space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar space equals space square root of left parenthesis 3 right parenthesis squared plus left parenthesis negative 6 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root space equals space square root of 9 plus 36 plus 4 end root space equals square root of 49 space equals space 7
    Also, stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top space equals space left parenthesis 2 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis 1 right parenthesis space left parenthesis negative 6 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis negative 2 right parenthesis space equals space 6 minus 6 plus 4 space equals space 4
    Let  θ be the angle between the planes
    therefore space space space space space cos space straight theta space equals space fraction numerator stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator 4 over denominator left parenthesis 3 right parenthesis thin space left parenthesis 7 right parenthesis end fraction space equals space 4 over 21
therefore space space space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 4 over 21 close parentheses.

    Question 187
    CBSEENMA12033405

    Find the angle between the planes whose vector equations are
    straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space 2 straight j with hat on top space minus space 3 straight k with hat on top close parentheses space equals space 5 space space space and space straight r with rightwards arrow on top. space open parentheses 3 straight i with hat on top space minus space 3 straight j with hat on top space plus space 5 straight k with hat on top close parentheses space equals space 3.

    Solution
    The equations of two planes are
                straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space equals space 5
    and     straight r with rightwards arrow on top. space space left parenthesis 3 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis space equals space 3
    therefore space space space space space space space stack straight n subscript 1 with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top comma space space space stack straight n subscript 2 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top
               open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space equals space square root of 4 plus 4 plus 9 end root space equals space square root of 17 comma space space space space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 9 plus 9 plus 25 end root space equals space square root of 43
         stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top space equals space left parenthesis 2 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis negative 3 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis 5 right parenthesis space equals space 6 minus 6 minus 15 space equals space minus 15
    Let θ be angle between the planes
    therefore space space cos space straight theta space equals space fraction numerator stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar. space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator negative 15 over denominator square root of 17 space square root of 43 end fraction space equals space minus fraction numerator 15 over denominator square root of 731 end fraction
    ∴ acute angle θ is given by
    cos space straight theta space equals space fraction numerator 15 over denominator square root of 731 end fraction space space space space space space space space rightwards double arrow space space space straight theta space equals space cos space to the power of negative 1 end exponent space open parentheses fraction numerator 15 over denominator square root of 731 end fraction close parentheses.
    Question 188
    CBSEENMA12033406

    Find the angle between the planes whose vector equations are
    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 3 space space and space space space straight r with rightwards arrow on top. space space open parentheses 2 straight i with hat on top space minus space 2 straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 2

    Solution
    The equation of the two planes are
    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 3 space space space and space straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 2
    therefore space space space space space space space space stack straight n subscript 1 with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top comma space space space stack straight n subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top
therefore space space space space space space open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space equals space square root of 1 plus 1 plus 4 end root space equals square root of 6 comma space space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar space equals square root of 4 plus 4 plus 1 end root space space equals square root of 9 space equals space 3
space space space space space space space space stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top space equals space left parenthesis 1 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis thin space left parenthesis 1 right parenthesis space equals space 2 minus 2 minus 2 space equals space minus 2
    Let θ be the angle between the planes.
    therefore space space space cos space straight theta space equals space fraction numerator stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar end fraction space equals fraction numerator negative 2 over denominator 3 square root of 6 end fraction
therefore space space space space space acute space angle space straight theta space is space given space by space space space space space space space space space space space space space cos space straight theta space equals space fraction numerator 2 over denominator 3 square root of 6 end fraction
therefore space space space space space space space straight theta space equals cos to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator 3 square root of 6 end fraction close parentheses
    Question 189
    CBSEENMA12033407

    Find the angle between the planes
    straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space minus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space 0 space space and space straight r with rightwards arrow on top. space space left parenthesis 2 straight i with hat on top space minus space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis space equals space 0

    Solution
    The equations of the planes are
                 straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space minus space 4 space straight j with hat on top space plus space space 5 space straight k with hat on top close parentheses space equals space 0 space space space and space space straight r with rightwards arrow on top. space left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis space equals space 0
    therefore space space space space space stack straight n subscript 1 with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space space space stack straight n subscript 2 with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space minus space 2 space straight k with hat on top
therefore space space space space open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space equals space square root of 9 plus 16 plus 25 end root space equals space square root of 50 space equals space 5 square root of 2
space space space space space space space space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar space equals space square root of 4 plus 1 plus 4 end root space space equals space square root of 9 space equals space 3
             stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top space equals space left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 4 right parenthesis thin space left parenthesis negative 1 right parenthesis space plus space left parenthesis 5 right parenthesis thin space left parenthesis negative 2 right parenthesis space equals space 6 plus 4 minus 10 space equals space 0
    Let θ be the angle between the planes
     therefore space space space space space space space space space cos space straight theta space equals space fraction numerator stack straight n subscript 1 with rightwards arrow on top. space stack straight n subscript 2 with rightwards arrow on top over denominator open vertical bar stack straight n subscript 1 with rightwards arrow on top close vertical bar space open vertical bar stack straight n subscript 2 with rightwards arrow on top close vertical bar end fraction space equals fraction numerator 0 over denominator 5 square root of 2 cross times 3 end fraction space equals space 0
therefore space space space space space space space space space space straight theta space equals space 90 degree.
    Question 190
    CBSEENMA12033408

    In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:
    7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

    Solution

    The equations of given planes are
    7x + 5y + 6z + 30 = 0    ...(1)
    and 3x – y – 10z + 4 = 0    ...(2)
    Direction ratios of normal to plane (1) are 7, 5, 6
    Direction ratios of normal to plane (2) are 3, –1, –10.
    Now 7 over 3 not equal to fraction numerator 5 over denominator negative 1 end fraction not equal to fraction numerator 6 over denominator negative 10 end fraction
    ∴    planes (1) and (2) are not parallel.
    Again (7) (3) + (5) (– 1) + (6) (– 10) = 21 – 5 – 60 = – 44 ≠ 0
    ∴  planes (1) and (2) are not perpendicular to each other.
    Let θ be angle between planes (1) and (2).
    therefore space space space space space space cos space straight theta space equals space fraction numerator open vertical bar left parenthesis 7 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis 5 right parenthesis thin space left parenthesis negative 1 right parenthesis space plus space left parenthesis 6 right parenthesis thin space left parenthesis negative 10 right parenthesis close vertical bar over denominator square root of left parenthesis 7 right parenthesis squared plus left parenthesis 5 right parenthesis squared plus left parenthesis 6 right parenthesis squared end root space square root of left parenthesis 3 right parenthesis squared plus left parenthesis negative 1 right parenthesis squared plus left parenthesis negative 10 right parenthesis squared end root end fraction
                         equals space fraction numerator open vertical bar 21 minus 5 minus 60 close vertical bar over denominator square root of 49 plus 25 plus 36 end root space square root of 9 plus 1 plus 100 end root end fraction space equals space fraction numerator open vertical bar negative 44 close vertical bar over denominator square root of 110 space square root of 110 end fraction
space equals 44 over 110 space equals 22 over 55 space equals 2 over 5
    therefore space space space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 2 over 5 close parentheses

    Question 191
    CBSEENMA12033409

    In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:
    2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

    Solution

    The equations of given planes are
    2x + y + 3z – 2 = 0    ...(1)
    and x – 2y + 5 = 0    ...(2)
    Direction ratios of normal to plane (1) are 2, 1, 3
    Direction ratios of normal to plane (2) are 1, – 2, 0.
    Now, 2 over 1 not equal to fraction numerator 1 over denominator negative 2 end fraction not equal to 3 over 0
    ∴    planes (1) and (2) are not parallel.
    Again (2) (1) + (1) (– 2) + (3) (0) = 2 – 2 + 0 = 0
    ∴ given planes (1) and (2) are perpendicular to each other.

    Question 192
    CBSEENMA12033410

    In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:
    2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

    Solution

    The given planes are
    2x – 2 y + 4 z + 5 = 0    ...(1)
    and 3 x – 3 y + 6 z –  1 = 0    ...(2)
    Direction ratios of normal to plane (1) are 2, –2, 4,
    Direction ratios of normal to plane (2) are 3, – 3, 6.
    Now, 2 over 3 space equals space fraction numerator negative 2 over denominator negative 3 end fraction space equals space 4 over 6
    ∴ given planes (1) and (2) are parallel.

    Question 193
    CBSEENMA12033411

    In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:
    2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0

    Solution

    The given planes are
    2x – + 3z – 1 = 0    ...(1)
    and 2x – y + 3z + 3 = 0    ...(2)
    Direction ratios of normal to plane (1) are 2, –1, 3.
    Direction ratios of normal to plane (2) are 2, – 1, 3.
    Now, 2 over 2 space equals space fraction numerator negative 1 over denominator negative 1 end fraction equals 3 over 3
    ∴ given planes (1) and (2) are parallel.

    Question 194
    CBSEENMA12033412

    In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:
    4x + 8y + z – 8 = 0 and y + z – 4 = 0

    Solution

    The equations of given planes are
    4x + 8 y + z – 8 = 0    ...(1)
    and 0x + y + z – 4 = 0    ...(2)
    Direction ratios of normal to plane (1) are 4, 8, 1.
    Direction ratios of normal to plane (2) are 0, 1, 1.
    Now, 4 over 0 not equal to 8 over 1 not equal to 1 over 1
    ∴  given planes (1) and (2) are not parallel.
    Again (4) (0) + (8) (1) + (1) (1) = 0 + 8 + 1 = 9 ≠ 0
    ∴  given planes (1) and (2) are not perpendicular to each other.
    Let θ be angle between planes.
    therefore space space space space cos space straight theta space equals space fraction numerator left parenthesis 4 right parenthesis thin space left parenthesis 0 right parenthesis space plus space left parenthesis 8 right parenthesis thin space left parenthesis 1 right parenthesis thin space plus space left parenthesis 1 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of left parenthesis 4 right parenthesis squared plus left parenthesis 8 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root space square root of left parenthesis 0 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 1 right parenthesis squared end root end fraction
                      equals space fraction numerator 0 plus 8 plus 1 over denominator square root of 16 plus 64 plus 1 end root space square root of 0 plus 1 plus 1 end root end fraction space equals fraction numerator 9 over denominator square root of 81 space square root of 2 end fraction space equals fraction numerator 9 over denominator 9 square root of 2 end fraction space equals fraction numerator 1 over denominator square root of 2 end fraction
    therefore space space space straight theta space equals space 45 space degree.

    Question 195
    CBSEENMA12033413

    Find the equation of the plane which bisects the line joining the points (–1, 2, 3) and (3, – 5 6) at right angles.

    Solution
    Let A (– 1, 2, 3), B(3, –5, 6) be given points and C be mid-point of AB.

    therefore space space space space space straight C space is space open parentheses fraction numerator negative 1 plus 3 over denominator 2 end fraction comma space fraction numerator 2 minus 5 over denominator 2 end fraction comma space fraction numerator 3 plus 6 over denominator 2 end fraction close parentheses
    i.e. open parentheses 1 comma space minus 3 over 2 comma space 9 over 2 close parentheses
    Since the plane passes through the point  open parentheses 1 comma space minus space 3 over 2 comma space 9 over 2 close parentheses
    ∴  equation of plane is
    straight A left parenthesis straight x minus 1 right parenthesis space plus space straight B space open parentheses straight y plus 3 over 2 close parentheses space plus space straight C open parentheses straight z minus 9 over 2 close parentheses space equals space 0                         ...(1)
    Direction ratios of AB are 3 + 1, –5 – 2, 6 – 3  i.e. 4, –7, 3.
    ∴ the line with direction ratios 4, –7, 3 is normal to the plane (1)
    therefore space space space space 4 left parenthesis straight x minus 1 right parenthesis space minus space 7 space open parentheses straight y plus 3 over 2 close parentheses space plus space space 3 space open parentheses straight z minus 9 over 2 close parentheses space equals 0
therefore space space 4 straight x minus 4 minus 7 straight y minus 21 over 2 plus 3 straight z minus 27 over 2 space equals space 0
or space space space 4 straight x minus 7 straight y space plus space 3 straight z space minus space 28 space equals space 0
    which is required equation of plane.
    Question 196
    CBSEENMA12033414

    Find the equation of the plane through the intersection of the planes x + y + z = 9 and 2 x + 3 y + 4 z + 5 = 0 and passing through the point (1, 1, 1).

    Solution

    The equation of any plane through the intersection of planes
    x + y + z = 9 i.e., x + y + z – 9 = 0 and 2 x + 3 y + 4 z + 5 = 0 is
    (x + y + z – 9) + k (2 x + 3 y + 4 z + 5) = 0    ...(1)
    ∴   it passes through the point (1, 1, 1)
    ∴  (1 + 1 + 1 – 9) + k (2 + 3 + 4 + 5) = 0
    rightwards double arrow space space space minus 6 space plus space 14 space straight k space equals space 0 space space space space space space rightwards double arrow space space space space straight k space equals space 6 over 14 space equals space 3 over 7
    Putting this value of k in (1), we get,
                open parentheses straight x plus straight y plus straight z minus 9 close parentheses plus 3 over 7 left parenthesis 2 straight x plus 3 straight y plus 4 straight z plus 5 right parenthesis space equals 0
    or       7 space left parenthesis straight x plus straight y plus straight z minus 9 right parenthesis space plus space 3 space left parenthesis 2 straight x plus 3 straight y plus 4 straight z plus 5 right parenthesis space equals space 0
    or       7 straight x plus 7 straight y plus 7 straight z minus 63 plus 6 straight x plus 9 straight y plus 12 straight z plus 15 space equals space 0
    or                                       13 straight x plus 16 straight y plus 19 straight z space minus space 48 space equals 0
    which is required equation of plane. 

    Question 197
    CBSEENMA12033415

    Find the equation of plane passing through origin and intersection of planes 2x – 3y + z = 9, x – y + z = 4 

    Solution

    The equation of any plane through the intersection of planes
    2x – 3 y + z – 9 = 0 and x – y + z – 4 = 0 is
    (2 x – 3 y + z – 9) + k (x – y + z – 4) = 0    ...(1)
    ∴  it passes through origin (0, 0, 0,)
    ∴   (0 – 0 + 0 – 9) + k (0 – 0 + 0 – 4) = 0
    therefore space space space minus 9 minus 4 straight k space equals space 0 space space space space space space rightwards double arrow space space space straight k space equals space minus space 9 over 4
     Putting straight k space equals space minus 9 over 4 space in space left parenthesis 1 right parenthesis comma space we space get comma
                    left parenthesis 2 straight x minus 3 straight y plus straight z minus 9 right parenthesis minus 9 over 4 left parenthesis straight x minus straight y plus straight z minus 4 right parenthesis space equals space 0
    or  4 (2x – 3 y + z – 9) – 9 (x – y + z – 4) = 0
    or  8 x – 12 y + 4 z – 36 – 9 x + 9 y – 9 z + 36 = 0
    or  – x – 3 y – 5 z = 0
    or  x + 3 y + 5 z = 0, which is required equation of plane.

    Question 198
    CBSEENMA12033416

    Find the equation of the plane through the intersection of the planes 3x – y + 2 z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).

    Solution

    Any plane passing through the intersection of planes
    3x – y + 2 z – 4 = 0 and x + y + z – 2 = 0 is
    (3x – y + 2 z – 4) + k (x + y + z – 2) = 0    ...(1)
    ∴  it passes through (2, 2, 1)
    ∴  (6 – 2 + 2 – 4) + k (2 + 2 + 1 – 2) = 0
    therefore space space 2 plus space 3 space straight k space equals space 0 space space space space space or space space space straight k space equals space minus 2 over 3
    Putting straight k space equals space minus 2 over 3 space in space left parenthesis 1 right parenthesis comma space space we space get comma
                  left parenthesis 3 straight x minus straight y plus 2 straight z minus 4 right parenthesis space minus space 2 over 3 left parenthesis straight x plus straight y plus straight z minus 2 right parenthesis space equals space 0
    or 3 (3x – y + 2 z – 4) – 2 (x + y + z – 2) = 0
    or 9x – 3 y + 6 z – 12 – 2x – 2 y – 2 z + 4 = 0
    or 7x – 5 y + 4 z = 8, which is required equation of plane.

    Question 199
    CBSEENMA12033417

    Find the equation of the plane passing through the point (– 1, – 1, 2) and perpendicular to each of the following planes:
    2x + 3y – 3 = 2 and 5x – 4y + z = 6.

    Solution

    The equation of any plane through (– 1,–1, 2) is
    a(x + 1) + b(y + 1) + c(z – 2) = 0    ...(1)
    ∴ it is perpendicular to the planes
    2x + 3y – 3z = 2 and 5x – 4y + z = 6
    ∴ 2a + 3b – 3c = 0    ...(2)
    and 5a – 4b + c = 0    ...(3)
    Solving (2) and (3), we get,
                        fraction numerator straight a over denominator 3 minus 12 end fraction space equals space fraction numerator straight b over denominator negative 15 minus 2 end fraction space equals space fraction numerator straight c over denominator negative 8 minus 15 end fraction
    therefore space space space space space space space space space space space space space fraction numerator straight a over denominator negative 9 end fraction space equals space fraction numerator straight b over denominator negative 17 end fraction equals space fraction numerator straight c over denominator negative 23 end fraction
therefore space space space space space space space space space space space space space space space space straight a over 9 space equals space straight b over 17 space equals space straight c over 28 space equals space straight k comma space space say.
therefore space space space straight a space equals space 9 space straight k comma space space space 6 space equals space 17 space straight k comma space space space straight c space equals space 23 space straight k

    ∴ a = 9 k, 6 = 17 k, c = 23 k
    Putting values of a, b, c in (1), we get
    9 k (x + 1)+ 17 k (y + 1) + 23 k (z – 2) = 0
    or 9 (x + 1) + 17 (+ 1) + 23 (z – 2) = 0
    or 9 x + 9 + 17 y + 17 + 23 z – 46 = 0
    or 9 x + 17 y + 23 z – 20 = 0
    which is required equation of plane.

    Question 200
    CBSEENMA12033418

    Find the direction ratios of the normal to the plane passing through the point (2,1, 3) and the line of intersection of the planes x + 2 y + z = 3 and 2 x – y – z = 5.

    Solution

    The equation of any plane through the intersection of planes
    x + 2y + z – 3 = 0 and 2x – y – z – 5 = 0 is
    (x + 2y + z – 3) + k (2x – y – z – 5) = 0    ...(1)
    ∴  it passes through (2, 1, 3)
    ∴     (2 + 2 + 3 – 3) + k (4 – 1– 3 – 5) = 0
    therefore space space space 4 space minus space 5 space straight k space equals space 0 space space space space space space space space space space space space rightwards double arrow space space space space straight k space equals space 4 over 5
    Putting straight k space equals 4 over 5 space in space left parenthesis 1 right parenthesis comma space we space get comma
                      left parenthesis straight x plus 2 straight y plus straight z minus 3 right parenthesis plus space 4 over 5 left parenthesis 2 straight x minus straight y minus straight z minus 3 right parenthesis space equals space 0 
    or 5 (x + 2 y + z – 3) + 4 (2 x – y – z – 3) = 0
    or 5 x + 10 y + 5 z – 15 + 8 x – 4 y – 4 z – 12 = 0
    or 13 x + 6 y + z – 27 = 0
    which is equation of plane.
    Direction ratios of normal to the plane are 13, 6, 1.

    Question 201
    CBSEENMA12033419

    Find the vector equation of the plane passing through the intersection of the planes:
    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 6 comma space space space space straight r with rightwards arrow on top. space space open parentheses 2 space straight i with hat on top space plus space space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space equals space minus 5 and the point (1, 1, 1).



    Solution

    The equations of given planes are
                        straight r with rightwards arrow on top space. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses minus 6 space equals space 0                                   ...(1)
    and       straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space plus space 5 space equals 0                                 ...(2)
    Any plane through the intersection of planes (1) and (2) is
                             straight r with rightwards arrow on top. space space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space minus space 6 space plus straight lambda space open curly brackets stack straight r. space with rightwards arrow on top open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space plus space 5 close curly brackets space equals space 0
    or              straight r with rightwards arrow on top. space open curly brackets open parentheses 1 plus 2 space straight lambda close parentheses straight i with hat on top space plus space left parenthesis 1 plus 3 space straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 1 plus 4 space straight lambda right parenthesis space straight k with hat on top space close curly brackets space plus left parenthesis 5 space straight lambda space minus space 6 right parenthesis space equals space 0          ...(3)
    It will pass through the point (1, 1, 1)
    If     straight r space equals straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top space space satisfies space left parenthesis 3 right parenthesis
    straight i. straight e. space space space if space left parenthesis straight i with hat on top plus straight j with hat on top plus straight k with hat on top right parenthesis. space space open curly brackets left parenthesis 1 plus 2 straight lambda right parenthesis space straight i with hat on top space plus space left parenthesis 1 plus 3 space straight lambda right parenthesis space straight j with hat on top space plus space left parenthesis 1 plus 4 space straight lambda right parenthesis space straight k with hat on top close curly brackets space plus space left parenthesis 5 straight lambda minus 6 right parenthesis space equals space 0
straight i. straight e. space if space left parenthesis 1 right parenthesis thin space left parenthesis 1 plus 2 straight lambda right parenthesis plus space left parenthesis 1 right parenthesis thin space left parenthesis 1 plus 3 space straight lambda right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 1 plus 4 space straight lambda right parenthesis space plus space left parenthesis 5 space straight lambda space minus space 6 right parenthesis space equals space 0
straight i. straight e. space if space 1 plus 2 straight lambda plus 1 plus 3 straight lambda plus 1 plus 4 straight lambda plus 5 straight lambda minus 6 space equals space 0
straight i. straight e. space if space 14 straight lambda space equals space 3
straight i. straight e. space if space space straight lambda space equals 3 over 14

    Putting straight lambda space equals 3 over 14 space in space left parenthesis 3 right parenthesis comma space we space get
                  straight r with rightwards arrow on top. space space open curly brackets open parentheses 1 plus 6 over 14 close parentheses straight i with hat on top space plus space open parentheses 1 plus 9 over 14 close parentheses straight j with hat on top space plus space open parentheses 1 plus 12 over 14 close parentheses space straight k with hat on top close curly brackets space plus space open parentheses 15 over 14 minus 6 close parentheses space equals 0
    or           straight r with rightwards arrow on top. space left parenthesis 20 space straight i with hat on top space plus space 23 space straight j with hat on top space plus space 26 space space straight k with hat on top right parenthesis minus 69 space equals space 0
    or            straight r with rightwards arrow on top. space left parenthesis 20 space straight i with hat on top space plus space 23 space straight j with hat on top space plus space 26 space straight k with hat on top right parenthesis space equals space 69
    which is the required vector equation of the plane. 

    Question 202
    CBSEENMA12033420

    Find the vector equation of the plane passing through the intersection of the planes straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space equals 7 comma space space space space space straight r with rightwards arrow on top space. space open parentheses 2 space straight i with hat on top space plus space 5 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space equals space 9 and the point (2, 1, 3).

    Solution
    The equations of given planes are
                   straight r with rightwards arrow on top. space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space space 3 space straight k with hat on top right parenthesis space equals space 7
    i.e.   left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space 7
    i.e.    2 straight x plus straight y plus 3 straight z minus 7 space equals space 0                                          ...(1)
    and straight r with rightwards arrow on top. space left parenthesis 2 straight i with hat on top space plus space 5 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space 9
    i.e. left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space equals space 9
    i.e. 2 straight x plus 5 straight y plus 3 straight z minus 9 space equals space 0                                          ...(2)
    Any plane through the intersection of (1) and (2) is
    (2x + y + 3z – 7) + k (2x + 5y + 3z – 9) = 0    ...(3)
    ∴    it passes through (2, 1, 3)
    therefore space space space left parenthesis 4 plus 1 plus 9 minus 7 right parenthesis space plus space straight k left parenthesis 4 plus 5 plus 9 minus 9 right parenthesis equals space 0
therefore space space space space 7 plus 9 space straight k space equals space 0 space space space space space space space space space rightwards double arrow space space space space space straight k space equals space minus 7 over 9
    Putting straight k space equals space minus 7 over 9 in (3), we get,
              left parenthesis 2 straight x plus straight y plus 3 straight z minus 7 right parenthesis space minus 7 over 9 left parenthesis 2 straight x plus 5 straight y plus 3 straight z minus 9 right parenthesis space equals space 0
               or space space space 9 space left parenthesis 2 straight x plus straight y plus 3 straight z minus 7 right parenthesis space minus space 7 space left parenthesis 2 straight x plus 5 straight y plus 3 straight z minus 9 right parenthesis space equals space 0
or space space 18 straight x plus 9 straight y plus 27 straight z minus 63 minus 14 straight x minus 35 straight y minus 21 straight z plus 63 space equals 0
or space space 4 straight x minus 26 straight y plus 6 straight z space equals space 0 space space space space space space space or space space space 2 straight x minus 13 straight y plus 3 straight z space equals space 0
or space space space space space left parenthesis straight x straight i with hat on top space plus space straight y straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space left parenthesis 2 space straight i with hat on top space minus space 13 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space 0
or space space space straight r with rightwards arrow on top. space left parenthesis 2 straight i with hat on top space minus space 13 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space 0
    which is vector equation of required plane. 

    Question 203
    CBSEENMA12033421

    Find the equation of the plane passing through the line of intersection of the planes straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 1 space space space and space space straight r with rightwards arrow on top. space space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top close parentheses space plus space 4 space space equals 0 and parallel to x-axis. 

    Solution
    The equations of the planes are
                     straight r with rightwards arrow on top space space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 1 space space space and space straight r with rightwards arrow on top. space space left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space space straight k with hat on top right parenthesis space plus space 4 space equals 0
    or       left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis space minus space 1 space equals space 0
    and    open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses 2 space straight i with hat on top space plus space 3 space straight j with hat on top space minus straight k with hat on top close parentheses space plus space 4 space equals 0
    or          straight x plus straight y plus straight z minus 1 space equals space 0                                              ...(1)
    and       2 straight x plus 3 straight y minus straight z plus 4 space equals space 0                                          ...(2)
    Any plane through the intersection of planes (1) and (2) is
    (x + y + z – 1) + k (2x + 3y – r + 4) = 0    ...(3)
    or (2k + 1) at + (3k + 1) y + (– k + 1) z + (4k – 1) = 0
    Its direction ratios are 2k + 1, 3k + 1, – k + 1.
    Since plane is parallel to x-axis with direction ratios 1, 0, 0.
    ∴  1 (2k + 1) + (0) (3k + 1) + 0 (– k + 1) = 0
    therefore space space space space space 2 straight k plus 1 space equals space 0 space space space space space space space space space rightwards double arrow space space space space 2 space straight k space equals space space minus 1 space space space space space space space space space rightwards double arrow space space space straight k space equals space minus 1 half
    Putting straight k equals negative 1 half space in space left parenthesis 3 right parenthesis comma space we space get comma
                  open parentheses straight x plus straight y plus straight z minus 1 close parentheses space minus space 1 half left parenthesis 2 straight x plus 3 straight y minus straight z plus 4 right parenthesis space equals space 0
    or          2 space left parenthesis straight x plus straight y plus straight z minus 1 right parenthesis space minus space left parenthesis 2 straight x plus 3 straight y minus straight z plus 4 right parenthesis space equals space 0
    or    2x + 2y + 2z – 2 – 2x – 3y + z – 4 = 0
    or    – y + 3z – 6 = 0
    or    y - 3z + 6 = 0
    Which is required equation of plane. 
    Question 204
    CBSEENMA12033422

    Find the equation of the plane through the line of intersection of the planes 3x – 4y + 5z = 10, 2x + 2y – 3z = 4 and parallel to the line x = 2y = 3z. 

    Solution

    The equation of plane through the line of intersection of the planes
    3x – 4y + 5z – 10 = 0 and 2x + 2y – 3z – 4 = 0 is
    (3x – 4 y + 5 z – 10) + k (2x + 2y – 3z  – 4) = 0    ...(1)
    or (2k + 3) x + (2k – 4) y + (–3 k + 5) z – (4k + 10) = 0
    Direction ratios of normal to the plane are
    2k + 3, 2k – 4, –3k + 5
    Consider the line x = 2y = 3z
    or                 straight x over 1 space equals space fraction numerator straight y over denominator begin display style 1 half end style end fraction space equals space fraction numerator straight z over denominator begin display style 1 third end style end fraction
    or                 straight x over 6 space equals space straight y over 3 space equals space straight z over 2
    Its direction ratios are 1, 1 half comma space 1 third
    Since this line is parallel to plane (1).
    ∴  this line is perpendicular to the normal to the plane (1).
    therefore space space space left parenthesis 2 straight k plus 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 2 straight k minus 4 right parenthesis space open parentheses 1 half close parentheses plus left parenthesis negative 3 straight k plus 5 right parenthesis space open parentheses 1 third close parentheses space equals space 0
therefore space space 2 straight k space plus space 3 space plus space straight k space minus space 2 space minus straight k space plus space 5 over 3 space equals space 0
therefore space space space space space space space space space 2 straight k space equals space minus 8 over 3 space space space space space space space space space space space space space space rightwards double arrow space space space space straight k space equals space minus 4 over 3
    Putting straight k space equals space minus 4 over 3 space in space left parenthesis 1 right parenthesis comma space we space get comma
       left parenthesis 3 straight x minus 4 straight y plus 5 straight z minus 10 right parenthesis space minus space 4 over 3 left parenthesis 2 straight x plus 2 straight y minus 3 straight z minus 4 right parenthesis space equals space 0

    or 3 (3x – 4y + 5z – 10) – 4 (2x + 2 y – 3z – 4) = 0
    or 9x – 12y + 15z – 30 – 8x – 8y + 12z + 16 = 0
    or x – 20y + 27z = 14
    which is required equation of plane.


    Question 205
    CBSEENMA12033423

    Find the equation of the plane which contains the line of intersection of the planes straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space minus space 4 space equals 0 space space space and space space straight r with rightwards arrow on top. space space left parenthesis 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space plus space 5 space equals space 0 and which is perpendicular to the plane straight r with rightwards arrow on top. space open parentheses 5 straight i with hat on top space plus space 3 straight j with hat on top space minus space 6 straight k with hat on top space close parentheses space plus space 8 space equals 0 space.

    Solution
    The equations of given planes are
                           straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space minus space 4 space equals space space 0
    and                 straight r with rightwards arrow on top. space left parenthesis 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis space plus 5 space space equals 0
    or space space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space minus space 4 space equals space 0
or space space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space plus space 5 space equals space 0
or space space space straight x plus space 2 straight y space plus space 3 straight z space minus space 4 space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
and space space 2 straight x plus straight y minus straight z plus 5 space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space

    Any plane through the intersection of planes (1) and (2) is
    (x + 2 y + 3 z – 4) + k (2 x + y – z + 5) = 0    ...(3)
    i.e. (2 k + 1) x + (k + 2) y + (– k + 3) z + (5 k – 4) = 0
    Direction ratios of the its normal are 2 k + 1, k + 2, – k + 3.
    Again consider the plane
                            straight r with rightwards arrow on top. space open parentheses 5 space straight i with bar on top space plus 3 space straight j with hat on top space minus space 6 space straight k with hat on top close parentheses space plus space 8 space equals space 0
    or              open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space. space open parentheses 5 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 6 space straight k with hat on top close parentheses space plus space 8 space space equals 0
    or              5 straight x plus 3 straight y minus 6 straight z plus 8 space equals space 0                                          ...(4)

    Direction ratios of its normal are 5, 3, -6
    Since plane (3) is perpendicular to plane (4)
    ∴ 5 (2 k + 1) + 3 (k + 2) + (–6) (– k + 3) = 0
    ∴ 10 k + 5 + 3 k + 6 + 6 k – 18 = 0
    therefore space space space space space space 19 space straight k space equals space 7 space space space space space space space space rightwards double arrow space space space space straight k space equals space 7 over 19
    Putting straight k space equals space 7 over 19 space in space left parenthesis 3 right parenthesis comma space we space get comma
                    left parenthesis straight x plus 2 straight y plus 3 straight z minus 4 right parenthesis plus 7 over 19 left parenthesis 2 straight x plus straight y minus straight z plus 5 right parenthesis space equals space 0
    or 19 (x + 2y + 3z – 4) + 7 (2 x + y – z + 5) = 0
    or 19x+ 38y + 57z – 76 + 14x + 7y – 7z + 35 = 0
    or 33x + 45y + 50z – 41 = 0
    which is required equation of plane.

    Question 206
    CBSEENMA12033424

    Find the equation of plane passing through the line of intersection of the planes 2x – y = 0 and 3z – y = 0 and perpendicular to the plane 4x + 5y – 3Z = 8.

    Solution

    The equation of any plane through the line of intersection of he planes 2 x – y = 0 and 3 z – y = 0 or y – 3 z = 0 is
    (2 x – y) + k (y – 3 z) = 0    ...(1)
    or 2x – y + ky – 3 k z = 0
    or 2x + (k – 1) y – 3 k z = 0
    ∴ this plane is perpendicular to the plane 4 x + 5 y – 3 z = 8.
    ∴ (2) (4) + (k – 1) (5) + (–3 k) (– 3) = 0    [∴ aa2 + bb2 + c1 c2 = 0]
    ∴ 8 + 5 k – 5 + 9 k = 0 or 14 k = –3
    therefore space space space space straight k space equals space minus 3 over 14
    Putting this value of k in (1),  we get left parenthesis 2 straight x minus straight y right parenthesis space minus space 3 over 14 left parenthesis straight y minus 3 straight z right parenthesis space equals 0
    or 14 (2 x – y) – 3 (y – 3 z) = 0
    or  28 x – 14 y – 3 y + 9 z =0
    or    28 x – 17 y + 9 z = 0
    which is the required equation of the plane.


     

    Question 207
    CBSEENMA12033425

    Find the equation of the plane through the line of intersection of the planes x + y + z  = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0.

    Solution

    The equation of any plane through the line of intersection of the planes
    x + y + z – 1 = 0 and 2x + 3 y + 4 z – 5 = 0 is
    (x + y + z – 1) + k (2 x + 3 y + 4 z – 5) = 0    ...(1)
    or (2 k + 1) x + (3 k + 1) y + (4 k + 1) z – (1 + 5 k) = 0
    ∴ this plane is perpendicular to the plane x – y + z = 0
    ∴ (2 k + 1) (1) + (3 k + 1) (– 1) + (4 k + 1) (1) = 0
    ∴ 2 k + 1 – 3 k – 1 + 4 k + 1= 0
    therefore space space space space space 3 space straight k space equals space minus 1 space space space or space space space straight k space equals negative 1 third
    Putting straight k space equals space minus 1 third space in space left parenthesis 1 right parenthesis comma space we space get comma
      (x + y  + z - 1) - 1 third left parenthesis 2 straight x plus 3 straight y plus 4 straight z minus 5 right parenthesis space space equals 0
    or 3 (x + z –1) – (2 x + 3 y + 4 z – 5) = 0
    or 3 x + 3 y + 3 z – 3 – 2 x – 3 y – 4 z + 5= 0
    or x – z + 2 = 0
    which is required equation of plane.

    Question 208
    CBSEENMA12033426

    Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.

    Solution

    Any plane through the line of intersection of planes
    x + 2 y + 3 z – 4 = 0
    and 2 x + y – z + 5 = 0 is
    (x + 2 y + 3 z – 4) + k (2 x + y – z + 5) = 0    ...(1)
    i.e. (2 k + 1) x + (k + 2) y + (– k + 3) z + (5 k – 4) = 0
    Direction ratios of its normal are 2 k + 1, k + 2, – k + 3
    Again consider the plane
    5 x + 3 y + 6 z + 8 = 0    ...(2)
    Direction ratios of its normal are 5, 3, 6
    Since plane (1) is perpendicular to plane (2)
    ∴ 5 (2 k + 1) + 3 (k + 2) + 6 (– k + 3) = 0
    ∴ 10 k + 5 + 3 k + 6 – 6 k + 18 = 0
    therefore space space space space space space space 7 space straight k space equals space minus 29 space space space or space space space straight k space equals space minus 29 over 7
    Putting straight k space equals negative 29 over 7 space in space left parenthesis 1 right parenthesis comma space we space get
                   left parenthesis straight x plus 2 straight y plus 3 straight z minus 4 right parenthesis space minus space 29 over 7 left parenthesis 2 straight x plus straight y minus straight z plus 5 right parenthesis space equals space 0
    or 7 (x + 2 y + 3 z – 4) – 29 (2 x + y – z + 5) = 0
    or 7 x + 14 y + 21 z – 28 – 58 x – 29 y + 29 z – 145 = 0
    or  – 51 x –15 y + 50 z – 173 = 0
    or  51 x + 15 y – 50 z + 173 =0
    which is required equation of plane.

    Question 209
    CBSEENMA12033427

    Find the equation of the plane passing through the line of intersection of planes x + y – 2 z + 3 = 0 and 3 x – y – 2 z – 4 = 0 and perpendicular to the plane 2x + 3 y – z + 1 = 0. 

    Solution

    Any plane through the line of intersection of planes
    x + y – 2 z + 3 = 0 and 3 x – y – 2 z – 4 = 0 is
    (x + y – 2 z + 3) + k (3 x – y – 2 z – 4) = 0    ...(1)
    i.e. (3 k + 1) x + (– k + 1) y + (– 2 k – 2) z + (– 4 k + 3) = 0
    Direction ratios of its normal are 3 k + 1, – k + 1, – 2 k – 2.
    Again consider the plane
    2 x + 3 y – z + 1 = 0    ...(2)
    Direction ratios of its normal are 2, 3, – 1.
    Since plane (1) is perpendicular to plane (2)
    ∴  (2) (3 k + 1) + (3) (– k + 1) + (– 1) (–2 k –2) = 0
    ∴  6 k + 2 – 3 k + 3 + 2 k + 2 = 0
    therefore space space space space space space space space 5 straight k space equals space minus 7 space space space space space space rightwards double arrow space space space straight k space equals space minus 7 over 5
    Putting straight k space equals space minus 7 over 5 space in space left parenthesis 1 right parenthesis comma space we space get comma
                       open parentheses straight x plus straight y minus 2 straight z plus 3 close parentheses space minus space 7 over 5 left parenthesis 3 straight x minus straight y minus 2 straight z minus 4 right parenthesis space equals space 0
    or 5 (x + y – 2 z + 3) – 7 (3 x – y – 2 z – 4) = 0
    or 5x + 5 y – 10 z + 15 – 21 x + 7 y + 14 z + 28 = 0
    or – 16 x + 12 y + 4 z + 43 = 0
    or 16 x – 12 y – 4z – 43 = 0
    which is required equation of plane

    Question 210
    CBSEENMA12033428

    Find the equation of the plane passing through the points (0, –1, –1), (4, 5, 1) and  (3, 9, 4).

    Solution

    The equation of plane passing through (0, – 1,–1) is
    A (x – 0) + B(y + 1) + C(z + 1) = 0    ...(1)
    ∴ it passes through (4, 5, 1)
    ∴ A(4 – 0) + B(5 + 1) + C( 1 + 1) = 0
    ∴ 4A + 6B + 2C = 0 ⇒ 2A + 3B + C = 0    ...(2)
    Again plane (1) passes through (3, 9, 4)
    ∴ A(3 – 0) + B(9 + 1) + C(4 + 1) = 0
    ∴ 3A + 10B + 5C = 0    ....(3)
    Solving (2) and (3), we get,
                          fraction numerator straight A over denominator 15 minus 10 end fraction space equals space fraction numerator straight B over denominator 3 minus 10 end fraction equals fraction numerator straight C over denominator 20 minus 9 end fraction
    therefore space space space space space space space straight A over 5 space equals space fraction numerator straight B over denominator negative 7 end fraction space equals straight C over 11 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space straight A space equals space 5 space straight k comma space space space space straight B space equals space minus 7 space straight k comma space space space straight C space equals space 11 space straight k

    Putting values of A, B, C in (1), we get,
    5 k (x – 0) – 7 k (y + 1) + 11 k (z + 1) = 0
    or  5 x – 7 y – 7 + 11 z + 11 = 0
    or  5 x – 7 y + 11 z + 4 = 0
    which is required equation of plane.

    Question 211
    CBSEENMA12033429

    Find the equation of the plane through the points (0, – 1, 0), (2, 1, –1) and (1,1,1). 

    Solution

    The equation of plane passing through (0, – 1, 0) is
    A(x – 0) + B(y + 1) + C(z – 0) = 0    ...(1)
    ∴ it passes through (2, 1, – 1)
    ∴ A (2 – 0) + B(1 + 1) + C(– 1 – 0) = 0
    ∴ 2A + 2B – C = 0    ...(2)
    Again plane (1) passes through (1, 1, 1)
    ∴ A( 1 – 0) + B(1 + 1) + C(1 – 0) = 0
    ∴ A + 2B + C = 0    ....(3)
    Solving (2) and (3), we get,
                             fraction numerator straight A over denominator 2 plus 2 end fraction space equals fraction numerator straight B over denominator negative 1 minus 2 end fraction space equals space fraction numerator straight C over denominator 4 minus 2 end fraction
    therefore                straight A over 4 space equals space fraction numerator straight B over denominator negative 3 end fraction space equals space straight C over 2 equals straight k space left parenthesis say right parenthesis
    therefore space space space space space space space straight A space equals space 4 straight k comma space space space straight B space equals space minus 3 straight k comma space space space straight C space equals 2 space straight k
    Putting values of A, B, C in (1), we get,
    4 k (x – 0) – 3 k (y + 1) + 2 k (z – 0) = 0
    ∴ 4 x – 3 y + 2 z = 0
    ∴ 4 x – 3 y + 2 z = 3
    which is required equation of plane.

    Question 212
    CBSEENMA12033430

    Find the equation of the plane passing through the points (0. – 1, 0), (1, 1, 1) and (3, 3,0).

    Solution

    The equation of any plane through the points (0, – 1, 0) is
    a (x – 0) + b (y + 1) + c (z – 0) = 0    ...(1)
    ∴ it passes through (1, 1, 1)
    ∴ a + 2 b + c = 0        ...(2)
    Again plane passes through (3, 3, 0)
    ∴ 3 a + 4 b + 0 c = 0    ...(3)
    Solve (2) and (3), we get,
                    fraction numerator straight a over denominator 0 minus 4 end fraction space equals fraction numerator straight b over denominator 3 minus 0 end fraction space equals fraction numerator straight c over denominator 4 minus 6 end fraction
    therefore space space space space space space space fraction numerator straight a over denominator negative 4 end fraction space equals space straight b over 3 space equals space fraction numerator straight c over denominator negative 2 end fraction space space space space space space space space space space space space space space or space space space space space space straight a over 4 space equals space fraction numerator straight b over denominator negative 3 end fraction space equals space straight c over 2 space equals space straight k space space space space space left parenthesis say right parenthesis
    therefore space space space space space straight a space equals space 4 space straight k comma space space space space straight b space equals space minus 3 space straight k comma space space space space straight c space equals space 2 space straight k
    Putting values of a, b,c in (1), we get,
    4 k x – 3 k (y + 1) + 2 k z = 0
    or 4 x – 3 y + 2 z = 3
    which is required equation of plane.

    Question 213
    CBSEENMA12033431

    Find the equation of the plane through the three points (1, 1, 1), (1, – 1, 1) and (–7, – 3,–5).

    Solution

    The equation of any plane through (1, 1, 1) is
    a (x – 1) + b (y – 1) + c (z – 1) = 0    ...(1)
    ∴ it passes through (1, –1, 1)
    ∴ a(1 – 1) + b (– 1 – 1) + c(1 – 1) = 0
    ∴ 0 a – 26 + 0 c = 0    ...(2)
    Also (1) passes through (–7, –3, –5)
    ∴ a (–7–1) + b (–3–1) + c (–5 – 1) = 0
    ∴ – 8 a – 4 b – 6 c = 0
    ∴ 4 a + 2 b + 3 c = 0    ...(3)
    From (2) and (3), we get,
                        fraction numerator straight a over denominator negative 6 minus 0 end fraction space equals space fraction numerator straight b over denominator 0 minus 0 end fraction space equals space fraction numerator straight c over denominator 0 plus 8 end fraction
    therefore space space space space fraction numerator straight a over denominator negative 6 minus 0 end fraction space equals space fraction numerator straight b over denominator 0 minus 0 end fraction space equals space fraction numerator straight c over denominator 0 plus 8 end fraction
therefore space space space space space space space space fraction numerator straight a over denominator negative 6 end fraction space equals space straight b over 0 space equals space straight c over 8
therefore space space space space space straight a over 3 space equals space straight b over 0 space equals space fraction numerator straight c over denominator negative 4 end fraction space equals space straight k space left parenthesis say right parenthesis

    ∴ a = 3k, b = 0, c = – 4k
    Putting values of a, b, c in (1), we get,
    3k (x – 1) + 0 (y – 1) – 4k (z – 1) = 0
    or 3 (x – 1) – 4(z – 1) = 0    or 3 x – 3 – 4z + 4 = 0
    or 3x – 4 z + 1 = 0
    which is required equation of plane.

    Question 214
    CBSEENMA12033432

    Find the vector equation of the plane passing through the point A(2, 2, –1), B(3, 4, 2) and C (7, 0, 6). Also find the cartesian equation of the plane.

    Solution

    Here, straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top comma space space space space straight b with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 2 space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space 7 space straight i with hat on top space plus space 6 space straight k with hat on top
    The vector equations of plane is
             open parentheses straight r with rightwards arrow on top space minus space straight a with rightwards arrow on top close parentheses. space space space left parenthesis straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top right parenthesis space cross times space left parenthesis straight c with rightwards arrow on top space minus space straight a with rightwards arrow on top right parenthesis space equals space 0
    or          open square brackets straight r with rightwards arrow on top space minus space left parenthesis 2 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top right parenthesis close square brackets. space space open square brackets left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space cross times left parenthesis 5 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 7 space straight k with hat on top right parenthesis close square brackets space equals space 0
    The Cartesian equation of plane is
                    open vertical bar table row cell straight x minus 2 end cell cell straight y minus 2 end cell cell straight z plus 1 end cell row 1 2 3 row 5 cell negative 2 end cell 7 end table close vertical bar space equals space 0
    or      left parenthesis straight x minus 2 right parenthesis space open vertical bar table row 2 3 row cell negative 2 end cell 7 end table close vertical bar space minus space left parenthesis straight y minus 2 right parenthesis space open vertical bar table row 1 3 row 5 7 end table close vertical bar space plus space left parenthesis straight z plus 1 right parenthesis space open vertical bar table row 1 2 row 5 cell negative 2 end cell end table close vertical bar space equals space 0

    or    (or – 2) (14 + 6) – (y – 2) (7 – 15) + (z + 1) (–2 – 10) = 0
    or  20 (x – 2) + 8 (y – 2) – 12 (z + 1) = 0
    or 5 (x – 2) + 2 (y – 2) – 3 (z + 1) = 0
    or 5 x – 10 + 2y – 4 – 3 z – 3 = 0
    or 5 x + 2 y – 3 z – 17 = 0

    Question 215
    CBSEENMA12033433

    Find the vector equations of the plane passing through the points R(2, 5, –3), S(– 2, – 3, 5) and T(5, 3, – 3).

    Solution

    Here,   straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 3 space straight k with hat on top comma space space straight b with rightwards arrow on top space equals space minus 2 space straight i with hat on top space minus space 3 space straight j with hat on top space minus space 5 space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space 3 space straight k with hat on top
    where straight a with rightwards arrow on top comma space straight b with rightwards arrow on top comma space straight c with rightwards arrow on top are position vectors  of R, S, T respectively.
    The vector equation of plane is
                   open parentheses straight r with rightwards arrow on top space minus space straight a with rightwards arrow on top close parentheses space. space open parentheses straight b with rightwards arrow on top space minus space straight a with rightwards arrow on top close parentheses space cross times space left parenthesis straight c with rightwards arrow on top space minus space stack straight a right parenthesis with rightwards arrow on top space equals space 0
    or         open square brackets straight r with rightwards arrow on top space minus space left parenthesis 2 space straight i with hat on top space plus space 5 space straight j with hat on top space minus space 3 space straight k with hat on top right parenthesis close square brackets. space space space open square brackets left parenthesis negative 4 space straight i with hat on top space minus space 8 space straight j with hat on top space minus space 2 space straight k with hat on top space right parenthesis cross times space left parenthesis 3 space straight i with hat on top space minus space space 2 space straight j with hat on top right parenthesis close square brackets space equals space 0

    Question 216
    CBSEENMA12033434

    Find the equations of the planes that passes through three points:
    (1, 1,–1), (6, 4, –5),(–4, –2, 3)

    Solution
    The equation of line through (1, 1, –1), (6, 4, – 5) is
                fraction numerator straight x minus 1 over denominator 6 minus 1 end fraction space equals space fraction numerator straight y minus 1 over denominator 4 minus 1 end fraction space equals space fraction numerator straight z plus 1 over denominator negative 5 plus 1 end fraction
    or            fraction numerator straight x minus 1 over denominator 5 end fraction space equals space fraction numerator straight y minus 1 over denominator 3 end fraction space equals space fraction numerator straight z plus 1 over denominator negative 4 end fraction
    The point (– 4, –2, 3) will lie on this line
    if  fraction numerator negative 4 minus 1 over denominator 5 end fraction space equals space fraction numerator negative 2 minus 1 over denominator 3 end fraction space equals space fraction numerator 3 plus 1 over denominator negative 4 end fraction
    i.e. if –1 = –1 = –1, which is true
    ∴ given points (1, 1, –1), (6, 4, – 5), (– 4, – 2, 3) are collinear.
    ∴ infinite number of planes pass through the given points.
    Question 217
    CBSEENMA12033435

    Find the equations of the planes that passes through three points:
    (1, 1, 0),  (1, 2, 1), (–2, 2, –1)

    Solution

    The given points are (1,1, 0), (1, 2,1), (–2, 2, –1).
    These points are not collinear.
    The equation of plane passing through these points is
                   open vertical bar table row cell straight x minus 1 end cell cell straight y minus 1 end cell cell straight z minus 0 end cell row cell 1 minus 1 end cell cell 2 minus 1 end cell cell 1 minus 0 end cell row cell negative 2 minus 1 end cell cell 2 minus 1 end cell cell negative 1 minus 0 end cell end table close vertical bar space equals 0
    or  open vertical bar table row cell straight x minus 1 end cell cell straight y minus 1 end cell straight z row 0 1 1 row cell negative 3 end cell 1 cell negative 1 end cell end table close vertical bar space equals space 0
       or space space open parentheses straight x minus 1 close parentheses space space open vertical bar table row 1 1 row 1 cell negative 1 end cell end table close vertical bar space minus space left parenthesis straight y minus 1 right parenthesis space open vertical bar table row 0 1 row cell negative 3 end cell cell negative 1 end cell end table close vertical bar space plus space straight z space open vertical bar table row 0 1 row cell negative 3 end cell 1 end table close vertical bar space equals space 0
or space space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis negative 1 minus 1 right parenthesis space minus space left parenthesis straight y minus 1 right parenthesis space left parenthesis 0 plus 3 right parenthesis space plus space straight z space left parenthesis 0 plus 3 right parenthesis space equals space 0
or space space minus 2 straight x plus 2 minus 3 straight y plus 3 plus space 3 straight z space equals space 0 space space space space space or space space space 2 straight x plus 3 straight y minus 3 straight z space equals space 5

    Question 218
    CBSEENMA12033436

    If from a point P (a, b, c) perpendiculars PA and PB are drawn to yz and zx-planes, then find the vector equation of the plane OAB.

    Solution

    Point P is (a, b, c)
    PA ⊥ y z-plane and PB ⊥ z x-plane.
    ∴ A is (0, b, c) and B is (a, 0, c)
    We are to find the equation of plane through (0, 0, 0), (0, b, c) and (a, 0, c).
    The equation of plane through (0, 0, 0) is
    λ (x – 0) + μ (y – 0) + v (z – 0) = 0
    ∴ λx + μ y + v z = 0    ...(1)
    ∴ it passes through (0, b, c) and (a, 0, c)
    ∴ 0 λ + b μ + c v = 0
    and  a λ + 0 μ + c v = 0
    Solving these, we get,
                           fraction numerator straight lambda over denominator bc minus 0 end fraction space equals fraction numerator straight mu over denominator straight c space straight a minus 0 end fraction space equals space fraction numerator straight v over denominator 0 minus ab end fraction
    therefore space space space straight lambda over bc space equals space straight mu over ca space equals space fraction numerator straight v over denominator negative ab end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space space space straight lambda space equals space straight k space straight b space straight c comma space space space straight mu space equals space straight k space straight c space straight a comma space space space straight v space equals space minus space straight k space straight a space straight b

    Putting values of λ, μ,v in (1), we get,
    k b c x + k c a y – k a b z = 0
    or  straight x over straight a plus straight y over straight b minus straight z over straight c space equals space 0 comma space which space is space required space of space plane. space

    Question 219
    CBSEENMA12033437

    Find the equation of plane through the points (2, 2, 1), (9, 3, 6), and perpendicular to the plane 2x + 6y + 6z = 9.

    Solution

    The equation of any plane through (2, 2, 1) is
    a (x – 2) + b (y – 2) + c (z – 1) = 0    ...(1)
    ∴ it passes through (9, 3, 6)
    ∴ a (9 – 2) b (3 – 2) + c (6 – 1) = 0
    ∴ 7 a + b + 5 c = 0    ....(2)
    Also plane (1) is perpendicular to the plane
    2  x + 6 y + 6 z = 9
    ∴ a (2) + b (6) + c (6) = 0    [∴ a1 a2 + b1 b2 + c1 c2 = 0]
    ∴ 2 a + 6 b + 6 c = 0
    or    a + 3 b + 3 c = 0    ....(3)
    From (2) and (3), we get,
                      fraction numerator straight a over denominator 3 minus 15 end fraction space equals fraction numerator straight b over denominator 5 minus 21 end fraction space equals fraction numerator straight c over denominator 21 minus 1 end fraction
    therefore space space space space space fraction numerator straight a over denominator negative 12 end fraction space equals space fraction numerator straight b over denominator negative 16 end fraction space equals space straight c over 20
therefore space space space space straight a over 3 space equals space straight b over 4 space equals space fraction numerator straight c over denominator negative 5 end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space straight a space equals space 3 space straight k comma space space straight b space equals space 4 space straight k comma space space space straight c space equals space minus 5 space straight k

    Putting these values of a, b, c, in (1)
    3 k (x – 2) + 4 k (y – 2) + (– 5 k) (z – 1) = 0
    or 3 (x – 2) + 4 (y – 2) – 5 (z – 1) = 0
    or 3 x – 6 + 4 y – 8 – 5 z + 5 = 0
    or 3 x + 4 y – 5z – 9 = 0
    which is the required equation of plane.



    Question 220
    CBSEENMA12033438

    Find the equation of the plane through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z – 1 = 0. 

    Solution

    The equation of any plane through (2, 2, 1) is
    a (x – 2) + b (y – 2) + c (z – 1) = 0    ....(1)
    ∴ it passes through (9, 3, 6)
    ∴ a (9 – 2) + b (3 – 2) + c (6 – 1) = 0
    ∴ 7 a + b + 5 c = 0    ...(2)
    Also plane (1) is perpendicular to the plane 2 x + 6 y + 6 z = 9
    ∴ a (2) + b (6) + c (6) = 0    [∴ a1 a2 + b1 b2 + c1 c2 = 0]
    ∴ 2 a + 6 b + 6 c = 0
    ⇒    a + 3 b + 3 c = 0    ....(3)
    From (2) and (3), we get, fraction numerator straight a over denominator 3 minus 15 end fraction space equals space fraction numerator straight b over denominator 5 minus 21 end fraction space equals space fraction numerator straight c over denominator 21 minus 1 end fraction
    therefore         fraction numerator straight a over denominator negative 12 end fraction space equals fraction numerator straight b over denominator negative 16 end fraction space equals space straight c over 20 space space space space space space rightwards double arrow space space space space space straight a over 3 space equals space straight b over 4 space equals space fraction numerator straight c over denominator negative 5 end fraction space equals space straight k space left parenthesis say right parenthesis

    ∴ a = 3 k, b = 4 k, c = 5 k
    Putting these values of a , b, c, in (1),
    3 k (x – 2) + 4 k (y – 2) + (– 5 k) (z – 1) – 0
    or 3 (x – 2) + 4 (y – 2) – 5 (z – 1) = 0
    or    3 x – 6 + 4 y – 8 – 5 z + 5 = 0
    or    3 x + 4 y – 5 z – 9 = 0
    which is the required equation of plane.

    Question 221
    CBSEENMA12033439

    Find the equation of the plane through the points (1, –1, 2) (2, –2, 2) and perpendicular to the plane 6 x – 2 y + 2 z = 9. 

    Solution

    The equation of any plane through (1, – 1, 2) is
    a (x – 1) + b (y + 1) + c (z – 2) = 0    ....(1)
    ∴ it passes through (2, – 2, 2)
    ∴ a (2 – 1) + b (– 2 + 1) + c (2 – 2) = 0
    ∴ a – b + 0 c = 0    ....(2)
    Also plane (1) is perpendicular to the plane 6 x – 2 y + 2 c = 9
    ∴ 6 a – 2 b + 2 c = 0    ⇒ 3 a – b + c = 0    ....(3)
    From (2) and (3), we get,
    fraction numerator straight a over denominator plus 1 plus 0 end fraction space equals space fraction numerator straight b over denominator 0 minus 1 end fraction space equals space fraction numerator straight c over denominator negative 1 plus 3 end fraction space space space space space space rightwards double arrow space space space space space straight a over 1 space equals space straight b over 2 space equals space fraction numerator straight c over denominator negative 2 end fraction space equals space straight k space left parenthesis say right parenthesis

    ∴ a = k, b = k, c – 2 k
    Putting these values of a, b, c in (1), we get,
    k(x – 1) + k (y + 1) – 2 k (z – 2) = 0
    or x – 1 + y + 1 – 2 z + 4 = 0
    or x + y – 2 z + 4 = 0,
    which is required equation of the plane.

    Question 222
    CBSEENMA12033440

    Find the equation of the plane passing through the points (2, 3, – 4), (1, –1, 3) and parallel to x-axis.

    Solution

    The equation of plane through (2, 3, - 4) is
    A (x – 2) + B (y – 3) + C (z + 4) = 0    ...(1)
    ∴ it passes through (1, –1, 3)
    ∴ A (1 – 2) + B (–1–3) + C (3 + 4) = 0
    ∴ – A– 4B + 7C = 0
    ∴ A + 4B – 7C = 0    ...(2)
    Now plane (1) is parallel to x-axis.
    ∴ normal to the plane (1), with direction ratios A, B, C is perpendicular to x-axis with direction ratios 1, 0, 0.
    ∴ A (1) + B (0) + C (0) = 0
    ∴ A + 0B + 0C = 0    ...(3)
    From (2) and (3), we get,
                           fraction numerator straight A over denominator 0 minus 0 end fraction space equals space fraction numerator straight B over denominator 7 minus 0 end fraction space equals space fraction numerator straight C over denominator 0 minus 4 end fraction
    therefore space space space space space space space space space space space space space space straight A over 0 space equals fraction numerator straight B over denominator negative 7 end fraction space equals space fraction numerator straight C over denominator negative 4 end fraction
therefore space space space space space space space space space space space space space straight A over 0 space equals space straight B over 7 space equals space straight C over 4 space space equals space straight k space space left parenthesis say right parenthesis
therefore space space space space space space space space space space space space space straight A space equals space 0 comma space space space straight B space equals space 7 straight k comma space space straight C space equals space 4 straight k
    Putting values of A, B, C in (1), we get,
    0 (x – 2) + 7k (y – 3) – 4k (z + 4) = 0
    or 7 (y – 3) + 4 (z + 4) = 0
    or 7 y – 21 + 4z + 16 = 0
    or 7 y + 4 z – 5 = 0,
    which is required equation of plane.

    Question 223
    CBSEENMA12033441

    Find the equation of the plane passing through the points (3, 4, 1), (0, 1, 0) and parallel to the line fraction numerator straight x plus 3 over denominator 2 end fraction space equals fraction numerator straight y minus 3 over denominator 7 end fraction space equals space fraction numerator straight z minus 2 over denominator 5 end fraction.

    Solution

    The equation of plane through (3, 4, 1) is
    A(x – 3) + B(y – 4) + C(z – 1) = 0    ...(1)
    Since it passes through (0, 1, 0)
    ∴ A(0 – 3) + B(1 – 4) + C(0 – 1) = 0
    or –3A –3B –C = 0
    ∴ 3A + 3B + C = 0    ..... (2)
    The equation of line is
    fraction numerator straight x plus 3 over denominator 2 end fraction space equals fraction numerator straight y minus 3 over denominator 7 end fraction space equals space fraction numerator straight z minus 2 over denominator 5 end fraction
    Its direction ratios are 2, 7, 5
    Since the line is parallel to plane (1) whose normal has direction ratios A, B, C.
    ∴ normal to plane (1) is perpendicular to line.
    ∴ 2A + 7B + 5C = 0    ...(3)
    From (2) and (3), we get,
                     fraction numerator straight A over denominator 15 minus 7 end fraction space equals space fraction numerator straight B over denominator 2 minus 15 end fraction space equals fraction numerator straight C over denominator 21 minus 6 end fraction
    therefore space space space space space space space space space space space space straight A over 8 space equals fraction numerator straight B over denominator negative 13 end fraction space equals space straight C over 15 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space space space space space straight A space equals space 8 space straight k comma space space space space straight B space equals space minus 13 space straight k comma space space space straight C space equals space 15 space straight k

    Putting these values of A, B, C in (1), we get,
    8 k (x – 3) – 13 k (y – 4) + 15 k (z – 1) = 0
    or 8 (x – 3) – 13(y – 4) + 15 (z – 1) = 0
    or 8x – 24 – 13 y + 52 + 15 z – 15 = 0
    or 8 x – 13 y + 15 z + 13 = 0,
    which is required equation of plane.

    Question 224
    CBSEENMA12033442

    Find the equation of the plane which passes through the points (0, 0, 0) and (3, –1, 2) and is parallel to the line fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 4 end fraction space equals space fraction numerator straight z plus 1 over denominator 7 end fraction.

    Solution

    The equation of any plane through (0, 0, 0) is
    A (x – 0) + B (y – 0) + C (z – 0) = 0
    or A x + B y + C z = 0    ...(1)
    ∴ it passes through (3, –1, 2)
    ∴ 3A – B + 2C = 0    ...(2)
    Since plane (1) is parallel to the line fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative 4 end fraction space equals space fraction numerator straight z plus 1 over denominator 7 end fraction.

    ∴ normal to the plane with direction ratios A, B, C is perpendicular to the line with direction ratios 1, – 4,  7.
    ∴ A (1) + B (– 4) + C(7) = 0     [∴ aa2 +bb2 +cc= 0]
    ∴ A – 4B + 7C = 0    ...(3)
    Solving (2) and (3), we get,
                        fraction numerator straight A over denominator negative 7 plus 8 end fraction space equals space fraction numerator straight B over denominator 2 minus 21 end fraction space equals space fraction numerator straight C over denominator negative 12 plus 1 end fraction
    therefore space space space space straight A over 1 space equals space fraction numerator straight B over denominator negative 19 end fraction space equals space fraction numerator straight C over denominator negative 11 end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space straight A space equals space straight k comma space space space straight B space equals space minus 19 space straight k comma space space space straight C space equals space minus 11 space straight k
    Putting values of A, B, C in (1), we get,
    k x – 19 k y – 11 k z = 0
    or x – 19 y – 11 z = 0
    which is required equation of plane.

    Question 225
    CBSEENMA12033443

    Find the equation of the plane passing through the points (2, 1, 0), (3, 2, 2) and parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 3 over denominator 1 end fraction.

    Solution

    The equation of any plane through (2, 1, 0) is
    A(x – 2) + B(– 1) + C(z – 0) = 0    ...(1)
    ∴ it passes through (3, 2, 2)
    ∴ A(3 – 2) + B(2 – 1) + C(2 – 0) = 0
    ∴ A + B + 2C = 0    ...(2)
    Since plane (1) is parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 3 over denominator 1 end fraction
    ∴ normal to the plane with direction ratios A, B, C is perpendicular to the line with direction ratios 2, 3, 1.
    ∴  (2) (A) + (3) (B) + (1) (C) = 0
    ∴  2A + 3B + C = 0    ...(3)
    Solving (2) and (3), we get,
                            fraction numerator straight A over denominator 1 minus 6 end fraction space equals space fraction numerator straight B over denominator 4 minus 1 end fraction space equals space fraction numerator straight C over denominator 3 minus 2 end fraction
    <pre>uncaught exception: <b>file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/6b/35/db83dae566e634fd4904b1e07035.ini): failed to open stream: Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php at line #12file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/6b/35/db83dae566e634fd4904b1e07035.ini): failed to open stream: Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php line 12<br />#0 [internal function]: _hx_error_handler(2, 'file_put_conten...', '/home/config_ad...', 12, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php(12): file_put_contents('/home/config_ad...', 'mml=<math xmlns...')
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(48): sys_io_File::saveContent('/home/config_ad...', 'mml=<math xmlns...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(112): com_wiris_util_sys_Store->write('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#6 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#7 {main}</pre>
    ∴ A = 5 k, B = – 3 k, C = – k
    Putting these values of A, B, C in (1), we get,
    5 k (x – 2) – 3 k (y – 1) – k (z – 0) = 0
    or 5 (x – 2) – 3(y – 1) – z = 0
    or 5 x – 10 – 3 y + 3 – z = 0
    or 5 x – 3 y – z – 7 = 0
    which is required equation of plane.

     

    Question 226
    CBSEENMA12033444

    Find the equation of the plane passing through (1, 1, – 1) and perpendicular to planes x + 2 y + 3 z – 7 = 0, 2 x –3 y + 4 z = 0. 

    Solution

    The equation of the plane through (1, 1, – 1) is
    a (x – 1) + b (y – 1) + c (z + 1) = 0    ...(1)
    ∴ it is perp. to the planes
    x + 2 y + 3 z = 7 and 2 x – 3 y + 4 z = 0
    ∴ a + 2 b + 3 c = 0    ...(2)
    and 2 a – 3 b + 4 c = 0    ...(3)
    solving (2) and (3), we get
    fraction numerator straight a over denominator 8 plus 9 end fraction space equals space fraction numerator straight b over denominator 6 minus 4 end fraction space equals space fraction numerator straight c over denominator negative 3 minus 4 end fraction space space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight a over 17 space equals straight b over 2 space equals space fraction numerator straight c over denominator negative 7 end fraction space equals space straight k space left parenthesis say right parenthesis
    ∴  a = 17 k, b = 2 k, c = –7 k
    Putting these values of a, b, c in (1), we get,
    17 k (x – 1) + 2 k (y – 1) –7 k (z + 1) = 0
    or 17 (x – 1) + 2(y – 1) –7(z + 1) = 0
    or 17x – 17 + 2y – 2 – 7 z – 7 = 0
    or 17 x + 2 y – 7 z – 26 = 0, which is required equation of plane.

    Question 227
    CBSEENMA12033445

    Find the equation of the plane passing through the point (–1, –1, 2) and perpendicular to the planes 3x + 2 y – 3 z = 1 and 5 x – 4 y + z = 5. 

    Solution

    The equation of any plane through (– 1, – 1, 2) is
    a (x + 1) + b (y + 1) + c (z – 2) = 0    ....(1)
    ∴ it is perpendicular to the planes
    3 x + 2 y – 3 z = 1 and 5 x – 4 y + z = 5
    ∴ 3 a + 2 b – 3 c = 0    ....(2)
    and 5a – 4 b + c = 0    ...(3)
    Solving (2) and (3), we get,
                                 fraction numerator straight a over denominator 2 minus 12 end fraction space equals space fraction numerator straight b over denominator negative 15 minus 3 end fraction space equals space fraction numerator straight c over denominator negative 12 minus 10 end fraction
    therefore space space space space space fraction numerator straight a over denominator negative 10 end fraction space equals space fraction numerator straight b over denominator negative 18 end fraction space equals space fraction numerator straight c over denominator negative 22 end fraction
therefore space space space space space space space space space space straight a over 5 space equals space straight b over 9 space equals space fraction numerator straight c over denominator negative 22 end fraction
therefore space space space space space space space space space space space space space space straight a space equals space 5 space straight k comma space space space straight b space equals space 9 space straight k comma space space space straight c space equals space 11 space straight k

    Putting values of a, b, c in (1), we get,
    5 k (x + 1) + 9 k (y + 1) + 11 k (z – 2) = 0
    or 5 (x + 1) + 9 (y + 1) + 11 (z – 2) = 0
    ∴ 5x + 9 y + 11 z – 8 = 0 which is required equation of plane.


    Question 228
    CBSEENMA12033446

    Find the equation of the plane passing through the point (–1, –1, 2) and perpendicular to the planes 2x + 3 y – 2 z = 5 and x + 2 y – 3 z = 8.

    Solution

    The equation of any plane through (1, – 1, 2) is
    a(x – 1) + b (y + 1) + c (z – 2) = 0    ...(1)
    ∴ it is perpendicular to the planes
    2x + 3 y – 2 z = 5 and x + 2 y – 3 z = 8
    ∴ 2 a + 3 b – 2 c = 0    ...(2)
    and a + 2 b – 3 c = 0    ...(3)
    Solving (2) and (3), we get,
                     fraction numerator straight a over denominator negative 9 plus 4 end fraction space equals space fraction numerator straight b over denominator negative 2 plus 6 end fraction space equals space fraction numerator straight c over denominator 4 minus 3 end fraction space space space or space space space fraction numerator straight a over denominator negative 5 end fraction space equals space straight b over 4 space equals space straight c over 1
    therefore space space space space space space space space space straight a over 5 space equals space fraction numerator straight b over denominator negative 4 end fraction space equals space fraction numerator straight c over denominator negative 1 end fraction space equals space straight k comma space space say.
therefore space space space space space space space space space straight a space equals space 5 space straight k comma space space space straight b space equals space minus 4 space straight k comma space space straight c space equals space minus straight k
    Putting values of a, b, c in (1), we get,
    5 k (x – 1) – 4 k (y + 1) – k (z – 2) = 0
    or 5 (x – 1) – 4 (y + 1) – 1 (z – 2) = 0
    or 5 x – 5 – 4 y – 4 – z + 2 = 0
    or 5 x – 4 y – z – 7, which is required equation of plane.

    Question 229
    CBSEENMA12033447

    From a point P(1, 2, 4), a perpendicular is drawn on the plane 2x + y – 2z + 3 = 0. Find the equation, the length and coordinates of the foot of the perpendicular. 

    Solution

    The equation of plane is
    2x + y – 2z + 3 = 0    ...(1)
    Direction ratios of the normal to the plane are 2, 1, – 2.
    Let M be the foot of perpendicular from P(1, 2, 4) to the plane.
    Now PM is a straight line which passes through P(1, 2, 4) and has direction ratios 2, 1,–2.
    ∴  its equations are

    fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction space equals space fraction numerator straight z minus 4 over denominator negative 2 end fraction space equals space straight r space left parenthesis say right parenthesis
    Any point M on line is. (2 r + 1, r + 2, – 2 r + 4)
    ∴ M lies on plane (1)
    ∴ 2 (2 r + 1) + (r + 2) – 2 (–2 r + 4) + 3 = 0
    ∴ 4 r + 2 + r + 2 + 4 r – 8 + 3 = 0
    therefore space space space space space space space space space space space space space space space space space space space space 9 space straight r space equals space 1 space space space space space space space space space space space space space space space rightwards double arrow space space space space straight r space equals space 1 over 9
therefore space space space space straight M space is space space open parentheses 2 over 9 plus 1 comma space space 1 over 9 plus 2 comma space fraction numerator negative 2 over denominator 9 end fraction plus 4 close parentheses space space space straight i. straight e. space open parentheses 11 over 9 comma space 19 over 9 comma space 34 over 9 close parentheses
therefore space space space space foot space of space perpendicular space is space open parentheses 11 over 9 comma space 19 over 9 comma space 34 over 9 close parentheses.
    Length of perpendicular equals space fraction numerator open vertical bar 2 plus 2 minus 8 plus 3 close vertical bar over denominator square root of 4 plus 1 plus 4 end root end fraction space equals space fraction numerator open vertical bar negative 1 close vertical bar over denominator square root of 9 end fraction space equals space 1 third space units. space

    Question 230
    CBSEENMA12033448

    Find the coordinates of the image of the point (1, 3, 4) in the plane 2x – y +z + 3 = 0.

    Solution

    The equation of plane is
    2x – y + z + 3 = 0    ...(1)
    Direction ratios of normal to the plane are 2,–1, 1.
    Let M be foot of perpendicular from P(l, 3, 4) to the plane.
    Now PM is a straight line which passes through P( 1. 3. 4) and has direction ratios as 2, – 1, 1
    ∴ its equation is

    fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 4 over denominator 1 end fraction space equals straight r space left parenthesis say right parenthesis
    Any point M on line is (2 r + 1, – r + 3, r + 4)
    ∴  M lies on plane (1)
    ∴ 2 (2 r + 1) – (– r + 3) + (r + 4) + 3 = 0
    ∴ 4r + 2 + r – 3 + r + 4 + 3 = 0.
    ∴  6r = –6 ⇒ r = –1
    ∴ M is (– 2 + 1, 1 + 3, – 1 + 4) i.e. (–1,4, 3)
    Let N (α, β,γ) be image of P in the plane (1) so that M is mid-point of PN.
    therefore space space space space space space space space space space space fraction numerator 1 plus straight alpha over denominator 2 end fraction space equals space minus 1 comma space space space space space space space space space fraction numerator 3 plus straight beta over denominator 2 end fraction space equals space 4 comma space space space space fraction numerator 4 plus straight gamma over denominator 2 end fraction space equals space 3
therefore space space space space space space space space space space space space space space 1 plus straight alpha space equals space minus 2 comma space space space space space 3 space plus space straight beta space equals space 8 comma space space space space 4 space plus straight gamma space equals space 6
therefore space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight alpha space equals space minus 3 comma space space space straight beta space equals space 5 comma space space space straight gamma space equals space 2
therefore space space space space space space space image space is space left parenthesis negative 3 comma space 5 comma space 2 right parenthesis.

    Question 231
    CBSEENMA12033449

    Find the image of the point (1, 3, 4) in the plane x – y + z = 5.

    Solution
    The equation of plane is x – y + z = 5          ...(1)

    From P (1, 3, 4) , draw PM ⊥ plane and produce it to P'such that M is mid-point of PP’ Then P' (α,β, γ) is image of P.
    Direction ratios of PM are 1, – 1, 1
    The equations of PM are
    fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 3 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 4 over denominator 1 end fraction
    Any point on it is M (r + 1, – r + 3, r + 4)
    ∵ M lies on plane (1)
    ∴  (r + 1)–(–r + 3)+.(r + 4) = 5,    ∴ r + 1 + r – 3 + r + 4 = 5
    ∴ 3r = 3    ⇒ r = 1
    ∴ M is (2, 2, 5)
    Since M is mid-point of PP'
    therefore space space space fraction numerator straight alpha plus 1 over denominator 2 end fraction space equals space 2 comma space space space space fraction numerator straight beta plus 3 over denominator 2 end fraction space equals space 2 comma space space space space fraction numerator straight gamma plus 4 over denominator 2 end fraction space equals space 5
therefore space space space space space straight alpha plus 1 space equals space 4 comma space space space space straight beta plus 3 space equals space 4 comma space space space space space straight gamma plus 4 space equals space space 10
therefore space space space space space space space straight alpha space equals space 3 comma space space space space space space straight beta space equals space 1 comma space space space space space straight gamma space equals space 6
therefore space space space space space straight P apostrophe space is space left parenthesis 3 comma space 1 comma space 6 right parenthesis comma space which space is space image space of space straight P space in space the space plane. space

    Question 232
    CBSEENMA12033450

    A variable plane passes through a fixed point (a, b, c) and meets the co– ordinate axes in A, B. C. Show that the locus of the point common to the planes through A. B, C parallel to the co-ordinate planes is straight a over straight x plus straight b over straight y plus straight c over straight z equals 1.

    Solution
    Let the equation of plane be straight x over straight alpha plus straight gamma over straight beta plus straight z over straight gamma space equals space 1                    ...(1)
    where OA = α, OB = β, OC = γ   ∵ plane (1) passes through (a, b, c)
    therefore space space space space space straight a over straight alpha plus straight b over straight beta plus straight c over straight gamma space equals 1                                                         ...(2)
    The equation of plane through A (α, 0, 0) parallel to yz-plane is
    x = α    ...(3)
    The equation of plane through B (β, 0, 0) parallel to zx-plane is
    y = β    ...(4)
    The equation of plane through C ( γ, 0, 0) parallel to xy-plane is
    z =γ        ...(5)
    To eliminate α, β, γ, we put the values from (3). (4), (5) in (2) and get
    straight a over straight x plus straight b over straight y plus straight c over straight z equals 1 which is required locus. 
    Question 233
    CBSEENMA12033451

    Establish by vector method the equation of the plane making intercepts a. b, c on the co-ordinate axes in the form of straight x over straight a plus straight y over straight b plus straight z over straight c space equals space 1.

    Solution
    Let the equation of plane be
           straight r with rightwards arrow on top. space straight n with rightwards arrow on top space equals space straight d                                ...(1)
    Let the plane meet the axes in A, B, C respectively such that OA = a, OB = b, OC = c
    A with position straight a space straight i with rightwards arrow on top lies on the plane (1)
    therefore space space space space straight a space space straight i with hat on top space. space straight n with hat on top space space equals space straight d space space space space space space space rightwards double arrow space space space space straight i with rightwards arrow on top. space straight n with rightwards arrow on top space equals space straight d over straight a                      ...(2)
    Similarly,    straight j with rightwards arrow on top. space straight n with rightwards arrow on top space equals space straight d over straight b                ...(3)
    and            straight k with rightwards arrow on top. space straight n with rightwards arrow on top space equals space straight d over straight c                 ...(4)
     Now (1) can be written as

                     open parentheses straight x space straight i with rightwards arrow on top space plus space straight y space straight j with rightwards arrow on top space plus space straight z space straight k with rightwards arrow on top close parentheses space. space straight n with rightwards arrow on top space equals space straight d
    or space space space straight x space straight i with rightwards arrow on top space. space straight n with rightwards arrow on top space plus space straight y space straight j with rightwards arrow on top space. space straight n with rightwards arrow on top space plus space straight z space straight k with rightwards arrow on top space. space straight n with rightwards arrow on top space equals space straight d
or space space straight x space open parentheses straight d over straight a close parentheses space plus space straight y open parentheses straight d over straight b close parentheses space plus space straight z space open parentheses straight d over straight c close parentheses space equals space straight d
or space space straight x over straight a plus straight y over straight b plus straight z over straight c space equals space 1
    which is required equation of plane x.
    Question 234
    CBSEENMA12033452

    The planes: 2x – y + 4 z = 5 and 5.x – 2.5 y + 10 z = 6 are

    • Perpendicular

    • Parallel

    • intersect y-axis
    • passes through open parentheses 0 comma space 0 comma space 5 over 4 close parentheses

    Solution

    B.

    Parallel

    The equations of given planes are
    2x – y + 4z = 5 and 5x –2.5y + 10z = 6
    Now,       2 over 5 space equals space fraction numerator negative 1 over denominator negative 2.5 end fraction space equals space 4 over 10
    rightwards double arrow space space space space space space space space space space 2 over 5 space equals space fraction numerator 1 over denominator begin display style 25 over 10 end style end fraction space equals 4 over 10 space space space rightwards double arrow space space space space 2 over 5 space equals space 2 over 5 space equals 2 over 5 space space space space space open square brackets because space space straight a subscript 1 over straight a subscript 2 equals straight b subscript 1 over straight b subscript 2 equals straight c subscript 1 over straight c subscript 2 close square brackets
    ∴ given planes are parallel

    Question 235
    CBSEENMA12033453

    Find the distance of the point (3, 4, 5) from the plane straight r with rightwards arrow on top. space left parenthesis 2 space straight i with hat on top space minus space 5 space straight j with hat on top plus space 3 space straight k with hat on top right parenthesis space equals 13

    Solution
    The equation of plane is
                   straight r with rightwards arrow on top. space left parenthesis 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space 13
    or space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space left parenthesis 2 space straight i with hat on top space minus space 5 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space equals space 13
or space space space 2 straight x minus 5 straight y plus 3 straight z space equals space 13
or space space space 2 straight x minus 5 straight y space plus space 3 straight z minus 13 space equals space 0
    Let p be the length of perpendicular from point (3, 4, 5) to the plane. 
    therefore space space space straight p space space equals space fraction numerator open vertical bar 2 space left parenthesis 3 right parenthesis space minus space 5 space left parenthesis 4 right parenthesis space plus space 3 space left parenthesis 5 right parenthesis space space minus space 13 close vertical bar over denominator square root of 4 plus 25 plus 9 end root end fraction space equals space fraction numerator open vertical bar 6 minus 20 plus 15 minus 13 close vertical bar over denominator square root of 38 end fraction space equals space fraction numerator 12 over denominator square root of 38 end fraction
    Question 236
    CBSEENMA12033454

    Find the distance from P (2, 1, – 1 ) to the plane x – 2 y + 4 z = 9.

    Solution
    The equation of plane is x – 2y + 4z - 9 = 0.
    Let p be the length of perpendicular from P (2, 1, – 1) to the plane.
    therefore space space space straight p space equals space fraction numerator open vertical bar 2 minus 2 space left parenthesis 1 right parenthesis space plus space 4 space left parenthesis negative 1 right parenthesis space minus space 9 close vertical bar over denominator square root of left parenthesis 1 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root end fraction space equals space fraction numerator open vertical bar 2 minus 2 minus 4 minus 9 close vertical bar over denominator square root of 1 plus 4 plus 16 end root end fraction space equals fraction numerator 13 over denominator square root of 21 end fraction
    Question 240
    CBSEENMA12033458

    In the following cases, find the distance of each of the given points from the corresponding given plane.
    Point                              Plane
    (–6, 0, 0)                        2x - 3y + 6z - 2 = 0

    Solution
    The equation of plane is
    2x – 3y + 6z –2 = 0
    Let p be length of perpendicular from (– 6, 0, 0) on plane.
    therefore space space space space space space space space space space space space space space space space space space straight p space space equals space fraction numerator open vertical bar 2 space left parenthesis negative 6 right parenthesis minus space 3 space left parenthesis 0 right parenthesis space plus space 6 space left parenthesis 0 right parenthesis space minus space 2 close vertical bar over denominator square root of left parenthesis 2 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 6 right parenthesis squared end root end fraction space equals space fraction numerator open vertical bar negative 12 minus 0 plus 0 minus 2 close vertical bar over denominator square root of 4 plus 9 plus 36 end root end fraction
                             fraction numerator equals space open vertical bar negative 14 close vertical bar over denominator square root of 49 end fraction space equals space 14 over 7 space equals space 2
    Question 241
    CBSEENMA12033459

    Find the distance between the point P(6, 5, 9) and the plane determined by the points A(3,–1, 2), B(5, 2,4) and C(–1,–1, 6).

    Solution
    The equation of plane through A(3, –1, 2), B(5, 2, 4), C(–1, –1, 6) is
                    open vertical bar table row cell straight x minus 3 end cell cell straight y plus 1 end cell cell straight z minus 2 end cell row cell 5 minus 3 end cell cell 2 plus 1 end cell cell 4 minus 2 end cell row cell negative 1 minus 3 end cell cell negative 1 plus 1 end cell cell 6 minus 2 end cell end table close vertical bar space equals space 0
    or       open vertical bar table row cell straight x minus 3 end cell cell straight y plus 1 end cell cell straight z minus 2 end cell row 2 3 2 row cell negative 4 end cell 0 4 end table close vertical bar space equals space 0
    or space space left parenthesis straight x minus 3 right parenthesis space open vertical bar table row 3 2 row 0 4 end table close vertical bar space minus space left parenthesis straight y plus 1 right parenthesis space open vertical bar table row 2 2 row cell negative 4 end cell 4 end table close vertical bar space plus space left parenthesis straight z minus 2 right parenthesis space open vertical bar table row 2 3 row cell negative 4 end cell 0 end table close vertical bar space equals space 0
or space space left parenthesis straight x minus 3 right parenthesis thin space left parenthesis 12 minus 0 right parenthesis space minus space left parenthesis straight y plus 1 right parenthesis space left parenthesis 8 plus 8 right parenthesis space plus space left parenthesis straight z minus 2 right parenthesis thin space left parenthesis 0 plus 12 right parenthesis space equals space 0
or space space 12 left parenthesis straight x minus 3 right parenthesis space minus space 16 space left parenthesis straight y plus 1 right parenthesis space plus 12 space left parenthesis straight z minus 2 right parenthesis space equals space 0
or space space 3 space left parenthesis straight x minus 3 right parenthesis space minus space 4 space left parenthesis straight y plus 1 right parenthesis space plus space 3 space left parenthesis straight z minus 2 right parenthesis space equals space 0
or space 3 straight x minus 9 space minus space 4 straight y space minus 4 space plus space 3 straight z space minus space 6 space equals space space 0
or space space 3 straight x minus 4 straight y plus 3 straight z minus 19 space equals space 0
    Let p be distance between P(6, 5, 9) and plane.
    therefore space space space space straight p space equals space fraction numerator 3 space left parenthesis 6 right parenthesis space minus space 4 space left parenthesis 5 right parenthesis space plus space 3 space left parenthesis 9 right parenthesis space minus space 19 over denominator square root of left parenthesis 3 right parenthesis squared plus left parenthesis negative 4 right parenthesis squared plus left parenthesis 3 right parenthesis squared end root end fraction space equals space fraction numerator 18 minus 20 plus 27 minus 19 over denominator square root of 9 plus 16 plus 9 end root end fraction
                equals space fraction numerator 6 over denominator square root of 34 end fraction space equals space fraction numerator 6 square root of 34 over denominator 34 end fraction space equals space fraction numerator 3 square root of 34 over denominator 17 end fraction
    Question 242
    CBSEENMA12033460

    Find the distance of the point (2, 3, 4) from the plane
    straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space minus space 6 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space equals space minus 11.

    Solution
    The equation of the plane is
                   straight r with rightwards arrow on top. space left parenthesis 3 space straight i with hat on top space minus space 6 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space equals space minus 11
    or space space left parenthesis straight x straight i with hat on top space plus space straight y straight j with hat on top space space plus space straight z straight k with hat on top right parenthesis. space space left parenthesis 3 straight i with hat on top space minus space 6 straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis equals space minus 11
or space space 3 straight x minus 6 straight y plus 2 straight z space equals space minus 11
or space space 3 straight x minus 6 straight y plus 2 straight z plus 11 space equals space 0
    Let p be the length of perpendicular from (2, 3,4) to the plane.
    therefore space space space space straight p space space equals space fraction numerator 3 left parenthesis 2 right parenthesis space minus space 6 left parenthesis 3 right parenthesis space plus space 2 left parenthesis 4 right parenthesis space plus space 11 over denominator square root of left parenthesis 3 right parenthesis squared space plus space left parenthesis negative 6 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root end fraction
space space space space space space space space space space space space equals space fraction numerator 6 minus 18 plus 8 plus 11 over denominator square root of 9 plus 36 plus 4 end root end fraction space equals space fraction numerator 7 over denominator square root of 49 end fraction space equals space 7 over 7 space equals space 1
    Question 243
    CBSEENMA12033461

    Find the distance of a point (2, 5, -3) from the plane straight r with rightwards arrow on top. space open parentheses 6 straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space equals space 4.

    Solution
    The equation of plane is straight r with rightwards arrow on top. space open parentheses 6 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space equals space 4
    or   open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space open parentheses 6 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space equals space 4
    or    6 straight x minus 3 straight y plus 2 straight z minus 4 space equals space 0
    Let p be the length of perpendicular from (2, 5, - 3) to the plane.
    therefore space space space space space space space space space straight p space equals space fraction numerator open vertical bar 6 space left parenthesis 2 right parenthesis space minus space 3 space left parenthesis 5 right parenthesis space plus space 2 space left parenthesis negative 3 right parenthesis space minus space 4 close vertical bar over denominator square root of left parenthesis 6 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root end fraction space equals space fraction numerator open vertical bar 12 minus 15 minus 6 minus 4 close vertical bar over denominator square root of 36 plus 9 plus 4 end root end fraction space equals fraction numerator open vertical bar negative 13 close vertical bar over denominator square root of 49 end fraction space equals space 13 over 7
    Question 244
    CBSEENMA12033462

    If the product of distances of the point (1,1,1) from the origin and the plane x – y + z + k = 0 be 5, then find the value of k.

    Solution
    Let d1 , d2 be the distances of the point (1, 1, 1) from the origin (0, 0, 0) and plane x – y + z + k = 0.
    therefore space space space space space space space straight d subscript 1 space equals space square root of left parenthesis 1 minus 0 right parenthesis squared plus left parenthesis 1 minus 0 right parenthesis squared plus left parenthesis 1 minus 0 right parenthesis squared end root space equals space square root of 1 plus 1 plus 1 end root space equals space square root of 3
and space space space straight d subscript 2 space equals space fraction numerator open vertical bar 1 minus 1 plus 1 plus straight k close vertical bar over denominator square root of 1 plus 1 plus 1 end root end fraction space equals space fraction numerator open vertical bar 1 plus straight k close vertical bar over denominator square root of 3 end fraction
    From the given condition,
                       straight d subscript 1 space straight d subscript 2 space equals space 5
    therefore space space space space square root of 3 space cross times fraction numerator open vertical bar 1 plus straight k close vertical bar over denominator square root of 3 end fraction space equals space 5 space space space space space space rightwards double arrow space space space space open vertical bar 1 plus straight k close vertical bar space equals space 5 space space space space space rightwards double arrow space space space space 1 plus straight k space equals space plus-or-minus 5
therefore space space space space space space straight k space equals space minus 6 comma space space 4.
    Question 245
    CBSEENMA12033463

    If the points (1, 1, p) and (– 3, 0, 1) be equidistant from the plane straight r with rightwards arrow on top. space left parenthesis 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 1 space 2 space straight k with hat on top right parenthesis space plus space 13 space equals space 0 comma then find value of p.

    Solution
    The equation of the plane is
                straight r with rightwards arrow on top. space left parenthesis 3 space straight i with hat on top plus space 4 space straight j with hat on top space minus space 12 space straight k with hat on top right parenthesis space plus 13 space equals 0
    or     open parentheses straight x straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space left parenthesis 3 space straight i with hat on top space plus space 4 space straight j with hat on top space minus space 12 space straight k with hat on top right parenthesis space plus 13 space equals space 0
    or     3 straight x plus 4 straight y minus 12 straight z plus 13 space equals space 0
    Since the points (1, 1,p) and (–3, 0, 1) are equidistant from this plane.
    therefore space space space space fraction numerator open vertical bar 3 plus 4 minus 12 straight p plus 13 close vertical bar over denominator square root of 9 plus 16 plus 144 end root end fraction space equals space fraction numerator open vertical bar negative 9 plus 0 minus 12 plus 13 close vertical bar over denominator square root of 9 plus 16 plus 44 end root end fraction
therefore space space space space open vertical bar 20 minus 12 space straight p close vertical bar space equals space open vertical bar negative 8 close vertical bar space space space space space space space space space space rightwards double arrow space space space space open vertical bar 20 space minus space 1 space 2 space straight p close vertical bar space equals space 8
rightwards double arrow space space space space space 20 minus 12 space straight p space equals space plus-or-minus 8 space space space space space space space space space space space space space space rightwards double arrow space space space space space minus 12 space straight p space equals space minus 12 comma space space minus 28
therefore space space space space space space space space space space space space space space straight p space equals space 1 comma space space 7 over 3.
    Question 246
    CBSEENMA12033464

    Find the angle between the line
    straight r with rightwards arrow on top space equals space left parenthesis 2 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis space plus space straight lambda space left parenthesis 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis and the plane
    straight r with rightwards arrow on top. space left parenthesis 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis space equals space 4.

    Solution
    The equation of line is
                          straight r with rightwards arrow on top space equals space left parenthesis 2 straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top right parenthesis space plus space straight lambda thin space left parenthesis 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    therefore space space space space space space space straight b with rightwards arrow on top space equals space 2 straight i with hat on top space minus space 3 straight j with hat on top space plus space 2 space straight k with hat on top
    The equation of plane is
          straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space 4
therefore space space space space space space space space space space space space space space space space space space space space space straight n with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top
    Let θ be angle between the line and plane.
      therefore space space space space space space sin space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space straight n with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar. space open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis negative 3 right parenthesis thin space left parenthesis negative 2 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 5 right parenthesis over denominator square root of 4 plus 9 plus 4 end root space square root of 9 plus 4 plus 25 end root end fraction
                        equals space fraction numerator 6 plus 6 plus 10 over denominator square root of 17 space square root of 38 end fraction space equals space fraction numerator 22 over denominator square root of 17 space square root of 38 end fraction
    therefore space space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses fraction numerator 22 over denominator square root of 17 space square root of 38 end fraction close parentheses.
    Question 247
    CBSEENMA12033465

    Find the angle between the line straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus 3 space straight j with hat on top space plus space 9 space straight k with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top right parenthesis and the plane straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 5

    Solution
    The equation of line is
               straight r with rightwards arrow on top space equals space 2 straight i with hat on top space plus space 3 straight j with hat on top space plus space 9 straight k with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space plus space 3 straight j with hat on top space plus space 4 straight k with hat on top right parenthesis
    therefore space space straight b with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top
    The equation of plane is
                    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 5
    therefore space space space straight n with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top
    Let θ be the angle between the line and plane
    therefore space space space space sin space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space straight n with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar space open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 4 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of 4 plus 9 plus 16 end root space square root of 1 plus 1 plus 1 end root end fraction
therefore space space sin space straight theta space equals space fraction numerator 9 over denominator square root of 29 space square root of 3 end fraction space equals space fraction numerator 3 square root of 3 over denominator square root of 29 end fraction space space space space space space rightwards double arrow space space space space space straight theta space equals sin to the power of negative 1 end exponent open parentheses fraction numerator 3 square root of 3 over denominator square root of 29 end fraction close parentheses
    Question 248
    CBSEENMA12033466

    Find the angle between the line straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space minus straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda open parentheses 3 space straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses and the plane straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 3

    Solution
    The equation of line is
                    straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space left parenthesis 3 straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    therefore space space space space space straight b with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top
    The equation of plane is
                   straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space space equals 3
    therefore space space space space space space straight n with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top
    Let θ be the angle between the line and plane
    therefore space space space sin space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space straight n with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar space open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of 9 plus 1 plus 4 end root space square root of 1 plus 1 plus 1 end root end fraction
therefore space space space space sin space straight theta space equals space fraction numerator 4 over denominator square root of 14 space square root of 3 end fraction space space equals space fraction numerator 4 over denominator square root of 42 end fraction space space space space space space rightwards double arrow space space space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses fraction numerator 4 over denominator square root of 42 end fraction close parentheses.
    Question 249
    CBSEENMA12033467

    Find the angle between the line straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space space plus space straight lambda space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses and the plane straight r with rightwards arrow on top. space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 4

    Solution
    The equation of line is
                        straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space space plus space straight lambda space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    therefore space space space space straight b with rightwards arrow on top space equals space straight i with hat on top space space minus space straight j with hat on top space plus space straight k with hat on top 
    The equation of plane is
                       straight r with rightwards arrow on top. space space left parenthesis 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 4
    therefore space space space space straight n with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top
    Let θ be the angle between the line and the plane
              sin space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space straight n with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar space open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator open parentheses straight i with hat on top space minus space straight j with hat on top plus space straight k with hat on top close parentheses space open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses over denominator square root of 1 plus 1 plus 1 end root space square root of 4 plus 1 plus 1 end root end fraction space equals space fraction numerator 2 plus 1 plus 1 over denominator square root of 3 space square root of 6 end fraction space equals space fraction numerator 4 over denominator 3 square root of 2 end fraction
therefore space space sin space straight theta space equals space fraction numerator 2 square root of 2 over denominator 3 end fraction
therefore space space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 square root of 2 over denominator 3 end fraction close parentheses.
    Question 250
    CBSEENMA12033468

    Find the angle between the line straight x over 4 space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 1 over denominator 6 end fraction and the plane x + 2y + 2 + 3 = 0

    Solution
    The equation of line is
                  straight x over 4 space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 1 over denominator 6 end fraction
    Its direction ratios are 4, 3, 6
    The equation of plane is
    x + 2y + z + 3 = 0
    ∴  direction ratios of the normal to the plane are 1,2, 1.
    Let θ be the angle between the line and plane
    therefore space space space space sin space straight theta space equals space fraction numerator left parenthesis 4 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 6 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of 16 plus 9 plus 36 end root space square root of 1 plus 4 plus 1 end root end fraction space equals space fraction numerator 4 plus 6 plus 6 over denominator square root of 61 space square root of 6 end fraction space equals space fraction numerator 16 over denominator square root of 366 end fraction
therefore space space space space space space space space straight theta space equals space sin to the power of negative 1 end exponent space open parentheses fraction numerator 16 over denominator square root of 366 end fraction close parentheses.
    Question 251
    CBSEENMA12033469

    Find the angle between the line fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 2 over denominator negative 1 end fraction space equals space fraction numerator straight z plus 1 over denominator 1 end fraction and the plane 2x – y + z= 1. 

    Solution
    The equation of line is
    fraction numerator straight x minus 1 over denominator 1 end fraction space space equals fraction numerator straight y minus 2 over denominator negative 1 end fraction space equals space fraction numerator straight z plus 1 over denominator 1 end fraction
    Its direction ratios are 1, – 1, 1
    The equation of plane is
    2x –y + z = 1
    ∴ direction ratios of the normal to the plane are 2, – 1, 1.
    Let θ be the angle between the line and plane.
    therefore space space space space sin space straight theta space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis negative 1 right parenthesis thin space plus space left parenthesis 1 right parenthesis thin space left parenthesis 1 right parenthesis over denominator square root of 1 plus 1 plus 1 end root space square root of 4 plus 1 plus 1 end root end fraction space equals space fraction numerator 2 plus 1 plus 1 over denominator square root of 3 space square root of 6 end fraction space equals space fraction numerator 4 over denominator square root of 18 end fraction
                     equals space fraction numerator 4 over denominator square root of 9 cross times 2 end root end fraction space equals space fraction numerator 4 over denominator 3 square root of 2 end fraction space equals space fraction numerator 2 square root of 2 over denominator 3 end fraction
    therefore space space space space space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 space square root of 2 over denominator 3 end fraction close parentheses
    Question 252
    CBSEENMA12033470

    Find the angle between the line fraction numerator straight x plus 1 over denominator 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 4 end fraction and the plane 2x + y – 3z + 4 = 0.

    Solution
    The equation of line is fraction numerator straight x plus 1 over denominator 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 4 end fraction
    Its direction ratios are 3, 2, 4.
    The equation of plane is 2x + y – 3z + 4 = 0
    ∴ direction ratios of the normal to the plane are 2, 1, –3.
    Let θ be the angle between the line and plane
              therefore space space space space space sin space straight theta space equals space fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 4 right parenthesis thin space left parenthesis negative 3 right parenthesis over denominator square root of 9 plus 4 plus 16 end root space square root of 4 plus 1 plus 9 end root end fraction space equals space fraction numerator 6 plus 2 minus 12 over denominator square root of 29 space square root of 14 end fraction space equals space fraction numerator negative 4 over denominator square root of 29 space square root of 14 end fraction
therefore space space space space space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses negative fraction numerator 4 over denominator square root of 29 space square root of 14 end fraction close parentheses.
    Question 253
    CBSEENMA12033471

    Find the angle between the lines fraction numerator straight x plus 1 over denominator 2 end fraction space equals space straight y over 3 space equals space fraction numerator straight z minus 3 over denominator 6 end fraction and the plane 10x + 2y – 11z = 3.

    Solution
    The equation of line is
             fraction numerator straight x plus 1 over denominator 2 end fraction space equals space straight y over 3 space equals space fraction numerator straight z minus 3 over denominator 6 end fraction
    Its direction ratios are 2, 3, 6.
    The equation of plane is
    10x + 2y – 11 z = 3
    ∴  direction ratios of the normal to the plane are 10, 2, –11.
    Let θ be the angle between the line and plane.
    therefore space space space sin space straight theta space equals space fraction numerator open vertical bar left parenthesis 2 right parenthesis thin space left parenthesis 10 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 6 right parenthesis thin space left parenthesis negative 11 right parenthesis close vertical bar over denominator square root of 4 plus 9 plus 36 end root space square root of 100 plus 4 plus 121 end root end fraction
space space space space space space space space space space space space space space space space space space equals space fraction numerator open vertical bar 20 plus 6 minus 66 close vertical bar over denominator square root of 49 space square root of 225 end fraction space equals space fraction numerator open vertical bar negative 40 close vertical bar over denominator 7 cross times 15 end fraction space equals fraction numerator 40 over denominator 7 cross times 15 end fraction
therefore space space space space space sin space straight theta space equals space 8 over 21 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses 8 over 21 close parentheses.
    Question 254
    CBSEENMA12033472

    Find the angle between the line fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction and the plane 3x + 4y + z + 5 = 0.

    Solution
    The equation of line is
    fraction numerator straight x minus 2 over denominator 3 end fraction space equals fraction numerator straight y plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction
    Its direction ratios are 3, – 1, 2.
    The equation of plane is 3.x + 4y + z + 5 = 0
    ∴  direction ratios of the normal to the plane are 3, 4, 1.
    Let θ be the angle between the line and the plane
    therefore space space sin space straight theta space equals space fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 3 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis thin space 1 right parenthesis over denominator square root of 9 plus 1 plus 4 end root space square root of 9 plus 16 plus 1 end root end fraction space equals space fraction numerator 7 over denominator square root of 14 space square root of 26 end fraction space equals space fraction numerator 7 over denominator square root of 2 space square root of 7 space. space square root of 2 space square root of 13 end fraction
                   equals space fraction numerator square root of 7 over denominator 2 square root of 13 end fraction space equals space 1 half square root of 7 over 13 end root
    rightwards double arrow space space space space straight theta space equals space sin to the power of negative 1 end exponent open parentheses 1 half square root of 7 over 13 end root close parentheses
    Question 255
    CBSEENMA12033473

    Find the angle between the line straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight lambda space open parentheses 2 straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses and the plane straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 4

    Solution

    The equation of line is straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight lambda space open parentheses 2 straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses
    therefore space space space space straight b with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus 3 space straight k with hat on top
    The equation of plane is straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 4
    therefore space space space space space straight n with rightwards arrow on top space equals space space 2 straight i with hat on top plus straight j with hat on top space minus space straight k with hat on top
    Let θ be the angle between the line and planetherefore space space sin space straight theta space equals space fraction numerator straight b with rightwards arrow on top. space straight n with rightwards arrow on top over denominator open vertical bar straight b with rightwards arrow on top close vertical bar space open vertical bar straight n with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis negative 1 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 3 right parenthesis thin space left parenthesis negative 1 right parenthesis over denominator square root of 4 plus 1 plus 9 end root space square root of 4 plus 1 plus 1 end root end fraction space equals space fraction numerator 0 over denominator square root of 4 space square root of 6 end fraction space equals space 0

    therefore space space space straight theta space equals space 0 degree
     ∴ line is parallel to the plane.

    Question 256
    CBSEENMA12033474

    Find the distance between the parallel planes:
    2x – 3y + z + 3 = 0
    and 4x – 6y + 2z + 5 = 0

    Solution

    The equation of given planes are
    2x – 3y + z + 3 = 0    .....(1)
    and 4x –6y + 2z + 5 = 0    .....(2)
    Let (x1.y1, z1) be any point on plane (1)
    ∴  2x1 – 3y1 + z1 + 3 = 0
    ∴  2x1 – 3y1 + z1 = –3    ...(3)
    Length of perpendicular from (x1, b 1, b1) to plane (2) in
    equals space fraction numerator open vertical bar 4 straight x subscript 1 space minus space 6 space straight y subscript 1 space plus space 2 straight z subscript 1 space plus space 5 close vertical bar over denominator square root of 16 plus 36 plus 4 end root end fraction space equals space fraction numerator open vertical bar 2 space left parenthesis 2 straight x subscript 1 space minus space 3 straight y subscript 1 space plus space straight z subscript 1 right parenthesis space plus space 5 close vertical bar over denominator square root of 56 end fraction
equals space open vertical bar fraction numerator 2 left parenthesis negative 3 right parenthesis plus 5 over denominator square root of 56 end fraction close vertical bar space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 3 right parenthesis close square brackets
equals space fraction numerator 1 over denominator square root of 56 end fraction

    Question 257
    CBSEENMA12033475

    Find the distance between parallel planes:
    2x  – y + 3z – 4 = 0 and 6x – 3y + 9z + 13 = 0.

    Solution

    The equations of given planes are
    2x – y + 3 z – 4 = 0        ... (1)
    and 6 x – 3 y + 9 z + 13 = 0        ....(2)
    Let (x1, y1 , z1 ) be any point on plane (1)
    ∴ 2 x1 –y1 + 3 z1 – 4 = 0 or 2x1– y, + 3 z1 =4    . (3)
    Length of perpendicular from (x1, y1 , z1 ) to the plane (2) is
     equals space fraction numerator open vertical bar 6 straight x subscript 1 minus 3 straight y subscript 1 plus 9 straight z subscript 1 plus 13 close vertical bar over denominator square root of left parenthesis 6 right parenthesis squared plus left parenthesis negative 3 right parenthesis squared plus left parenthesis 9 right parenthesis squared end root end fraction space equals space fraction numerator open vertical bar 3 space open parentheses 2 straight x subscript 1 space minus space straight y subscript 1 space plus space 3 space straight z subscript 1 close parentheses plus 13 close vertical bar over denominator square root of 36 plus 9 plus 81 end root end fraction space equals fraction numerator open vertical bar 3 space left parenthesis 4 right parenthesis space plus space 13 close vertical bar over denominator square root of 126 end fraction space equals fraction numerator 25 over denominator square root of 126 end fraction
    which is required distance between the planes. 

    Question 258
    CBSEENMA12033476

    Find the distance between the planes straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space space 3 space straight k with hat on top close parentheses space plus space 7 space equals 0 and straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top close parentheses space plus space 7 space equals space 0.

    Solution
    The equations of the planes are
      straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space 7 space equals 0 space space and space straight r with rightwards arrow on top. space left parenthesis 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis space plus space 7 space equals 0
    or             open parentheses straight x stack straight i space with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space plus space space 3 space straight k with hat on top close parentheses space plus space 7 space equals space 0
    and       open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space. space open parentheses 2 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 6 space straight k with hat on top close parentheses space plus space 7 space equals space 0
    or space space straight x plus 2 straight y plus 3 straight z plus 7 space equals space 0                                           ...(1)
    and 2 straight x plus 4 straight y plus 6 straight z plus 7 space equals space 0                                       ...(2)
    These are parallel planes.      
    Let (x1, y1 , z1) be any point on plane (1).
    ∴   x1 + 2y1 + 3z1 + 7 - 0
    or x2 + 2y1 + 3z1 = –7    ...(3)
    Length of perpendicular from (x1 ,y1 , z1) to the plane (2) is
                       equals space open vertical bar fraction numerator 2 straight x subscript 1 plus space 4 straight y subscript 1 space plus space 6 space straight z subscript 1 plus 7 over denominator square root of 4 plus 16 plus 36 end root end fraction close vertical bar space equals space fraction numerator open vertical bar 2 space left parenthesis straight x subscript 1 space plus space 2 space straight y subscript 1 space plus space 3 space straight z subscript 1 right parenthesis plus 7 close vertical bar over denominator square root of 56 end fraction
space equals space fraction numerator open vertical bar 2 space left parenthesis negative 7 right parenthesis space plus space 7 close vertical bar over denominator square root of 56 end fraction space equals space fraction numerator open vertical bar negative 14 plus 7 close vertical bar over denominator square root of 56 end fraction space equals space fraction numerator open vertical bar negative 7 close vertical bar over denominator square root of 56 end fraction space equals space fraction numerator 7 over denominator square root of 56 end fraction
    Question 259
    CBSEENMA12033477

    Find the length and coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x – 2y + 4z + 5 = 0.

    Solution

    The equation of plane is
    2x – 2y + 4 z + 5 = 0    ...(1)
    Direction ratios of the normal to the plane are
    2,–2, 4  i.e., 1,– 1, 2.
    Let M be foot of perpendicular from P (1, 1, 2) to the plane.
    Now PM is a straight line which passes through P (1. 1,2) and has direction ratios as 1, – 1, 2.
    ∴  its equations are

    fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 2 over denominator 2 end fraction space equals space straight r space left parenthesis say right parenthesis
    Any point M on line is (r + 1, – r + 1, 2 r + 2)
    ∵ M lies on plane (1)
    ∴ 2 (r + 1) – 2 (– r + 1) + 4 (2 r + 2) + 5 = 0.
    ∴  2r + 2 + 2r – 2 + 8r + 8 + 5 = 0
    rightwards double arrow space space space space 12 space straight r space equals space minus 13 space space space space rightwards double arrow space space space space straight r space equals space minus 13 over 12
    therefore space space space space space straight M space is space space open parentheses negative 13 over 12 plus 1 comma space space 13 over 12 plus 1 comma space space minus 26 over 12 plus 2 close parentheses space space or space space space open parentheses negative 1 over 12 comma space space 25 over 12 comma space minus 2 over 12 close parentheses
therefore space space space space space foot space of space perpendicular space is space open parentheses negative 1 over 12 comma space 25 over 12 comma space minus 1 over 6 close parentheses
Length space of space perpendicular space space equals space fraction numerator 2 left parenthesis 1 right parenthesis space minus space 2 left parenthesis 1 right parenthesis space plus space 4 left parenthesis 2 right parenthesis space plus space 5 over denominator square root of left parenthesis 2 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared plus left parenthesis 4 right parenthesis squared end root end fraction space equals fraction numerator 2 minus 2 plus 8 plus 5 over denominator square root of 4 plus 4 plus 16 end root end fraction space equals fraction numerator 13 over denominator square root of 24 end fraction

    Question 260
    CBSEENMA12033478

    Find the distance between the point P(6, 5, 9) and the plane determined by the points A(3, –1, 2), B(5, 2, 4) and C(– 1, – 1, 6).

    Solution
    The equation of plane through the points (3, –1, 2), (5, 2, 4), (– 1, – 1, 6) is
                  open vertical bar table row cell straight x minus 3 end cell cell straight y plus 1 end cell cell straight z minus 2 end cell row cell 5 minus 3 end cell cell 2 plus 1 end cell cell 4 minus 2 end cell row cell negative 1 minus 3 end cell cell negative 1 plus 1 end cell cell 6 minus 2 end cell end table close vertical bar space equals 0 space space space space space space space space space space space open square brackets open vertical bar table row cell straight x minus straight x subscript 1 end cell cell straight y minus straight y subscript 1 end cell cell straight z minus straight z subscript 1 end cell row cell straight x subscript 2 minus straight x subscript 1 end cell cell straight y subscript 2 minus straight y subscript 1 end cell cell straight z subscript 2 minus straight z subscript 1 end cell row cell straight x subscript 3 minus straight x subscript 1 end cell cell straight y subscript 3 minus straight y subscript 1 end cell cell straight z subscript 3 minus straight z subscript 1 end cell end table close vertical bar space equals space 0 close square brackets
    or   open vertical bar table row cell straight x minus 3 end cell cell straight y plus 1 end cell cell straight z minus 2 end cell row 2 3 2 row cell negative 4 end cell 0 4 end table close vertical bar space equals space 0
    or space space space space left parenthesis straight x minus 3 right parenthesis space open vertical bar table row 3 2 row 0 4 end table close vertical bar space minus space left parenthesis straight y plus 1 right parenthesis space open vertical bar table row 2 2 row cell negative 4 end cell 4 end table close vertical bar space plus space left parenthesis straight z minus 2 right parenthesis space open vertical bar table row 2 3 row cell negative 4 end cell 0 end table close vertical bar space equals space 0
    or space space space space space space left parenthesis straight x minus 3 right parenthesis thin space left parenthesis 12 minus 0 right parenthesis space minus space left parenthesis straight y plus 1 right parenthesis space left parenthesis 8 plus 8 right parenthesis space plus space left parenthesis straight z minus 2 right parenthesis space left parenthesis 0 plus 12 right parenthesis space equals space 0
or space space space space space space 12 space left parenthesis straight x minus 3 right parenthesis space minus space 16 space left parenthesis straight y plus 1 right parenthesis space plus space 12 space left parenthesis straight z minus 2 right parenthesis space equals space 0
or space space space space space space 3 left parenthesis straight x minus 3 right parenthesis space space minus space 4 space left parenthesis straight y plus 1 right parenthesis space plus space 3 space left parenthesis straight z minus 2 right parenthesis space equals space 0
or space space space space space space 3 straight x minus 9 minus 4 straight y minus 4 plus 3 straight z minus 6 space equals space 0
or space space space space space 3 straight x minus 4 straight y plus 3 straight z minus 19 space equals space 0
    Let p be the perpendicular distance of P(6, 5, 9) from this plane. 
    therefore space space space space space space straight p space equals space fraction numerator 3 left parenthesis 6 right parenthesis minus 4 left parenthesis 5 right parenthesis space plus space 3 left parenthesis 9 right parenthesis space minus space 19 over denominator square root of 9 plus 16 plus 9 end root end fraction space equals fraction numerator 18 minus 20 plus 27 minus 19 over denominator square root of 34 end fraction equals space fraction numerator 6 over denominator square root of 34 end fraction

    Question 261
    CBSEENMA12033479

    Find the coordinates of the foot of perpendicular from the point (2, 2, 7) to the plane 3 x – y – z = 7. Also find the length of perpendicular.

    Solution

     The equation of plane is
    3x – y – z = 7    ...(1)
    Direction ratios of the normal to the plane are 3, – 1, – 1.
    Let M be the foot of perpendicular from P (2, 2, 7) to the plane.
    Now MP is a straight line which passes through P (2, 2, 7) and has direction ratios as 3, – 1, – 1.

    therefore   its equations are fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 2 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 7 over denominator negative 1 end fraction equals space straight r space left parenthesis say right parenthesis
    Any point on line is M (3 r + 2, – r + 2, – r + 7)
    ∵ M lies on plane (1)
    ∵  3 (3 r + 2) – (– r + 2) – (– r + 7) = 7
    ∴  9r + 6 + r – 2 + r – 7 = 7
    rightwards double arrow space space space space 11 straight r space equals space 10 space space space space space space space space space space space space space rightwards double arrow space space space space straight r space equals space 10 over 11
therefore space space space space straight M space is space open parentheses 30 over 11 plus 2 comma space space space minus 10 over 11 plus 2 comma space space minus 10 over 11 plus 7 close parentheses space space space or space space space open parentheses 52 over 11 comma space 12 over 11 comma space 67 over 11 close parentheses
therefore space space space space foot space of space perpendicular space is space open parentheses 52 over 11 comma space 12 over 11 comma space 67 over 11 close parentheses
Length space of space perpendicular space space equals space open vertical bar fraction numerator 3 left parenthesis 2 right parenthesis minus 2 minus 7 minus 7 over denominator square root of 9 plus 1 plus 1 end root end fraction close vertical bar space equals space fraction numerator 10 over denominator square root of 11 end fraction

    Question 262
    CBSEENMA12033480

    Find the image of the point (1, 2, 3) in the plane x + 2y + 4z = 38.

    Solution

    The equation of plane is
    x + 2 y + 4 z = 38    ...(1)
    Direction ratios of the normal to the plane are 1, 2, 4
    Let M be foot of perpendicular from P(l, 2, 3) to the plane.
    Now PM is a straight line which passes through P( 1, 2, 3) and has direction ratios as 1,2,4.
    ∴  its equations are

    fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 4 end fraction space equals space straight r space left parenthesis say right parenthesis
    Any point M on line is (r + 1, 2 r + 2, 4 r + 3)
    ∵  M lies on plane (1)
    ∴  (r + 1) + 2 (2 r + 2) + 4 (4 r + 3) = 38
    ∴   r + 1 +4r + 4 + 16r + 12 = 38
    ∴ 21 R = 21 ⇒  r = 1
    ∴ M is (1 + 1,2 + 2,4 + 3) i.e. (2,4,7)
    Let N(α, β, γ) be image of P in the plane (1) so that M is mid-point of PN.
    therefore space space space space space space space space space space space space space fraction numerator 1 plus straight alpha over denominator 2 end fraction space equals space 2 comma space space space space fraction numerator 2 plus straight beta over denominator 2 end fraction space space equals space 4 comma space space space fraction numerator 3 plus straight gamma over denominator 2 end fraction space equals space 7
therefore space space space space space space space space space space straight alpha equals space 3 comma space space space space straight beta space equals space 6 comma space space space straight gamma space equals space 11
    ∴ image is (3, 6, 11).

    Question 263
    CBSEENMA12033481

    Find the Cartesian as well as the vector equation of the planes passing through the intersection of the planes straight r with rightwards arrow on top space. left parenthesis 2 space straight i with hat on top space plus space 6 space straight j with hat on top right parenthesis space plus space 12 space equals space 0 space space and space straight r with rightwards arrow on top. space space open parentheses 3 space straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space equals space 0 comma which are at unit distance from the origin. 

    Solution
    The equation of first plane is
                      straight r with rightwards arrow on top space. space open parentheses 2 straight i with hat on top space plus space 6 straight j with hat on top close parentheses space plus space 12 space equals space 0
    or       open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space open parentheses 2 space straight i with hat on top space plus space 6 space straight j with hat on top close parentheses space plus space 12 space equals space 0
    or space space space 2 straight x plus 6 straight y plus 12 space equals space 0 comma space space space space space space or space space space straight x plus 3 straight y plus 6 space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    The equation of second plane is
               straight r with rightwards arrow on top. space left parenthesis 3 straight i with hat on top space minus space straight j with hat on top space plus space 4 space straight k with hat on top right parenthesis space space equals 0
    or         open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses space. space open parentheses 3 space straight i with hat on top space minus space straight j with hat on top space plus space space 4 space straight k with hat on top close parentheses space equals space 0
    or            3 straight x minus straight y plus 4 straight z space equals space 0                                                         ...(2)
    The equation of any plane through the intersection of planes (1) and (2) is
    (x + 3 y + 6) + k (3 x – y + 4 z) = 0
    or (3 k + l).x + (–k + 3)y + 4 kz + 6 = 0    ...(3)
    From given condition,
    perpendicular distance of origin (0, 0, 0) from plane (3) = 1
    therefore space space space fraction numerator 0 plus 0 plus 0 plus 6 over denominator square root of left parenthesis 3 space straight k space plus space 1 right parenthesis squared plus left parenthesis negative straight k plus 3 right parenthesis squared plus left parenthesis 4 space straight k right parenthesis squared end root end fraction space equals plus-or-minus 1
rightwards double arrow space space space space space left parenthesis 3 straight k plus 1 right parenthesis squared plus space left parenthesis negative straight k plus 3 right parenthesis squared plus 16 space straight k squared space equals space 36
rightwards double arrow space space 9 straight k squared plus 6 straight k plus 1 plus straight k squared space minus space 6 straight k space plus space 9 space space plus 16 straight k squared space equals space 36
rightwards double arrow space space 26 straight k squared space equals space 26 space space space space rightwards double arrow space space space space straight k squared space equals space 1 space space space rightwards double arrow space space space straight k space equals space plus-or-minus 1
    Taking k = 1, from (3), we get,
       4 straight x plus 2 straight y plus 4 straight z plus 6 space equals space 0 comma space space space space or space space space space 2 straight x plus straight y plus 2 straight z plus 3 space equals space 0
or space space space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses plus space 3 space space equals space 0
or space space straight r with rightwards arrow on top space. space left parenthesis 2 straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space plus space 3 space equals space 0
    Taking k = – 1, from (3), we get,
              negative 2 straight x plus 4 space straight y minus 4 straight z plus 6 space equals space 0 comma space space space space or space space space straight x minus 2 straight y plus 2 straight z minus 3 space equals space 0
    or space space space left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space minus space 3 space equals 0
    or space space space space straight r with rightwards arrow on top. space open parentheses straight i with hat on top space minus space space 2 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses minus 3 space equals space 0
    The required cartesian equations are
    2x + y + 2z + 3 = 0, x – 2y + 2z — 3 = 0
    and  vector equations are
    straight r with rightwards arrow on top. space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space plus space 3 space equals space 0 space space space and space space straight r with rightwards arrow on top. space space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space minus space 3 equals 0.

    Question 264
    CBSEENMA12033482

    Prove that if a plane has the intercepts a, b, c and is at a distance p units from the origin, then 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared space equals space 1 over straight p squared.

    Solution
    The equation of plane with intercepts a, b, c is
    straight x over straight a plus straight y over straight b plus straight z over straight c equals space 1 space space space space space space space space or space space space straight x over straight a plus straight y over straight b plus straight z over straight c minus 1 space equals space 0
    From the given condition,
                          fraction numerator open vertical bar 0 plus 0 plus 0 minus 1 close vertical bar over denominator square root of begin display style 1 over straight a squared end style plus begin display style 1 over straight b squared end style plus begin display style 1 over straight c squared end style end root end fraction space equals space straight p
    rightwards double arrow space space space space space space space space space space space square root of 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared end root space equals 1 over straight p
rightwards double arrow space space space space space space space space space space 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared space equals space 1 over straight p squared
    which is required condition. 
    Question 265
    CBSEENMA12033483

    A variable plane which remains at a constant distance 3p from the origin, cuts the co-ordinate axes at A, B, C. Show that the locus of the centroid of the triangle ABC is 1 over straight x squared plus 1 over straight y squared plus 1 over straight z squared space equals 1 over straight p squared.

    Solution

    Let O be the origin and OA = a,  OB = b,  OC = c
    ∴   equation of plane passing through A, B and C is
                           straight x over straight a plus straight y over straight b plus straight z over straight c equals 1
    or                  straight x over straight a plus straight y over straight b plus straight z over straight c minus 1 space equals space 0
    From the given condition,       fraction numerator open vertical bar 0 plus 0 plus 0 minus 1 close vertical bar over denominator square root of begin display style 1 over straight a squared end style plus begin display style 1 over straight b squared end style plus begin display style 1 over straight c squared end style end root end fraction space equals space 3 space straight p
    rightwards double arrow space space space space space space space space space square root of 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared end root space equals space fraction numerator 1 over denominator 3 space straight p end fraction
rightwards double arrow space space space space space space space 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared space equals fraction numerator 1 over denominator 9 space straight p squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Now A, B, C are (a, 0, 0), (0, b, 0), (0, c, 0) respectively.
    Let (x1 , y1 , z1 ) be the centroid of ΔABC.
    therefore space space space straight x subscript 1 space equals space fraction numerator straight a plus 0 plus 0 over denominator 3 end fraction comma space space space straight y subscript 1 space equals space fraction numerator 0 plus straight b plus 0 over denominator 3 end fraction comma space straight z subscript 1 space equals space fraction numerator 0 plus 0 plus 0 over denominator 3 end fraction
therefore space space space space straight a space equals space 3 space straight x subscript 1 comma space space space space straight b space equals space 3 space straight y subscript 1 comma space space space straight c space equals space 3 space straight z subscript 1

    Putting values of a, b,c in (1), we get
                       fraction numerator 1 over denominator 9 space straight x subscript 1 squared end fraction plus fraction numerator 1 over denominator 9 space straight y subscript 1 squared end fraction plus fraction numerator 1 over denominator 9 space straight z subscript 1 squared end fraction space equals space fraction numerator 1 over denominator 9 space straight p squared end fraction
    or              1 over straight x subscript 1 squared plus 1 over straight y subscript 1 squared plus 1 over straight z subscript 1 squared space equals space 1 over straight p squared
    therefore locus of centroid open parentheses straight x subscript 1 comma space straight y subscript 1 comma space straight z subscript 1 close parentheses is 1 over straight x squared plus 1 over straight y squared plus 1 over straight z squared space equals space 1 over straight p squared.
    Question 266
    CBSEENMA12033484

    A variable plane is at a constant distance p from the origin and meets the axes in A, B and C respectively, then show that locus of the centroid of the triangle ABC is
    1 over straight x squared plus 1 over straight y squared plus 1 over straight z squared space equals space 9 over straight p squared.

    Solution

    Let O be the origin and OA = a, OB.= b, OC = c.
    ∴  the equation of plane passing through A, B and C is
                          straight x over straight a plus straight y over straight b plus straight z over straight c equals 1
    or              straight x over straight a plus straight y over straight b plus straight z over straight c minus 1 space equals space 0
    From the given condition, 
                     fraction numerator open vertical bar 0 plus 0 plus 0 minus 1 close vertical bar over denominator square root of begin display style 1 over straight a squared end style plus begin display style 1 over straight b squared end style plus begin display style 1 over straight c squared end style end root end fraction space equals space straight p
    rightwards double arrow space space space space space space space space space space space square root of 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared end root space equals space 1 over straight p
rightwards double arrow space space space space space space 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared space equals space 1 over straight p squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now A, B, C are (a, 0,0), (0, b, 0), (0, 0, c) respectively.
    Let (x1 ,y1 , z1) be the centroid of ΔABC.
     therefore space space space space space straight x subscript 1 space equals space fraction numerator straight a plus 0 plus 0 over denominator 3 end fraction comma space space space straight y subscript 1 space equals space fraction numerator 0 plus straight b plus 0 over denominator 3 end fraction comma space space straight z subscript 1 space equals space fraction numerator 0 plus 0 plus straight c over denominator 3 end fraction
therefore space space space space space space straight a space equals space 3 straight x subscript 1 comma space space space space straight b space equals space 3 space straight y subscript 1 comma space space space straight c space equals space 3 space straight z subscript 1
    Putting values of a, b, c in (1), we get,
                          fraction numerator 1 over denominator 9 space straight x subscript 1 squared end fraction plus fraction numerator 1 over denominator 9 space straight y subscript 1 squared end fraction plus fraction numerator 1 over denominator 9 straight z subscript 1 squared end fraction space equals 1 over straight p squared
    or                 1 over straight x subscript 1 squared plus 1 over straight y subscript 1 squared plus 1 over straight z subscript 1 squared space equals space 9 over straight p squared
    ∴  locus of centroid (x1 ,y1, z1) is
            1 over straight x squared plus 1 over straight y squared plus 1 over straight z squared space equals space 9 over straight p squared

    Question 267
    CBSEENMA12033485

    If a variable plane at a constant distance p from the origin meets the coordinate axes in points A, B and C respectively. Through these points, planes are drawn parallel to the coordinate planes. Then show that the locus of the point of intersection is
    1 over straight x squared plus 1 over straight y squared plus 1 over straight z squared space equals space 1 over straight p squared.

    Solution
    Let O be the origin and OA = a, OB = b, OC = c
     ∴  the equation of the plane passing through A, B and C is
               straight x over straight a plus straight y over straight b plus straight z over straight c equals 1 space space space space space space space or space space space straight x over straight a plus straight y over straight b plus straight z over straight c minus 1 space equals space 0
    From the given condition,  fraction numerator open vertical bar 0 plus 0 plus 0 minus 1 close vertical bar over denominator square root of begin display style 1 over straight a squared end style plus begin display style 1 over straight b squared end style plus begin display style 1 over straight c squared end style end root end fraction space equals space straight p
    rightwards double arrow space space space space space square root of 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared end root space equals 1 over straight p space space space space space space space rightwards double arrow space space space space 1 over straight a squared plus 1 over straight b squared plus 1 over straight c squared space equals space 1 over straight p squared space space space space space space... left parenthesis 1 right parenthesis

    The equation of plane through A (a, 0, 0) parallel to YZ-plane is x = a ... (2)
    The equation of plane through B (0, b, 0) parallel to ZX-plane is y = b ... (3)
    The equation of plane through C (0, 0, c) parallel to XY-plane is z = c ... (4)
    Now to find the locus, we are to eliminate a, b, c.
    Putting the values of a, b, c from (2), (3), (4) in (1), we get,
    1 over straight x squared plus 1 over straight y squared plus 1 over straight z squared space equals 1 over straight p squared


    Question 268
    CBSEENMA12033486

    Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8 z = 12 is

    • 2 units

    • 4 units

    • 8 units

    • fraction numerator 2 over denominator square root of 29 end fraction units

    Solution

    D.

    fraction numerator 2 over denominator square root of 29 end fraction units The equations of given planes
    2x + 3y + 4z - 4 = 0        ...(1)
    and 4x + 6y +8 z – 12 = 0    ...(2)
    Here 2 over 4 space equals space 3 over 6 space equals 4 over 8
    ∴ planes (1) and (2) are parallel.
    Let (x1,y1.,z1) be any point on plane (1).
    ∴ 2x1 + 3y1 + 4 z1 – 4 = 0
    or  2x + 31+ 4z1 = 4    ...(3)
    Length of perpendicular from (x1, y1, z1,) to the plane (2) is
    equals space fraction numerator open vertical bar 4 straight x subscript 1 space plus space 6 straight y subscript 1 plus 8 straight z subscript 1 minus 12 close vertical bar over denominator square root of 16 plus 36 plus 64 end root end fraction space equals space fraction numerator open vertical bar 2 space left parenthesis 2 straight x subscript 1 space plus space 3 straight y subscript 1 plus space 4 space straight z subscript 1 right parenthesis space minus space 12 close vertical bar over denominator square root of 116 end fraction
equals space fraction numerator open vertical bar 2 space left parenthesis 4 right parenthesis space minus space 12 close vertical bar over denominator square root of 116 end fraction space equals space fraction numerator open vertical bar 8 minus 12 close vertical bar over denominator square root of 116 end fraction space equals space fraction numerator open vertical bar negative 4 close vertical bar over denominator square root of 4 space cross times 29 end root end fraction space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 3 right parenthesis close square brackets
equals space fraction numerator 4 over denominator 2 square root of 29 end fraction space equals space fraction numerator 2 over denominator square root of 29 end fraction
therefore space space space space left parenthesis straight D right parenthesis space is space correct space answer.
    Question 269
    CBSEENMA12033487

    Find the points where the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y minus 2 over denominator negative 3 end fraction space equals fraction numerator straight z plus 3 over denominator 4 end fraction space meets space the space plane space 2 straight x plus 4 straight y minus straight z space equals 1.

    Solution

    The equation of plane is
    2x + 4 y – z = 1    ...(1)
    The equation of line is
    fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 2 over denominator negative 3 end fraction space equals space fraction numerator straight z plus 3 over denominator 4 end fraction equals space straight r space left parenthesis say right parenthesis
    Any point on it is (2 r + 1, – 3 r + 2, 4 r – 3)
    Let it lie on (1).
    ∴  2 (2 r + 1) + 4 (–3 r + 2) – (4 r – 3) = 1
    ∴  4 r + 2 – 12 r + 8 – 4r + 3 =  1
    ∴ – 12 r  = – 12 ⇒ r = 1
    ∴  point is (2 + 1,–3 + 2,4 – 4) i.e. (3,–1,1).

    Question 270
    CBSEENMA12033488

    Find the co-ordinates of the point where the line fraction numerator straight x plus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z plus 3 over denominator 4 end fraction meets the plane x + y + 4 z  =6.

    Solution

    The equation of plane is
    x + y+ 4 z = 6    ...(1)
    The equation of line is
    fraction numerator straight x plus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z plus 3 over denominator 4 end fraction space equals space straight r space left parenthesis say right parenthesis
    Any point on it is (2 r – 1, 3 r – 2, 4 r – 3)
    Let it lie on (1)
    ∴  (2 r – 1) + (3 r – 2) + 4 (4 r – 3) = 6
    ∴  2r – 1 + 3r – 2 +16r – 12 = 6
    ∴ 21 r = 21 ⇒ r = 1
    ∴  point is (2 – 1, 3 – 2, 4 – 3) i.e. (1, 1, 1).



    Question 271
    CBSEENMA12033489

    Find the distance of a point P (5, 3, 4) from the point where the line fraction numerator straight x minus 3 over denominator 1 end fraction space equals fraction numerator straight y minus 4 over denominator 2 end fraction space equals fraction numerator straight z minus 5 over denominator 2 end fraction meets the plane x + y + z = 2.

    Solution
    The given line is
           fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus 4 over denominator 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 2 end fraction                             ...(1)
    and the given plane is    
    x + y + z =  2    ...(2)
    Any point on (1) is (r + 3, 2r + 4, 2r + 5)
    Let it be the point of intersection of line (1) and plane (2).
    ∴  point (r + 3, 2r + 4, 2 r + 5) lies on (2)
    ∴  r + 3 + 2r + 4 + 2r + 5 = 2 ⇒ 5r = – 10 ⇒ r = –2
    ∴ point of intersection is (1, 0, 1)
    ∴ required distance = distance between points (5, 3, 4) and (1, 0, 1)
    equals space square root of left parenthesis 1 minus 5 right parenthesis squared plus left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 1 minus 4 right parenthesis squared end root space equals square root of 16 plus 9 plus 9 end root space equals square root of 34
          
    Question 272
    CBSEENMA12033490

    Find the distance of a point (1, –2, 3) from the plane x – y + z = 5 measured parallel to the line straight x over 2 space equals space straight y over 3 space equals space fraction numerator straight z over denominator negative 6 end fraction

    Solution

    The equation of given plane is
    x – y + z = 5    ...(1)
    The equation of the line through P (1,–2, 3) parallel to the line straight x over 2 space equals space straight y over 3 space equals fraction numerator straight z over denominator negative 6 end fraction are fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 6 end fraction

    Any point on it is Q (2 r + 1, 3 r –2, – 6 r + 3)
    Let it lie on plane (1)
    ∴    2r + 1 – 3r + 2 – 6r + 3 = 5
    therefore space space space space minus 7 space straight r space equals space minus 1 space space space space space space space space rightwards double arrow space space space straight r space equals space 1 over 7
    therefore space space space point space straight Q space is space space open parentheses 2 over 7 plus 1 comma space space 3 over 7 minus 2 comma space space fraction numerator negative 6 over denominator 7 end fraction plus 3 close parentheses space space straight i. straight e. space space space open parentheses 9 over 7 comma space minus 11 over 7 comma space 15 over 7 close parentheses
    therefore space space space required space distance space PQ space equals space square root of open parentheses 9 over 7 minus 1 close parentheses squared plus open parentheses negative 11 over 7 plus 2 close parentheses squared space plus space open parentheses 15 over 7 minus 3 close parentheses squared end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space square root of 4 over 49 plus 9 over 49 plus 36 over 49 end root space equals space square root of 49 over 49 end root space equals space 1.

    Question 273
    CBSEENMA12033491

    Find the distance of the point (- 2, 3, - 4) from the line fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator 2 straight y plus 3 over denominator 4 end fraction space equals space fraction numerator 3 straight z plus 4 over denominator 5 end fraction measured  parallel to the plane 4 x + 12 y - 3z + 1 = 0.

    Solution
    The equations of given line are
                      fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator 2 straight y plus 3 over denominator 4 end fraction space equals space fraction numerator 3 straight z plus 4 over denominator 5 end fraction
    or              fraction numerator straight x plus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus begin display style 3 over 2 end style over denominator 2 end fraction space equals space fraction numerator straight z plus begin display style 4 over 3 end style over denominator begin display style 5 over 3 end style end fraction space equals space straight r space left parenthesis say right parenthesis
    Any point Q on this line is open parentheses 3 straight r minus 2 comma space space 2 straight r minus 3 over 2 comma space 5 over 3 straight r space minus space 4 over 3 close parentheses
    Let given point be P(– 2, 3, – 4). Direction ratios of PQ are
    3 straight r minus 2 plus 2 comma space space space 2 straight r minus 3 over 2 minus 3 comma space space 5 over 3 straight r minus 4 over 3 plus 4 space space straight i. straight e. space 3 straight r comma space space 2 straight r minus 9 over 2 comma space space fraction numerator 5 straight r over denominator 3 end fraction plus 8 over 3
    Since PQ is parallel to the plane
                             4 straight x plus 12 straight y minus 3 straight z plus 1 space equals space 0
    therefore space 4 space left parenthesis 3 straight r right parenthesis space plus space 12 space open parentheses 2 straight r minus space 9 over 2 close parentheses space plus space left parenthesis negative 3 right parenthesis space open parentheses fraction numerator 5 straight r over denominator 3 end fraction plus 8 over 3 close parentheses space equals space 0
therefore space space space 12 straight r space plus space 24 straight r space minus space 54 space minus space 5 straight r space minus space 8 space equals space 0
space therefore space space space space space space space space space 31 space straight r space equals space 62 space space space space rightwards double arrow space space space space straight r space equals space 2
therefore space space space space space space space space space space space straight Q space is space open parentheses 6 minus 2 comma space space 4 minus 3 over 2 comma space space 10 over 3 minus 4 over 3 close parentheses space straight i. straight e. comma space space space space space open parentheses 4 comma space 5 over 2 comma space 2 close parentheses
    ∴   required length = PQ
    equals space square root of left parenthesis 4 plus 2 right parenthesis squared plus open parentheses 5 over 2 minus 3 close parentheses squared plus left parenthesis 2 plus 4 right parenthesis squared end root
equals space square root of 36 plus 1 fourth plus 36 end root space equals space square root of fraction numerator 144 plus 1 plus 144 over denominator 4 end fraction end root space equals space square root of 289 over 4 end root space equals space 17 over 2 space units. space
    Question 274
    CBSEENMA12033492

    Find the distance of the point (–1, –5, –10) from the point of intersection of the line straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight lambda space open parentheses 3 straight i with hat on top space plus space 4 space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space and space the space plane space straight r with rightwards arrow on top. space open parentheses straight i with hat on top minus straight j with hat on top space plus space space straight k with hat on top close parentheses space equals space 5.

    Solution

    The equation of line is straight r with rightwards arrow on top space equals space 2 straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight lambda space left parenthesis 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    or straight x space straight i with hat on top space space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top space plus space straight lambda space left parenthesis 3 space straight i with hat on top space plus space 4 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    or  left parenthesis straight x minus 2 right parenthesis space straight i with hat on top space plus space left parenthesis straight y plus 1 right parenthesis space straight j with hat on top space plus space left parenthesis straight z minus 2 right parenthesis space straight k with hat on top space equals space straight lambda left parenthesis 3 straight i with hat on top space plus space 4 space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis
    therefore space space space space straight x minus 2 space space equals space 3 space straight lambda comma space space space straight y plus 1 space equals space 4 straight lambda comma space space space straight z minus 2 space equals space 2 space straight lambda
therefore space space space space space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 4 end fraction space equals space fraction numerator straight z minus 2 over denominator 2 end fraction space equals space straight lambda
    Any point on this line is P(3λ + 2, 4λ –1, 2λ + 2)
    It lies on the plane
                     straight r with rightwards arrow on top. space left parenthesis straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis space equals space 5
    straight i. straight e. space left parenthesis straight x straight i with hat on top space minus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top right parenthesis. space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 5
straight i. straight e. space space straight x minus straight y plus straight z minus 5 space equals space 0
therefore space space space space space 3 space straight lambda space plus space 2 space minus space 4 space straight lambda space plus space 1 space plus space 2 space straight lambda space plus space 2 minus 5 space equals 0 space space space space space space space space rightwards double arrow space space space space space straight lambda space equals space 0
therefore space space space point space straight P space is space left parenthesis 2 comma space minus 1 comma space 2 right parenthesis
    Required distance = distance between (–1,–5,–10) and (2, –1, 2)
    equals space square root of left parenthesis 2 plus 1 right parenthesis squared plus left parenthesis negative 1 plus 5 right parenthesis squared plus left parenthesis 2 plus 10 right parenthesis squared end root
equals space square root of 9 plus 16 plus 44 end root space equals space square root of 169 space equals space 13 space units

    Question 275
    CBSEENMA12033493

    Find the distance between the point with position vector negative straight i with hat on top space minus space 5 space straight j with hat on top space minus space 10 space straight k with hat on top and the point of intersection of the line fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 4 end fraction space equals space fraction numerator straight z minus 2 over denominator 12 end fraction with the plane x – y + z = 5.

    Solution
    The equations of line are
    fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 4 end fraction space equals space fraction numerator straight z minus 2 over denominator 12 end fraction                                  ...(1)
    Any point on this line is (3r + 2, 4r –11, 12 r + 2)
    Let it lie on x – y + z = 5    ....(2)
    ∴  3r + 2 – 4r + 1 + 12 r + 2 = 5 ⇒ 11r = 0  ⇒ r = 0
    ∴  point of intersection of line (1) and plane (2) is (2, – 1, 2)
    Point with position vector negative straight i with hat on top space minus space 5 space straight j with hat on top space minus space 10 space straight k with hat on top space is space open parentheses negative 1 comma space minus 5 comma space minus 10 close parentheses.
    Let d be required distance
    ∴    d = Distance between (2, – 1, 2) and (–1, – 5, – 10)
    equals space square root of left parenthesis negative 1 minus 2 right parenthesis squared plus left parenthesis negative 5 plus 1 right parenthesis squared plus left parenthesis negative 10 minus 2 right parenthesis squared end root space equals space square root of 9 plus 16 plus 144 end root space equals space square root of 169 space equals space 13
    Question 276
    CBSEENMA12033494

    Find the distance of the point (2, 3, 4) from the plane 3x + 2y + 2z + 5 = 0, measured parallel to the line fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 6 end fraction space equals space straight z over 2

    Solution

    The equation of given plane is
    3x + 2y + 2z + 5 = 0    ...(1)
    The equations of the line through P (2, 3, 4) parallel to the line
    fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 6 end fraction space equals space straight z over 2 space space are space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator 6 end fraction space equals space fraction numerator straight z minus 4 over denominator 2 end fraction
    Any point on it is Q (3r + 2,  6 r +  3,  2r + 4)
    Let it lie on plane (1)
    ∴  3 (3 r + 2) + 2 (6 r + 3) + 2 (2 r + 4) + 5 = 0
    or  9r + 6 + 12r + 6 + 4r + 8 + 5 = 0
    or  25 r= – 25    or r = – 1
    ∴  point Q is ( – 3 + 2, – 6 + 3, –2 + 4) i.e. (–1,–3, 2)
    therefore space space space space required space distance space PQ space equals space square root of left parenthesis 2 plus 1 right parenthesis squared plus left parenthesis 3 plus 3 right parenthesis squared plus left parenthesis 4 minus 2 right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space square root of 9 plus 36 plus 4 end root space equals space square root of 49 space equals space 7

    Question 277
    CBSEENMA12033495

    Determine whether the lines:
             straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda open parentheses 2 straight i with hat on top space plus space straight k with hat on top close parentheses
    and   straight r with rightwards arrow on top space equals space 2 straight i with hat on top space minus space straight j with hat on top space plus space straight mu space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space space intersect.

    Solution
    The given lines are
                            straight r with rightwards arrow on top space equals straight i with hat on top space minus space straight j with hat on top space plus space straight lambda open parentheses 2 straight i with hat on top space plus space straight k with hat on top close parentheses                             ...(1)
    and                  straight r with rightwards arrow on top space equals space 2 straight i with hat on top space minus space straight j with hat on top space plus space straight mu open parentheses straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses                    ...(2)
    therefore space space space space space space space space space space space straight a with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top comma space space straight b with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight k with hat on top
                    straight c with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top comma space space straight d with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    open square brackets straight c with rightwards arrow on top minus straight a with rightwards arrow on top comma space straight b with rightwards arrow on top comma space space straight d with rightwards arrow on top close square brackets space equals space open vertical bar table row 1 0 0 row 2 0 1 row 1 1 cell negative 1 end cell end table close vertical bar space equals space 1 space open vertical bar table row 0 1 row 1 cell negative 1 end cell end table close vertical bar
                          equals space 1 space left parenthesis 0 minus 1 right parenthesis space equals space minus space 1 space not equal to 0
    ∴  lines {1) and (2) are not coplanar
    ∴   lines (1) and (2) do not intersect.
    Question 278
    CBSEENMA12033496

    Show that the lines
    straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space plus space straight lambda open parentheses 3 space straight i with hat on top space minus space straight j with hat on top close parentheses space space and space straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu space open parentheses 2 straight i with hat on top space plus space 3 space straight k with hat on top close parentheses intersect.

    Solution

    The given lines are
                   straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space plus space straight lambda open parentheses 3 straight i with hat on top space minus space straight j with hat on top close parentheses                                 ...(1)

    and          straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space straight k with hat on top space plus space straight mu left parenthesis 2 straight i with hat on top space plus space 3 space straight k with hat on top right parenthesis                                ...(2)
    therefore space space space space straight a with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top comma space space straight b with rightwards arrow on top space equals space 3 straight i with hat on top space minus space straight j with hat on top comma space space straight c with rightwards arrow on top space equals space 4 space straight i with hat on top space minus space straight k with hat on top comma space space straight d with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight k with hat on top
    therefore space space space space open square brackets straight c with rightwards arrow on top space minus space stack straight a comma with rightwards arrow on top space straight b with rightwards arrow on top comma space straight d with rightwards arrow on top close square brackets space equals space open vertical bar table row 3 cell negative 1 end cell 0 row 3 cell negative 1 end cell 0 row 2 0 3 end table close vertical bar space equals space 3 space open vertical bar table row 3 cell negative 1 end cell row 3 cell negative 1 end cell end table close vertical bar space equals space 3 left parenthesis negative 3 plus 3 right parenthesis space equals space 3 left parenthesis 0 right parenthesis space equals space 0
    ∴ lines (1) and (2) are coplanar
    But
    straight b with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space straight j with hat on top space space and space straight d with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight k with hat on top are not parallel
    ∴  lines (1) and (2) intersect.

    Question 279
    CBSEENMA12033497

    Find the equation of plane containing the coplanar lines
    straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space space and space straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space plus space 2 straight k with hat on top space plus space straight mu open parentheses 2 space straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses.

    Solution
    The equation of given lines are
                   straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda open parentheses straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses                             ...(1)
    and         straight r with rightwards arrow on top space equals space 4 space straight i with hat on top space plus space 2 space straight k with hat on top space plus space straight mu open parentheses 2 straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses                        ...(2)
    therefore space space space space straight a with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top comma space space space straight b with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top comma space space straight d with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space 3 space straight k with hat on top
    therefore space space straight b with rightwards arrow on top space cross times straight d with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 1 end cell 1 row 2 cell negative 1 end cell 3 end table close vertical bar space equals space straight i with hat on top space open vertical bar table row cell negative 1 end cell 1 row cell negative 1 end cell 3 end table close vertical bar space minus space straight j with hat on top space open vertical bar table row 1 1 row 2 3 end table close vertical bar space plus space straight k with hat on top open vertical bar table row 1 cell negative 1 end cell row 2 cell negative 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space left parenthesis negative 3 space plus space 1 right parenthesis straight i with hat on top space minus space left parenthesis 3 minus 2 right parenthesis space straight j with hat on top space plus space left parenthesis negative 1 plus 2 right parenthesis space straight k with hat on top space equals space minus space 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top
    Also,   straight a with rightwards arrow on top. space left parenthesis straight b with rightwards arrow on top cross times straight d with rightwards arrow on top right parenthesis space equals space left parenthesis straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top right parenthesis. space left parenthesis negative 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top right parenthesis
                                  equals space left parenthesis 1 right parenthesis thin space left parenthesis negative 2 right parenthesis plus left parenthesis 1 right parenthesis thin space left parenthesis negative 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 1 right parenthesis space equals space minus 2 minus 1 plus 1 space equals space minus 2
    The vector equation of plane containing two lines (1) and (2) is
                          open square brackets straight r with rightwards arrow on top space minus space straight a with rightwards arrow on top comma space space straight b with rightwards arrow on top comma space space straight d with rightwards arrow on top close square brackets space equals space 0 space space space space space space space space or space space space left parenthesis straight r with rightwards arrow on top space minus space straight a with rightwards arrow on top right parenthesis. space space space straight b with rightwards arrow on top space space cross times space space straight d with rightwards arrow on top space equals space 0
    or           straight r with rightwards arrow on top. space open parentheses straight b with rightwards arrow on top space cross times space straight d with rightwards arrow on top close parentheses space space minus space straight a with rightwards arrow on top. space space open parentheses straight b with rightwards arrow on top cross times straight d with rightwards arrow on top close parentheses space equals space 0
    or space space space straight r with rightwards arrow on top. space open parentheses negative 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses plus 2 space equals space 0 space space space space or space space space space straight r with rightwards arrow on top. space open parentheses negative 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space minus 2
or space space space straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 2
    Note. Cartesian equation of plane is
             open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals 2 space space space or space space space 2 straight x plus straight y minus straight z space equals space 2.
    Question 280
    CBSEENMA12033498

    Find the vector and cartesian form of the equation of the plane containing two lines:
                straight r with rightwards arrow on top space equals straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis
    and       straight r with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 3 space straight j with hat on top space minus space 5 space straight k with hat on top space plus space straight mu space left parenthesis negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 8 space straight k with hat on top right parenthesis

    Solution

    Here,   straight a with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top comma space space straight b with rightwards arrow on top space equals space 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space minus 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 8 space straight k with hat on top
    The vector equation of plane is
                 left parenthesis straight r with rightwards arrow on top space minus space straight a with rightwards arrow on top right parenthesis. space space open parentheses straight b with rightwards arrow on top space cross times straight c with rightwards arrow on top close parentheses space equals space 0
    or     open square brackets straight r with rightwards arrow on top space minus space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis close square brackets. space open square brackets left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis space cross times space space left parenthesis negative 2 space straight i with hat on top space plus space space 3 space straight j with hat on top space plus space space 8 space straight k with hat on top close square brackets space equals space 0
    Cartesian equation of plane is
                           open vertical bar table row cell straight x minus 1 end cell cell straight y minus 2 end cell cell straight z plus 4 end cell row 2 3 6 row cell negative 2 end cell 3 8 end table close vertical bar space equals space 0
    or space space left parenthesis straight x minus 1 right parenthesis thin space open vertical bar table row 3 6 row 3 8 end table close vertical bar space minus space left parenthesis straight y minus 2 right parenthesis space open vertical bar table row 2 6 row cell negative 2 end cell 8 end table close vertical bar space plus space left parenthesis straight z plus 4 right parenthesis space open vertical bar table row 2 3 row cell negative 2 end cell 3 end table close vertical bar space equals space 0
    or    (x – 1) (24 – 18) – (y – 2) (16 + 12) + (z + 4) (6 + 6) = 0
    or    6 (x – 1) – 28 (y – 2) + 12 (z + 4) = 0
    or    3 (x – 1) – 14 (y – 2) + 6 (z + 4) = 0
    or    3 x – 3 – l4y + 28 + 6z + 24 = 0
    or    3 x – 14 y + 6 z + 49 = 0

    Question 281
    CBSEENMA12033499

    Find the vector and cartesian equation of the plane containing the two lines
                    straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis
    and    straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space space 3 space straight j with hat on top space minus space 7 space straight k with hat on top space plus space straight mu space left parenthesis 3 straight i with hat on top space minus space 2 space straight j with hat on top space plus space space 5 space straight k with hat on top right parenthesis

    Solution

             straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis
    and    straight r with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space space 3 space straight j with hat on top space minus space 7 space straight k with hat on top space plus space straight mu space left parenthesis 3 straight i with hat on top space minus space 2 space straight j with hat on top space plus space space 5 space straight k with hat on top right parenthesis
    therefore space space space space straight a with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top comma space space space space straight a with rightwards arrow on top apostrophe space equals space 3 space straight i with hat on top space plus space space 3 space straight j with hat on top space minus space 7 space straight k with hat on top comma
            straight b with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space space 5 space straight k with hat on top comma space space space space straight c with rightwards arrow on top space equals space 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top
    The vector equation of the plane is
               open parentheses straight r with rightwards arrow on top space minus space straight a with rightwards arrow on top close parentheses. space space open parentheses straight b with rightwards arrow on top cross times space straight c with rightwards arrow on top close parentheses space equals space 0
    or   open square brackets straight r with rightwards arrow on top space minus space left parenthesis 2 space straight i with hat on top space plus space straight j with hat on top space minus space 3 space straight k with hat on top right parenthesis close square brackets. space space space open square brackets left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space space 5 space straight k with hat on top right parenthesis space cross times space left parenthesis 3 space straight i with hat on top space minus space 2 space straight j with hat on top space plus space 5 space straight k with hat on top right parenthesis close square brackets space equals space 0
    The cartesian equation of plane is
                         open vertical bar table row cell straight x minus 2 end cell cell straight y minus 1 end cell cell straight z plus 3 end cell row 1 2 5 row 3 cell negative 2 end cell 5 end table close vertical bar space equals space 0
    or         left parenthesis straight x minus 2 right parenthesis thin space open vertical bar table row 2 5 row cell negative 2 end cell 5 end table close vertical bar space space minus space left parenthesis straight y minus 1 right parenthesis space open vertical bar table row 1 5 row 3 5 end table close vertical bar space plus space left parenthesis straight z plus 3 right parenthesis space open vertical bar table row 1 2 row 3 cell negative 2 end cell end table close vertical bar space equals space 0
    or    (x – 2) (10 + 10) – (y – 1) (5 – 15) + (z + 3) (–2 – 6) = 0
    or    20 (x – 2) + 10 (y – 1) – 8 (z + 3) = 0
    or    10 (x – 2) + 5 (y – 1) – 4 (z + 3) = 0
    or    10x –  20 + 5y – 5 – 4z – 12 = 0
    or    10x + 5y – 4 z = 37

    Question 282
    CBSEENMA12033500

    Find the equation of the plane containing the lines:
             fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y minus 3 over denominator 4 end fraction space equals space fraction numerator straight z minus 2 over denominator 5 end fraction
    and    fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus 2 over denominator negative 4 end fraction space equals space straight z over 5

    Solution
    The equations of lines are
               fraction numerator straight x minus 4 over denominator 1 end fraction space equals space fraction numerator straight y minus 3 over denominator 4 end fraction space equals space fraction numerator straight z minus 2 over denominator 5 end fraction
    and       fraction numerator straight x minus 3 over denominator 1 end fraction space equals fraction numerator straight y minus 2 over denominator negative 4 end fraction space equals space straight z over 5
    The equation of plane containing these two lines is
                          open vertical bar table row cell straight x minus 4 end cell cell straight y minus 3 end cell cell straight z minus 2 end cell row 1 4 5 row 1 cell negative 4 end cell 5 end table close vertical bar space equals space 0
    or    left parenthesis straight x minus 4 right parenthesis thin space open vertical bar table row 4 5 row cell negative 4 end cell 5 end table close vertical bar space minus space left parenthesis straight y minus 3 right parenthesis space open vertical bar table row 1 5 row 1 5 end table close vertical bar space plus space left parenthesis straight z minus 2 right parenthesis space open vertical bar table row 1 4 row 1 cell negative 4 end cell end table close vertical bar space equals space 0
    or    (x – 4) (20 + 20) – (y – 3) (5 – 5) + (z – 2) (– 4 – 4) = 0
    or    40 (x – 4) – 8 (z – 2) = 0 or 5 (x – 4)–(z – 2) = 0
    or    5x – 20-z + 2 = 0
    or    5x – z – 18 = 0
    Question 283
    CBSEENMA12033501

    Find the equation of the plane passing through the points (3, 2, 1) and (0, 1, 7) and parallel to the line straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top space plus space straight lambda left parenthesis straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top right parenthesis.

    Solution
    The given points are (3, 2, 1) and (0, 1, 7)
    therefore space space space space straight a with rightwards arrow on top space equals space 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top comma space space straight b with rightwards arrow on top space equals space straight j with hat on top space plus space 7 space straight k with hat on top
    The equation of line is
                                  straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top space space plus space straight lambda space left parenthesis straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top right parenthesis
        therefore space space space space straight c with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space minus space straight k with hat on top
        therefore space space space straight b with rightwards arrow on top space cross times space straight c with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 0 1 7 row 1 cell negative 1 end cell cell negative 1 end cell end table close vertical bar space equals space straight i with hat on top space open vertical bar table row 1 7 row cell negative 1 end cell cell negative 1 end cell end table close vertical bar space minus space straight j with hat on top space open vertical bar table row 0 7 row 1 cell negative 1 end cell end table close vertical bar space plus space straight k with hat on top open vertical bar table row 0 1 row 1 cell negative 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space equals space left parenthesis negative 1 plus 7 space right parenthesis straight i with hat on top space minus space left parenthesis 0 minus 7 right parenthesis space straight j with hat on top space plus space left parenthesis 0 minus 1 right parenthesis space straight k with hat on top space equals space 6 space straight i with hat on top space plus space 7 space straight j with hat on top space minus space straight k with hat on top
             straight c with rightwards arrow on top cross times straight a with rightwards arrow on top space equals space open vertical bar table row cell straight i with hat on top end cell cell straight j with hat on top end cell cell straight k with hat on top end cell row 1 cell negative 1 end cell cell negative 1 end cell row 3 2 1 end table close vertical bar space equals space straight i with hat on top space open vertical bar table row cell negative 1 end cell cell negative 1 end cell row 2 1 end table close vertical bar space minus space straight j with hat on top space open vertical bar table row 1 cell negative 1 end cell row 3 1 end table close vertical bar space plus space straight k with hat on top open vertical bar table row 1 cell negative 1 end cell row 3 2 end table close vertical bar
                       equals left parenthesis negative 1 plus 2 right parenthesis space straight i with hat on top space minus space left parenthesis 1 plus 3 right parenthesis space straight j with hat on top space plus space left parenthesis 2 plus 3 right parenthesis space straight k with hat on top space equals space straight i with hat on top space minus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top
    therefore space space open square brackets straight a with rightwards arrow on top comma space straight b with rightwards arrow on top comma space straight c with rightwards arrow on top close square brackets space equals space straight a with rightwards arrow on top. space straight b with rightwards arrow on top space cross times space straight c with rightwards arrow on top space equals space open parentheses 3 space straight i with hat on top space plus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space. space open parentheses 6 space straight i with hat on top space plus space 7 space straight j with hat on top space minus space straight k with hat on top close parentheses
                            equals space left parenthesis 3 right parenthesis thin space left parenthesis 6 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 7 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative 1 right parenthesis
space equals space 18 plus 14 minus 1 space equals space 31
       Required equation of plane is
                          open square brackets straight r with rightwards arrow on top comma space straight b with rightwards arrow on top comma space straight c with rightwards arrow on top close square brackets space plus space open square brackets straight r with rightwards arrow on top comma space straight c with rightwards arrow on top comma space straight a with rightwards arrow on top close square brackets space equals space open square brackets straight a with rightwards arrow on top comma space straight b with rightwards arrow on top comma space straight c with rightwards arrow on top close square brackets
    or space space straight r with rightwards arrow on top. space open parentheses straight b with rightwards arrow on top space cross times space straight c with rightwards arrow on top close parentheses space plus space straight r with rightwards arrow on top. space open parentheses straight c with rightwards arrow on top space cross times space straight a with rightwards arrow on top close parentheses space equals space open square brackets straight a with rightwards arrow on top comma space straight b with rightwards arrow on top comma space straight c with rightwards arrow on top close square brackets
or space space straight r with rightwards arrow on top. space open curly brackets open parentheses straight b with rightwards arrow on top cross times straight c with rightwards arrow on top close parentheses space plus space open parentheses straight c with rightwards arrow on top cross times straight a with rightwards arrow on top close parentheses close curly brackets space equals space open square brackets straight a with rightwards arrow on top comma space straight b with rightwards arrow on top comma space straight c with rightwards arrow on top close square brackets
or space space space straight r with rightwards arrow on top. space open parentheses 6 space straight i with hat on top plus 7 stack space straight j with hat on top space minus space straight k with hat on top space plus space straight i with hat on top space minus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space 31
or space space straight r with rightwards arrow on top. space open parentheses 7 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses space equals space 31.
    Question 284
    CBSEENMA12033502

    Find the equation of the plane passing through the points (1, 2, 3) and (0. –1, 0) and parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z over denominator negative 3 end fraction.

    Solution

    The equation of any plane through (1, 2, 3) is
    A(x – 1)+B(y – 2) + C(z – 3) = 0    ...(1)
    ∵ it passes through (0, – 1, 0)
    ∴ A (0 – 1) + B (– 1 – 2) + C (0 – 3) = 0
    ∴  – A – 3B – 3C = 0    ⇒ A + 3B + 3C = 0    ...(2)
    Since plane (1) is parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 2 over denominator 3 end fraction space equals space fraction numerator straight z over denominator negative 3 end fraction
    ∴  normal to the plane with direction ratios A, B, C is perpendicular to the line with direction ratios 2, 3, – 3.
    ∴  A(2) + B(3) + C(– 3) = 0    [∵  a1a2+ b1b2 + c1c2 = 0]
    ∴  2A + 3B-3C = 0
    Solving (2) and (3), we get,
               fraction numerator straight A over denominator negative 9 minus 9 end fraction space equals space fraction numerator straight B over denominator 6 plus 3 end fraction space equals space fraction numerator straight C over denominator 3 minus 6 end fraction
    therefore space space space space space space space fraction numerator straight A over denominator negative 18 end fraction space equals space straight B over 9 space equals space fraction numerator straight C over denominator negative 3 end fraction
therefore space space space space space space straight A over 6 space equals space fraction numerator straight B over denominator negative 3 end fraction space equals space straight C over 1 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space straight A space equals space 6 space straight k comma space space space straight B space equals space minus 3 space straight k comma space space space straight C space equals space straight k
    Putting values of A, B, C in (1), we get,
    6k(x – 1) + (–3 k)(y – 2) + k(z – 3) = 0 or    6 (x – 1) –3 (y – 2) + (z – 3) = 0
    or    6x – 6 – 3y + 6 + z – 3 = 0
    or    6x-3y + z=3
    which is required equation of plane.

    Question 285
    CBSEENMA12033503

    Find the equation of the plane passing through the points (3, 2, 2) and (1, 0, –1) parallel to the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 2 end fraction space equals fraction numerator straight z minus 2 over denominator 3 end fraction.

    Solution

    The equation of plane through (3, 2, 2) is
    A (x – 3) + B (y – 2) + C (z – 2) = 0    ...(1)
    Since it passes through (1, 0, –1)
    ∴  A (1 – 3) + B (0 – 2) + C (–1 – 2) = 0
    or  –2A – 2B – 3C = 0
    ∴ 2A + 2B + 3C = 0    .,.(2)
    The equation of line is
             fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y minus 1 over denominator negative 2 end fraction space equals fraction numerator straight z minus 2 over denominator 3 end fraction
    Its direction ratios are 2, –2, 3
    Since the line is parallel to plane (1) whose normal has direction ratios A, B, C.
    ∴  normal to plane (1) is perpendicular to line
    ∴  2A – 2B + 3C = 0    ...(3)
    From (2) and (3), we get,
               fraction numerator straight A over denominator 6 plus 6 end fraction space equals fraction numerator straight B over denominator 6 minus 6 end fraction space equals fraction numerator straight C over denominator negative 4 minus 4 end fraction
    therefore space space space space space space straight A over 12 space equals space straight B over 0 space equals space fraction numerator straight C over denominator negative 8 end fraction
therefore space space space space space space space straight A over 3 space equals space straight B over 0 space equals space fraction numerator straight C over denominator negative 2 end fraction space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space straight A space equals space 3 straight k comma space space straight B space equals space 0 comma space space straight C space equals space minus 2 straight k
    Putting these values of A, B, C in (1), we get,
    3k (x – 3) + 0 (y – 2) – 2k (z –2) = 0
    or 3 (x – 3) – 2 (z – 2 ) = 0
    or 3x – 9 –2z + 4 = 0 or 3x –2z  – 5 = 0

    Question 286
    CBSEENMA12033504

    Find the equation of the plane passing through the origin and parallel to the vectors straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space space space and space space 3 space straight i with hat on top space minus space straight k with hat on top.

    Solution

    The equation of any plane through (0, 0, 0) is
    A (x – 0) + B (y – 0) + C (z – 0) = 0
    or  Ax + By + C z = 0    ...(1)
    Since it is parallel to the vectors straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top space and space space 3 stack straight i space with hat on top space minus space straight k with hat on top.
    ∴   normal to the plane with direction ratios A, B, C is perpendicular to the lines with direction ratios 1, 1,–1 and 3, 0,–1.
    ∴    A + B – C = 0    ...(2)
    and 3A + 0B – C = 0   ...(3)
    Solving (2) and (3), we get,

                           fraction numerator straight A over denominator negative 1 minus 0 end fraction space equals space fraction numerator straight B over denominator negative 3 plus 1 end fraction space equals space fraction numerator straight C over denominator 0 minus 3 end fraction
    or               fraction numerator straight A over denominator negative 1 end fraction space equals space fraction numerator straight B over denominator negative 2 end fraction space equals space fraction numerator straight C over denominator negative 3 end fraction
    therefore space space space space space space space space straight A over 1 space equals space straight B over 2 space equals space straight C over 3 space equals space straight k space left parenthesis say right parenthesis
therefore space space space space space space space space straight A space equals space straight k comma space space space space straight B space equals space 2 straight k comma space space space straight C space equals space 3 straight k

    Putting these values of A, B, C in (1), we get,
    kx + 2ky + 3kz = 0
    or x + 2 y + 3z = 0
    which is required equation of plane.

    Question 287
    CBSEENMA12033505

    Find the vector and Cartesian form of the equation of the plane passing through the point (1, 2, –4) and parallel to the lines
                 straight r with rightwards arrow on top space equals straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda open parentheses 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top close parentheses
    and       straight r with rightwards arrow on top space equals space straight i with hat on top space minus space 3 space straight j with hat on top space plus space space 5 space straight k with hat on top space plus space straight mu space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses

    Solution

    Here,         straight a with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 straight k with hat on top comma space space space straight b with rightwards arrow on top space equals space 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top
    The vector equation of plane is
                                 open parentheses straight r with rightwards arrow on top minus straight a with rightwards arrow on top close parentheses. space open parentheses straight b with rightwards arrow on top space cross times space straight c with rightwards arrow on top close parentheses space equals 0
    or space space space space open square brackets straight r with rightwards arrow on top space minus space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis close square brackets space. space open square brackets left parenthesis 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis space cross times space left parenthesis straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top right parenthesis close square brackets space equals space 0
    Cartesian equation of plane is
               open vertical bar table row cell straight x minus 1 end cell cell straight y minus 2 end cell cell straight z plus 4 end cell row 2 3 6 row 1 1 cell negative 1 end cell end table close vertical bar space equals space 0
    or   left parenthesis straight x minus 1 right parenthesis space open vertical bar table row 3 6 row 1 cell negative 1 end cell end table close vertical bar space minus space left parenthesis straight y minus 2 right parenthesis space open vertical bar table row 2 6 row 1 cell negative 1 end cell end table close vertical bar space plus space left parenthesis straight z plus 4 right parenthesis space open vertical bar table row 2 3 row 1 1 end table close vertical bar space equals space 0

    or    (–3 – 6) (x – 1) – (–2 – 6) (y – 2) + (2 – 3) (z + 4) = 0
    or    –9 (x– 1) + 8 (y – 2) – (z + 4) = 0
    or    –9x + 9 + 8y –16-z – 4 = 0
    or    –9 x + 8 y – z – 11 = 0 or 9 x – 8 y + z + 11 = 0.

    Question 288
    CBSEENMA12033506

    Show that the lines:
    fraction numerator straight x minus 1 over denominator 2 end fraction space equals fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z minus 3 over denominator 4 end fraction space and space fraction numerator straight x minus 4 over denominator 5 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals straight z intersect. Find the point of intersection also. 

    Solution
    The equations of lines are
                       fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals fraction numerator straight z minus 3 over denominator 4 end fraction                                             ...(1)
    and           fraction numerator straight x minus 4 over denominator 5 end fraction equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 0 over denominator 1 end fraction                                                ...(2)
    Any point on line (1) is (2r + 1, 3r + 2, 4r + 3)
    It lies on the line (2), if  fraction numerator 2 straight r plus 1 minus 4 over denominator 5 end fraction space equals fraction numerator 3 straight r plus 2 minus 1 over denominator 2 end fraction space equals fraction numerator 4 straight r plus 3 over denominator 1 end fraction
    i.e.,  if   fraction numerator 2 straight r minus 3 over denominator 5 end fraction space equals space fraction numerator 3 straight r plus 1 over denominator 2 end fraction space equals space fraction numerator 4 straight r plus 3 over denominator 1 end fraction                                          ...(3)
    Taking fraction numerator 2 straight r minus 3 over denominator 5 end fraction space equals space fraction numerator 3 straight r plus 1 over denominator 2 end fraction comma space space we space get comma
                      15 straight r plus 5 space equals space 4 straight r minus 6 comma space space space space space space space space space space space space space space space space space space space therefore space space space space 11 straight r space equals space minus 11 space space space rightwards double arrow space space space straight r space equals space minus 1
    Substituting this value of r in (3), we get.
                       fraction numerator negative 2 minus 3 over denominator 5 end fraction space equals space fraction numerator negative 3 plus 1 over denominator 2 end fraction space equals space fraction numerator negative 4 plus 3 over denominator 1 end fraction
    or               negative 1 space equals space minus 1 space space equals space minus 1 comma space space space which space is space true. space
    ∴  the lines intersect and the point of intersection is
    (–2 + 1, –3 + 2, –4 + 3), i.e. (–1, –1, –1).

    Question 289
    CBSEENMA12033507

    Show that the lines fraction numerator straight x plus 3 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 5 end fraction space and space fraction numerator straight x plus 1 over denominator negative 1 end fraction space equals fraction numerator straight y minus 2 over denominator 2 end fraction space equals fraction numerator straight z minus 5 over denominator 5 end fraction are coplanar.

    Solution
    The given lines are
    fraction numerator straight x plus 3 over denominator negative 3 end fraction space equals fraction numerator straight y minus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 5 over denominator 5 end fraction space and space fraction numerator straight x plus 1 over denominator negative 1 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 5 end fraction
    These equations can be written as
    fraction numerator straight x minus left parenthesis negative 3 right parenthesis over denominator negative 3 end fraction space space equals fraction numerator straight y minus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 5 over denominator 5 end fraction space and space fraction numerator straight x minus left parenthesis negative 1 right parenthesis over denominator negative 1 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 5 over denominator 5 end fraction
    ∴  x1 = –3, y1= 1, z1 = 5, a1 = –3, b1= 1, c1 = 5
    x2 = –1, y2 = 2, z2 = 5, a2 = –1 b2 = 2, c2 = 5
    The given lines will be coplanar
    if       open vertical bar table row cell straight x subscript 1 minus straight x subscript 1 end cell cell straight y subscript 2 minus straight y subscript 1 end cell cell straight z subscript 2 minus straight z subscript 1 end cell row cell straight a subscript 1 end cell cell straight b subscript 1 end cell cell straight c subscript 1 end cell row cell straight a subscript 2 end cell cell straight b subscript 2 end cell cell straight c subscript 2 end cell end table close vertical bar space equals space 0
    i.e., if open vertical bar table row 2 1 0 row cell negative 3 end cell 1 5 row cell negative 1 end cell 2 5 end table close vertical bar space equals space 0
    i.e.  if  2 space open vertical bar table row 1 5 row 2 5 end table close vertical bar minus 1 open vertical bar table row cell negative 3 end cell 5 row cell negative 1 end cell 5 end table close vertical bar space plus space 0 space open vertical bar table row cell negative 3 end cell 1 row cell negative 1 end cell 2 end table close vertical bar space equals space 0
    i.e. if 2 space left parenthesis 5 minus 10 right parenthesis minus 1 space left parenthesis negative 15 plus 5 right parenthesis plus 0 space left parenthesis negative 6 plus 1 right parenthesis space equals space 0
    i.e. if –10+10 + 0 = 0
    i.e. if 0 = 0, which is true
    ∴ given lines are coplanar.
    Question 290
    CBSEENMA12033508

    Show that the lines fraction numerator straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y minus 7 over denominator 4 end fraction space equals space fraction numerator straight z plus 3 over denominator negative 5 end fraction and fraction numerator straight x minus 8 over denominator 7 end fraction space equals space fraction numerator straight y minus 4 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 3 end fraction intersect each other. 

    Solution

    The equations of lines are
                           fraction numerator straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y minus 7 over denominator 4 end fraction space equals space fraction numerator straight z plus 3 over denominator negative 5 end fraction                    ...(1)
    and                fraction numerator straight x minus 8 over denominator 7 end fraction space equals space fraction numerator straight y minus 4 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 3 end fraction                    ...(2)
    Any point on line (1) is (4r + 5, 4r + 7, - 5r -3), It lies on line (2)
    if   fraction numerator 4 straight r plus 5 minus 8 over denominator 7 end fraction space equals space fraction numerator 4 straight r plus 7 minus 4 over denominator 1 end fraction space equals fraction numerator negative 5 straight r minus 3 minus 5 over denominator 3 end fraction
    i.e, if  fraction numerator 4 straight r minus 3 over denominator 7 end fraction space equals space fraction numerator 4 straight r plus 3 over denominator 1 end fraction space equals space fraction numerator negative 5 straight r minus 8 over denominator 3 end fraction                              ...(3)
    From the first and second members,
    fraction numerator 4 straight r minus 3 over denominator 7 end fraction space equals space fraction numerator 4 straight r plus 3 over denominator 1 end fraction space space space space space space space or space space 28 straight r plus 21 space equals 4 straight r minus 3
therefore space space space space space space 24 straight r space equals space minus 24 space space space space space space space rightwards double arrow space space space straight r space equals space minus 1
    Substituting this value of r in (3), we get,
                     fraction numerator negative 4 minus 3 over denominator 7 end fraction space equals space fraction numerator negative 4 plus 3 over denominator 1 end fraction space equals space fraction numerator 5 minus 8 over denominator 3 end fraction
    or  negative 1 space equals space minus 1 space equals space minus 1 comma space space space which space is space true
    ∴ the lines intersect at (– 4 + 5, –4 + 7, 5 – 3) i.e. (1,3,2).

    Question 291
    CBSEENMA12033509

    Show that the lines fraction numerator straight x minus 1 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 2 end fraction space equals fraction numerator straight z minus 1 over denominator 5 end fraction space space and space fraction numerator straight x minus 2 over denominator 4 end fraction space equals space fraction numerator straight y minus 1 over denominator 3 end fraction space equals space fraction numerator straight z plus 1 over denominator negative 2 end fraction do not intersect each other. 

    Solution
    The equations of lines are
             fraction numerator straight x minus 1 over denominator 3 end fraction space equals space fraction numerator straight y plus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 1 over denominator 5 end fraction                       ...(1)
          fraction numerator straight x minus 2 over denominator 4 end fraction space equals space fraction numerator straight y minus 1 over denominator 3 end fraction space equals space fraction numerator straight z plus 1 over denominator negative 2 end fraction                           ...(2)
    Any point on the line (1) is (3r + 1, 2r – 1, 5r + 1)
    It lies on line (2)
      if  fraction numerator 3 straight r plus 1 minus 2 over denominator 4 end fraction space equals space fraction numerator 2 straight r minus 1 minus 1 over denominator 3 end fraction space equals space fraction numerator 5 straight r plus 1 plus 1 over denominator negative 2 end fraction
    i.e., if fraction numerator 3 straight r minus 1 over denominator 4 end fraction space equals space fraction numerator 2 straight r minus 2 over denominator 3 end fraction space equals space fraction numerator 5 straight r plus 2 over denominator negative 2 end fraction                ...(3)
    From the first and second numbers,
                  fraction numerator 3 straight r minus 1 over denominator 4 end fraction space equals space fraction numerator 2 straight r minus 2 over denominator 3 end fraction space space space space space space space or space space space space 9 straight r minus 3 space equals space 8
or space space space straight r space equals space minus 5
    Substituting this value of r in (3), we get,
    fraction numerator negative 15 minus 1 over denominator 4 end fraction space equals space fraction numerator negative 10 minus 2 over denominator 3 end fraction space equals fraction numerator negative 25 plus 2 over denominator negative 2 end fraction
    or     negative 4 space equals space minus 4 space space equals 23 over 2 comma which is not true
    ∴    the given lines do not intersect.
    Question 292
    CBSEENMA12033510

    Show that the lines:
                fraction numerator straight x minus straight a plus straight d over denominator straight alpha minus straight delta end fraction space equals space fraction numerator straight y minus straight a over denominator straight alpha end fraction space equals space fraction numerator straight z minus straight a minus straight d over denominator straight a plus straight delta end fraction

    and       fraction numerator straight x minus straight b plus straight c over denominator straight beta minus straight gamma end fraction space equals space fraction numerator straight y minus straight b over denominator straight beta end fraction space equals space fraction numerator straight z minus straight b minus straight c over denominator straight beta plus straight gamma end fraction are coplanar. 

    Solution
    The equations of given lines are
                              fraction numerator straight x minus straight a plus straight d over denominator straight alpha minus straight delta end fraction space equals space fraction numerator straight y minus straight a over denominator straight alpha end fraction space equals space fraction numerator straight z minus straight a minus straight d over denominator straight a plus straight delta end fraction
    and          fraction numerator straight x minus straight b plus straight c over denominator straight beta minus straight gamma end fraction space equals space fraction numerator straight y minus straight b over denominator straight beta end fraction space equals space fraction numerator straight z minus straight b minus straight c over denominator straight beta plus straight gamma end fraction
    These lines are coplanar
        if            open vertical bar table row cell straight b minus straight c minus straight a plus straight d end cell cell straight b minus straight a end cell cell straight b plus straight c minus straight a minus straight d end cell row cell straight a minus straight delta end cell straight alpha cell straight alpha plus straight delta end cell row cell straight beta minus straight gamma end cell straight beta cell straight beta plus straight gamma end cell end table close vertical bar space equals space 0

    i.e. if        open vertical bar table row cell 2 straight b minus 2 straight a end cell cell straight b minus straight a end cell cell straight b plus straight c minus straight a minus straight d end cell row cell 2 straight alpha end cell straight alpha cell straight alpha plus straight delta end cell row cell 2 straight beta end cell straight beta cell straight beta plus straight gamma end cell end table close vertical bar space equals space 0 comma space space by space straight C subscript 1 plus straight C subscript 3
    i.e. if   open vertical bar table row cell straight b minus straight a end cell cell straight b minus straight a end cell cell straight b plus straight c minus straight a minus straight d end cell row straight alpha straight alpha cell straight alpha plus straight delta end cell row straight beta straight beta cell straight beta plus straight gamma end cell end table close vertical bar space equals 0             

    i.e. if    2(0) = 0    [Since C1, C2 are identical]
    i.e. if    0 = 0, which is true.
    Hence the result.

    Question 293
    CBSEENMA12033511

    If 4x + 4y – kz = 0 is the equation of the plane through the origin that contains a line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space equals space straight z over 4. then find the value of k.

    Solution

    The equation of plane is 4x + 4y – kz = 0    ...(1)
    It passes through the origin (0, 0, 0).
    The equation of line is
    fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space equals space straight z over 4                                           ...(2)
    The line has direction ratios 2, 3, 4.
    Since the line (2) lies in the plane (1)
    ∴  normal to the plane with direction ratios 4, 4, – k is perpendicular to the line (1).
    ∴  (2) (4) + (3) (4) + (4) (– k) = 0
    ∴  8 + 12 – 4 k = 0    ⇒  4 k = 20  ⇒ k = 5.

    Question 294
    CBSEENMA12033512

    Show that the plane whose vector equation is straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals 3 contains the line whose vector equation is straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight lambda open parentheses 2 straight i with hat on top space plus space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses

    Solution
    The equation of given plane is
    straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 3                                       ...(1)
    The equation of given plane is
     straight r with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight lambda space open parentheses 2 straight i with hat on top space plus space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses                     ...(2)
    Now line (2) passes through the point (1, 1, 0) with position vector straight i with hat on top space plus space straight j with hat on top and is parallel to the vector 2 space straight i with hat on top space plus space straight j with hat on top space plus space 4 space straight k with hat on top.
    Now plane (1) passes through the point with position vector straight i with hat on top space plus space straight j with hat on top
    if   open parentheses straight i with hat on top space plus space straight j with hat on top close parentheses space. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 3
    i.e.   if  1 + 2 -0 = 3
    i.e.  if 3 = 3,  which is true
    Now, straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top is a vector normal to the plane (1). It will be perpendicular to the line (2) if it is perpendicular to 2 space straight i with hat on top space plus space straight j with hat on top space plus space 4 space straight k with hat on top
    i.e.  if  open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses. space space space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space space 4 space straight k with hat on top close parentheses space equals space 0
    i.e. if 2 + 2 – 4 = 0
    i.e. if 0 = 0, which is true
    ∴  plane (1) contains the line (2 )
    Question 295
    CBSEENMA12033513

    Show that the line straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus 3 space space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight lambda space open parentheses straight i with hat on top space minus space straight j with hat on top space plus 2 space straight k with hat on top close parentheses lies in the plane straight r with rightwards arrow on top. space open parentheses 3 straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space plus space 2 space equals 0

    Solution
    The equation of given plane is
        straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space minus 2
    or  straight r with rightwards arrow on top. space open parentheses negative 3 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space minus 2                                             ...(1)
    The equation of given line is
    straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top space plus space straight lambda open parentheses straight i with hat on top space minus space straight j with hat on top space plus space space 2 space straight k with hat on top close parentheses                          ...(2)
    Now line  (2) passes through the point (2, -3, 5), With position vector
    2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top and is parallel to the vector straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top.
    Now plane (1) passes through the point with position vector 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top
    if   open parentheses 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses. space space open parentheses negative 3 space straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals 2
    i.e.   if (2) (-3) + (-3) (-1) + (5) (1) = 2
    i.e.  if 2 = 2, which is true
    Now, negative 3 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top is a vector normal to the plane (1). It will be perpendicular to the line (2) if it is perpendicular straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top       
    i.e. if (–3) (1) + (– 1) (– 1) + (1) (2) = 0
    i.e. if –3 + 1+ 2 = 0
    i.e. if 0 = 0, which is true
    ∴  line (2) lies in plane (1).
    Question 296
    CBSEENMA12033514

    Show that the line whose vector equation is straight r with rightwards arrow on top space space equals space open parentheses straight i with hat on top space plus space straight j with hat on top close parentheses space plus space straight lambda space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 4 space straight k with hat on top close parentheses lies in the plane straight pi whose vector equation is straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 3.

    Solution
    The equation of plane is
       straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 3                                            ...(1)
    The equation of line is
      straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top space plus space straight j with hat on top close parentheses space plus space straight lambda space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space space 4 space straight k with hat on top close parentheses                        ...(2)
    Now the line (2) will lie in plane (1)
    (i) if the point with position vector  straight i with hat on top space plus space straight j with hat on top lies in the plane
    i.e.   if  open parentheses straight i with hat on top space plus space straight j with hat on top close parentheses space. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses space equals space 3
    i.e. if (1) (1) + (1) (2) + (0) (– 1) = 3
    i.e. if 1 + 2 + 0 = 3
    i.e. if 3 = 3, which is true.
    and (ii) straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top is perpendicular to 2 space straight i with hat on top space plus space straight j with hat on top space plus space 4 space straight k with hat on top
    i.e.,   if  open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space straight k with hat on top close parentheses. space space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space space 4 space straight k with hat on top close parentheses space equals space 0
    i.e. if (1) (2) + (2) (1) + (– 1) (4) = 0
    i.e. if 2 + 2 – 4 = 0, which is true
    ∴ line (2) lies in plane (1).
    Question 297
    CBSEENMA12033515

    Find the equations of the line passing through (1, – 2, 3) and parallel to the planes x – y + 2 z = 5 and 3 x + 2y – z = 6. 

    Solution

    Let a, b, c the direction ratios of the line passing through the point (1, - 2, 3).
    ∴    equations of line are
               fraction numerator straight x minus 1 over denominator straight a end fraction equals fraction numerator straight y plus 2 over denominator straight b end fraction equals fraction numerator straight z minus 3 over denominator straight c end fraction                                              ...(1)
    Since line (1) parallel to the plane x - y + 2z = 5 whose direction ratios of the normal are 1, -1, 2
    ∴  a(1) +b(– 1) + c(2) = 0
    or    a – b +2c=0    ... (2)
    Again line (1) is parallel to the plane 3x + 2y – z = 6
    ∴ 3a + 2b – c = 0    ...(3)
    From (2) and (3), we get
                       fraction numerator straight a over denominator 1 minus 4 end fraction space equals space fraction numerator straight b over denominator 6 plus 1 end fraction space equals space fraction numerator straight c over denominator 2 plus 3 end fraction
    therefore space space space space fraction numerator straight a over denominator negative 3 end fraction space equals space straight b over 7 space equals space straight c over 5
    ∴ from (1), the equations of line are
    fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y plus 2 over denominator 7 end fraction space equals space fraction numerator straight z minus 3 over denominator 5 end fraction

    Question 298
    CBSEENMA12033516

    Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes straight r with rightwards arrow on top. space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space equals space 5 space space and space straight r with rightwards arrow on top. space space open parentheses 3 space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 6.

    Solution
    Let a, b, c be the direction ratios of the line passing through the point (1, 2, 3).
    ∴    equation of line is
    fraction numerator straight x minus 1 over denominator straight a end fraction space equals space fraction numerator straight y minus 2 over denominator straight b end fraction equals fraction numerator straight z minus 3 over denominator straight c end fraction                      ...(1)
    The equations of planes are
                straight r with rightwards arrow on top. space left parenthesis straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top right parenthesis space equals space 5
    and        straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 6
    or      left parenthesis straight x space straight i with hat on top space plus space straight y space straight j with hat on top space space plus space straight z space straight k with hat on top right parenthesis. space space open parentheses straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top close parentheses space equals space 5
    and    left parenthesis straight x straight i with hat on top space plus space straight y straight j with hat on top space plus space straight z straight k with hat on top right parenthesis. space open parentheses 3 space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 6
    or    straight x minus straight y plus 2 straight z minus 5 space equals space 0                            ...(2)
    and   3 straight x plus straight y plus straight z minus 6 space equals 0                            ...(3)
    Since line (1) is parallel to the plane (2) whose direction ratios of the normal are 1, -1, 2.
    ∴  a (1) + b (– 1) + c (2) = 0
    ∴  a  – b + 2c = 0
    Again line (1) is parallel to the plane (2) whose direction ratios of the normal are 3,1,1.
    ∴  3a + b + c = 0    .....(5)
    From (4) and (5), we get,
                 fraction numerator straight a over denominator negative 1 minus 2 end fraction space equals space fraction numerator straight b over denominator 6 minus 1 end fraction space equals space fraction numerator straight c over denominator 1 plus 3 end fraction
    therefore space space space space space fraction numerator straight a over denominator negative 3 end fraction space equals space straight b over 5 space equals space straight c over 4
therefore space space space space straight a over 3 space equals fraction numerator straight b over denominator negative 5 end fraction space equals space fraction numerator straight c over denominator negative 4 end fraction
    ∴  from (1), the equation of line is
                           fraction numerator straight x minus 1 over denominator 3 end fraction space equals space fraction numerator straight y minus 2 over denominator negative 5 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 4 end fraction space equals space straight mu
    therefore space space space space straight x minus 1 space equals space 3 space straight mu comma space space space space space space space space space space straight y minus 2 space equals space minus space 5 space straight mu comma space space space space straight z minus 3 space equals space minus 4 space straight mu
therefore space space space space space space space straight x space equals space 1 space plus space 3 space straight mu comma space space space space space space straight y space equals 2 space minus space 5 space straight mu comma space space space space straight z space equals space 3 space minus space 4 space straight mu
therefore space space space space space space straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight mu space left parenthesis 3 space straight i with hat on top space minus space 5 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis
or space space space space space space space space space space space space space space space space straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top right parenthesis space plus space straight mu space left parenthesis 3 space straight i with hat on top space minus space 5 space straight j with hat on top space minus space 4 space straight k with hat on top right parenthesis
    which is vector equation of line.
    Question 299
    CBSEENMA12033517

    Find the vector equation of the line passing through the point (1, 2, – 4) and perpendicular to the lines:
    fraction numerator straight x minus 8 over denominator 3 end fraction space equals space fraction numerator straight y plus 19 over denominator negative 16 end fraction space equals space fraction numerator straight z minus 10 over denominator 7 end fraction space and space fraction numerator straight x minus 15 over denominator 3 end fraction space equals space fraction numerator straight y minus 29 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 5 end fraction

    Solution

    Let a. b, c be the direction ratios of the line passing through the point (1, 2, – 4)
    ∴  equation of line is
    fraction numerator straight x minus 1 over denominator straight a end fraction space equals space fraction numerator straight y minus 2 over denominator straight b end fraction space equals space fraction numerator straight z plus 4 over denominator straight c end fraction                           ...(1)
    Since this line is perpendicular to the lines
                     fraction numerator straight x minus 8 over denominator 3 end fraction space equals space fraction numerator straight y plus 19 over denominator negative 16 end fraction space equals space fraction numerator straight z minus 10 over denominator 7 end fraction space and space fraction numerator straight x minus 15 over denominator 3 end fraction space equals space fraction numerator straight y minus 29 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 5 end fraction
    therefore space space 3 straight a space minus space 16 straight b space plus space 7 straight c space equals space 0
    and    3 straight a plus 8 straight b minus 5 straight c space equals space 0
    Solving these equations, we get,
                           fraction numerator straight a over denominator 80 minus 56 end fraction space equals space fraction numerator straight b over denominator 21 plus 15 end fraction equals space fraction numerator straight c over denominator 24 plus 48 end fraction
    therefore space space space space space straight a over 24 space equals space straight b over 36 equals straight c over 72
therefore space space space space straight a over 2 space equals space straight b over 3 space equals space straight c over 6
therefore space space space space from space left parenthesis 1 right parenthesis comma space the space equations space of space line space is
fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y minus 2 over denominator 3 end fraction space equals space fraction numerator straight z plus 4 over denominator 6 end fraction
    ∴ line passes through the point (1, 2,–4) with position vector straight a with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top is parallel to straight b with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space space 3 space straight j with hat on top space plus space 6 space straight k with hat on top.
    ∴   equation of line is
                       straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda straight b with rightwards arrow on top
    or                straight r with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top space plus space straight lambda left parenthesis 2 straight i with hat on top space plus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top right parenthesis

    Question 300
    CBSEENMA12033518

    Find the equation of the plane containing the line
    fraction numerator straight x plus 2 over denominator 2 end fraction space equals space fraction numerator straight y plus 3 over denominator 3 end fraction space equals fraction numerator straight z minus 4 over denominator negative 2 end fraction
    and the point (0, 6, 0).

    Solution
    The equations of line are
    fraction numerator straight x plus 2 over denominator 2 end fraction space equals space fraction numerator straight y plus 3 over denominator 3 end fraction space equals fraction numerator straight z minus 4 over denominator negative 2 end fraction                                ...(1)
    It passes through (-2, -3, 4) and has direction-ratios 2, 3, –2.
    Since the plane contains line (1)
    ∴  equation of plane is
    a(x + 2) + b(y + 3) + c(z – 4) = 0    ...(2)
    where 2a + 3b – 2c = 0    ...(3)
    Again plane (2) passes through (0, 6, 0)
    ∴  a (0 + 2) + b (6 + 3) + c (0 – 4) = 0
    or 2 a + 9 b – 4c = 0    ...(4)
    Solving (3) and (4), we get,
                              fraction numerator straight a over denominator negative 12 plus 18 end fraction space equals space fraction numerator straight b over denominator negative 4 plus 8 end fraction space equals space fraction numerator straight c over denominator 18 minus 6 end fraction
    therefore space space space space space space space space space space space straight a over 6 equals space straight b over 4 space equals straight c over 12 space space space space space space space space or space space space space straight a over 3 equals straight b over 2 space equals space straight c over 6 space equals space straight k space left parenthesis say right parenthesis
    ∴   a = 3 k, b = 2 k, c = 6 k
    Putting these values of a, b. c in (2), we get,
    3 k (x + 2) + 2 k (y + 3) + 6 k (z – 4) = 0
    or 3 (x + 2) + 2 (y + 3) + 6 (z – 4) = 0
    or  3x + 6 + 2y + 6 + 6 z –24 = 0
    or 3 x + 2 y + 6 z – 12 = 0
     
    Question 301
    CBSEENMA12033519

    Show that the lines:
    fraction numerator straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y minus 7 over denominator 4 end fraction space equals fraction numerator straight z plus 3 over denominator negative 5 end fraction comma space space fraction numerator straight x minus 8 over denominator 7 end fraction space equals space fraction numerator straight y minus 4 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 3 end fraction are co-planar, find their common point and the equation of the plane in which way they lie. 

    Solution
    The equations of lines are
           fraction numerator straight x minus 5 over denominator 4 end fraction space equals space fraction numerator straight y minus 7 over denominator 4 end fraction space equals space fraction numerator straight z plus 3 over denominator negative 5 end fraction                      ...(1)
             fraction numerator straight x minus 8 over denominator 7 end fraction space equals fraction numerator straight y minus 4 over denominator 1 end fraction space equals space fraction numerator straight z minus 5 over denominator 3 end fraction                      ...(2)
    Any point on the line (1) is (4 r + 5, 4 r + 7, – 5 r – 3)
    It lies on the line (2), if fraction numerator 4 straight r plus 5 minus 8 over denominator 7 end fraction space equals space fraction numerator 4 straight r plus 7 minus 4 over denominator 1 end fraction space equals space fraction numerator negative 5 straight r minus 3 minus 5 over denominator 3 end fraction
    i.e., if  fraction numerator 4 straight r minus 3 over denominator 7 end fraction equals fraction numerator 4 straight r plus 3 over denominator 1 end fraction space equals space fraction numerator negative 5 straight r minus 8 over denominator 3 end fraction                   ...(3)
    Taking fraction numerator 4 straight r minus 3 over denominator 7 end fraction space equals fraction numerator 4 straight r plus 3 over denominator 1 end fraction comma we get
                             28 straight r plus 21 space equals space 4 straight r minus 3 comma space space space space space space space space space space space space space space space space space space space space therefore space space space space 24 straight r space equals space minus 24 comma space space space space space space space space space therefore space space space straight r space equals space minus 1
     Substituting this value of r in (3), we get,
                fraction numerator negative 4 minus 3 over denominator 7 end fraction space equals space fraction numerator negative 4 plus 3 over denominator 1 end fraction space equals space fraction numerator 5 minus 8 over denominator 3 end fraction

    or – 1 = – 1 = – 1, which is true
    ∴  the lines intersect, and    ∴ are coplanar
    The point of intersection of lines is (–4 + 5, –4 + 7, 5 – 3) i.e. (1,3,2)
    The equation of plane in which given lines lie is
                               open vertical bar table row cell straight x minus 5 end cell cell straight y minus 7 end cell cell straight z plus 3 end cell row 4 4 cell negative 5 end cell row 7 1 3 end table close vertical bar space equals space 0
    or     left parenthesis straight x minus 5 right parenthesis space open vertical bar table row 4 cell negative 5 end cell row 1 cell space space 3 end cell end table close vertical bar space minus space left parenthesis straight y minus 7 right parenthesis space open vertical bar table row 4 cell negative 5 end cell row 7 cell space space space 3 end cell end table close vertical bar plus space left parenthesis straight z plus 3 right parenthesis space open vertical bar table row 4 4 row 7 1 end table close vertical bar space equals space 0
    or (x – 5) (12+ 5)–(y–7) (12 + 25) + (z + 3) (4 – 28) = 0
    or    17 (x – 5) – 47 (y – 7) – 24 (z + 3) = 0
    or    17x – 47 y – 24 z + 172 = 0
    which is required equation of plane.


    Question 302
    CBSEENMA12033520

    Find the angle between each of the following pairs of lines:
    A line with direction ratios 2 : 2 : 1.
    A line joining (3, 1, 4) to (7, 2, 12)

    Solution

    Direction-ratios of first line are 2, 2, 1.
    Direction-ratios of second line joining the points (3, 1, 4), (7, 2, 12) are 7 – 3, 2 – 1 12 – 4 i.e., 4, 1, 8
    Let θ be the angle between the two lines
    therefore space space space cos space straight theta space equals space fraction numerator left parenthesis 2 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis 8 right parenthesis over denominator square root of left parenthesis 2 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis 1 right parenthesis end root space square root of left parenthesis 4 right parenthesis squared plus left parenthesis 1 right parenthesis squared plus left parenthesis 8 right parenthesis squared end root end fraction
                                open square brackets because space cos space straight theta space equals space fraction numerator straight a subscript 1 straight a subscript 2 plus straight b subscript 1 straight b subscript 2 plus straight c subscript 1 straight c subscript 2 over denominator square root of straight a subscript 1 squared plus straight b subscript 1 squared plus straight c subscript 1 squared end root space square root of straight a subscript 2 squared plus straight b subscript 2 squared plus straight c subscript 2 squared end root end fraction close square brackets
                      equals space fraction numerator 8 plus 2 plus 8 over denominator 3 cross times 9 end fraction space equals space fraction numerator 18 over denominator 3 cross times 9 end fraction space equals space 2 over 3
    therefore space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 2 over 3 close parentheses

    Question 303
    CBSEENMA12033521

    Find the angle between each of the following pairs of lines:
    5, –12, 13;    – 3, 4, 5

    Solution

    The direction-ratios of the two lines are 5, – 12, 13 and – 3, 4, 5.
    Let θ be the angle between the lines.
    therefore space space cos space straight theta space equals space fraction numerator left parenthesis 5 right parenthesis thin space left parenthesis negative 3 right parenthesis space plus space left parenthesis negative 12 right parenthesis thin space left parenthesis 4 right parenthesis space plus space left parenthesis 13 right parenthesis thin space left parenthesis 5 right parenthesis over denominator square root of 5 plus 144 plus 169 end root space square root of 9 plus 16 plus 25 end root end fraction space equals space fraction numerator 15 minus 48 plus 65 over denominator 13 square root of 2 space 5 square root of 2 end fraction space equals space fraction numerator 2 over denominator 2 cross times 65 end fraction equals 1 over 65
therefore space straight theta space equals space cos to the power of negative 1 end exponent open parentheses 1 over 65 close parentheses

    Question 304
    CBSEENMA12033522

    Find the angle between each of the following pairs of lines:
    1, 1, 2;   square root of 3 minus 1 comma space space minus square root of 3 minus 1 comma space 4

    Solution
    The direction-ratios of the two lines are 1,1,2 and square root of 3 minus 1 comma space space minus square root of 3 minus 1 comma space 4
    Let θ be the angle between the lines.
     therefore space space space cos space straight theta space equals space fraction numerator left parenthesis 1 right parenthesis thin space left parenthesis square root of 3 minus 1 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative square root of 3 minus 1 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis 4 right parenthesis over denominator square root of 1 plus 1 plus 4 end root square root of 3 plus 1 minus 2 square root of 3 plus 3 plus 1 plus 2 square root of 3 plus 16 end root end fraction
space space space space space space space space space space space space space space space space space space space equals fraction numerator square root of 3 minus 1 minus square root of 3 minus 1 plus 8 over denominator square root of 6 space square root of 24 end fraction space equals space fraction numerator 6 over denominator square root of 6. space 2 square root of 6 end fraction space
therefore space space space cos space straight theta space equals space 1 half space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight theta space equals space 60 degree space space space space space space space space space space space space
    Question 305
    CBSEENMA12035714

    Find the value of p, so that the lines:
    are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, -4) and parallel to line l1.

    Solution

    The equation of line L1:
    fraction numerator 1 minus straight x over denominator 3 end fraction equals fraction numerator 7 straight y minus 14 over denominator straight p end fraction equals fraction numerator straight z minus 3 over denominator 2 end fraction
rightwards double arrow space fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals fraction numerator straight y minus 2 over denominator begin display style straight p over 7 end style end fraction space equals fraction numerator straight z minus 3 over denominator 2 end fraction space space... left parenthesis 1 right parenthesis
The space equation space of space line space straight L subscript 2 colon
fraction numerator 7 minus 7 straight x over denominator 3 straight p end fraction equals fraction numerator straight y minus 5 over denominator 1 end fraction equals fraction numerator 6 minus straight z over denominator 5 end fraction
rightwards double arrow fraction numerator straight x minus 1 over denominator begin display style fraction numerator negative 3 straight p over denominator 7 end fraction end style end fraction equals fraction numerator straight y minus 5 over denominator 1 end fraction equals fraction numerator straight z minus 6 over denominator negative 5 end fraction... left parenthesis 2 right parenthesis
     Since space line space straight L subscript 1 space and space straight L subscript 2 space are space perpendicular space to space each space other comma space we space have
minus 3 cross times open parentheses fraction numerator negative 3 straight p over denominator 7 end fraction close parentheses plus straight p over 7 cross times 1 cross times 2 cross times left parenthesis negative 5 right parenthesis space equals space 0
rightwards double arrow fraction numerator 9 straight p over denominator 7 end fraction plus straight p over 7 equals 10
rightwards double arrow 10 straight p space equals 70
rightwards double arrow straight p equals space 7
Thus space equations space of space lines space straight L subscript 1 space and space straight L subscript 2 space are colon
fraction numerator straight x minus 1 over denominator negative 3 end fraction equals fraction numerator straight y minus 2 over denominator 1 end fraction equals fraction numerator straight z minus 3 over denominator 2 end fraction
fraction numerator straight x minus 1 over denominator negative 3 end fraction equals fraction numerator straight y minus 5 over denominator 1 end fraction equals fraction numerator straight z minus 6 over denominator negative 5 end fraction
    Thus the equation of the line passing through the point (3, 2, -4) and parallel to the line  L1 is:
    fraction numerator straight x minus 3 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 1 end fraction space equals space fraction numerator straight z plus 4 over denominator 2 end fraction
     

    Question 306
    CBSEENMA12035715
    Question 307
    CBSEENMA12035718

    A manufacturing company makes two types of teaching aids A and B of Mathematics for class XII. Each type of A requires 9 labour hours of fabricating and 1 labour hour for finishing. Each type of B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available per week are 180 and 30 respectively. The company makes a profit of 80 on each piece of type A and 120 on each piece of type B. How many pieces of type A and type B should be manufactured per week to get a maximum profit? Make it as an LPP and solve graphically. What is the maximum profit per week?

    Solution

    Let x be the number of pieces manufactured of type A and y be the number of pieces manufactured of type B. Let us summarize the data given in the problem as follows:

    Product Time for Fabricating (in hours) Time for Finishing (in hours) Maximum labour hours available
    Type A 9 1 180
    Type B 12 3 30
    Maximum Profit (in Rupees) 80 120  

    Thus, the mathematical form of above LPP is
    Maximize Z = 80x+120y
    subject to
    9 straight x plus 12 straight y less or equal than 180
straight x plus 3 straight y less or equal than 30
    Also, we have straight x greater or equal than 0 comma space space straight y greater or equal than 0
    Let us now find the feasible region, which is the set of all points whose coordinates satisfy all constraints. 
    Consider the following figure. 

    Thus, the feasible region consists of the points A, B and C.
    The values of the objective function at the corner points are given below in the following table:
    Points Value of Z
    A(12, 6) Z = 80 x 12 + 120 x 6 = Rs. 1680
    B(0, 10) Z = 80 x 0 +120 x 10 = Rs. 1200
    C(20, 0) Z = 80 x 20 + 120 x 0 = Rs.1600

    Clearly,Z is maximum at x=12 and y=6 and the maximum profit is Rs.1680.
    Question 308
    CBSEENMA12035732

    Find the Cartesian equation of the line passes through the point (-2, 4, -5) and is parallel to the line fraction numerator straight x plus 3 over denominator 3 end fraction equals fraction numerator 4 minus straight y over denominator 5 end fraction equals fraction numerator straight z plus 8 over denominator 6 end fraction.

    Solution

    The equation of the given line is:
    fraction numerator straight x plus 3 over denominator 3 end fraction equals fraction numerator 4 minus straight y over denominator 5 end fraction equals fraction numerator straight z plus 8 over denominator 6 end fraction
straight i. straight e. comma space fraction numerator straight x plus 3 over denominator 3 end fraction equals fraction numerator straight y minus 4 over denominator negative 5 end fraction equals fraction numerator straight z plus 8 over denominator 6 end fraction
    The required line is parallel to the given line. Therefore, direction ratios of the required line are same as the direction ratio of the given line. So, the direction ratios of the required line are 3, -5, and 6.
    Thus, the equation of the straight line passing through (-2, 4, -5) and having direction ratios 3, -5, 6 is
    fraction numerator straight x minus left parenthesis negative 2 right parenthesis over denominator 3 end fraction equals space fraction numerator straight y minus 4 over denominator negative 5 end fraction space equals fraction numerator straight z minus left parenthesis negative 5 right parenthesis over denominator 6 end fraction
straight i. straight e. comma space fraction numerator straight x plus 2 over denominator 3 end fraction equals fraction numerator 4 minus straight y over denominator 5 end fraction equals fraction numerator straight z plus 5 over denominator 6 end fraction

    Question 309
    CBSEENMA12035807

    Find the shortest distance between the lines.

    r = (4i^ -j^) + λ (i^ - j^ + 2k^) + μ (2i^ + 4j^-5k)^

    Solution

    As r = (4i^ -j^) + λ (i^ + 2j^-3k^) andr = (i^-j^ + 2k^) + μ (2i^ + 4j^ - 5k^) are two lines.a = 4i^ -j^b = i^ + 2j^ -3k^c = i^ -j^ + 2k^d = 2i^ + 4j^ - 5k^shortes distance,d = (b x d) x (c -a)|b x d||b x d| = i^j^k^12324-5 = i^(2) - j^(1) + k^ (0) = 2 i^-j^|b x d| =   4 + 1 = 5 (c -a).(b x d)  = -6 + 0 + 0 = - 6 d = -65 = 65

    Question 310
    CBSEENMA12035826

    Find the distance of the point (-1,-51-10) from the point of intersection of the line r = 2i^ -j^ + 2k^ + λ (3i^ + 4j^ + 2k^) and the plane r. (i^-j^ + k^) = 5

    Solution

    Cartesian equation of line and plane,

    x- 23 = y + 14 = z- 22 : (Line)x - y + z - 5 = 0  : (Plane) Let Q (α, β, γ) be point  of intesection of line and plane which will satisfy both equationα - 23 = β + 14 = γ - 22 = λα = 3λ + 2β = 4λ - 1γ = 2λ + 2Also, α -β +γ - 5 = 03λ + 2 - 4λ + 1 + 2λ + 2 - 5 = 0λ = 0 α = 2, β = -1, γ = 2 Q  (2, - 1,2)l (PQ) = (-1-2)2 + (-5 + 1)2 + (-10-2)2 = 9 + 16 + 144= 169 = 13 units

    Question 311
    CBSEENMA12035850

    Find the shortest distance between the following lines:

    x - 31 = y - 5-2 = z - 71 and x + 17 = y + 1-6 = z + 11 

    Solution

    x - 31 = y - 5-2 = z - 71

    The vector form of this equation is:

    r = 3i^ + 5j^ + 7k^ + λ i^ - 2j^ +k^r = a1 + λ b1              ............(1)x + 17 = y + 1-6 = z + 11

    The vector form of this equation is:

    r = -i^ -j^ -k^ + λ 7i^ -6j^ +k^Therefore, a1 = 3i^ +5j^ -7k^     b1 =i^ -2j^ +k^                a2 = -i^ -j^ -k^  and  b2 = 7i^ -6j^ +k^

    Now, the shortest distance between these two lines is given by:

     

    d = b1 x b2 . a2 - a1b1 x b2b1 x b2 = i^j^k^1-2 17-61           =i^ ( -2 + 6 ) -j^ ( 1 - 7 ) + k^ (-6 + 14)           = 4i^ + 6j^ + 8 k^b1 x b2 = 42 + 62 + 82             = 116a2 - a1 = -i^ -j^ - k^ - 3i^ +5j^ + 7k^             =- 4i^ - 6j^ - 8 k^ d = 4i^ + 6j^ + 8 k^ . - 4i^ - 6j^ - 8 k^ 116       = -16 - 36 - 64116       = -116116  = 116

     

    Question 312
    CBSEENMA12035851

    Find the point on the line x + 23 = y + 12 = z - 32 at a distance 3 2 from the point
    (1, 2, 3).

    Solution

    Let  x + 23 = y + 12 = z - 32 = λx = -2 + 3λ,      y = -1 + 2λ,       z = 3 + 2λTherefore, a point on this line is: { ( -2 + 3λ ), (-1 + 2λ ), ( 3 + 2λ ) }The distance of the point  { ( -2 + 3λ ), (-1 + 2λ ), ( 3 + 2λ ) } from point  ( 1, 2, 3 ) = 32 -2 + 3λ - 12 + -1 + 2λ - 22 +  3 + 2λ - 32 = 32  -3+ 3λ 2 + -3 + 2λ 2 +   2λ 2 = 18 9+ 9λ 2 - 18λ + 9 + 4λ 2 - 12λ + 4λ 2 = 1817λ 2 - 30λ = 0λ = 0,    λ = 3017When   λ = 3017,

    x = -2 + 3λ = -2 + 3 3017 = -2 + 9017 = 5617y = -1 + 2λ = 1 + 2 3017 = 1 + 6017 = 4317z = 3 + 2λ = 3 + 2 3017 = 51 + 6017 = 11117thus, when   λ = 3017, the point is 5617, 4317, 11117  and when   λ = 0,  the point is ( -2, -1, 3 ).

    Question 313
    CBSEENMA12035858

    Find the equation of the plane passing through the point (−1, − 1, 2) and perpendicular to each of the following planes: 2x + 3y – 3z = 2   and   5x – 4y + z = 6

    Solution

    The equation of the piane passing through the point  ( -1, -1, 2 ) is:

     

    a( x + 1 ) + b( y + 1 ) + c ( z - 1 )= 0       ............(1)

     

    where a, b and c are the direction ratios of the normal to the plane

    .

    It is given that the plane (1) is perpendicularto the planes.

     

    2x + 3y - 3z = 2    and  5x - 4y + z = 6

     

     2a + 3b - 3c = 0                                 ..............(2)

     

    5a - 4b + c = 0                                       ...............(3)

     

    solving equations (2) and (3), we have:

    a(3 x 1) - ( -4  x (-3) ) = b( -3 x 5) - (2 x 1) = c(2 x (-4) )- ( 3 x 5)a-9 = b-17 = c-23

    So the direction ratios of the normal to the required plane are multiples of 9,

    17, and 23.

     

    Thus, the equation of the required plane is:

     

    9(x + 1) + 17( y + 1) + 23( z - 2) = 0

     

    or   9x + 17y + 23z = 20

    Question 314
    CBSEENMA12035859

    Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line x + 32 = y - 37 = z - 25

    Solution

    Equation of the plane passing through the point (3, 4, 1) is:

     

    a ( x - 3 ) + b ( y - 4 ) c ( z - 1 ) = 0        .............(1)

     

    Where a, b, c are the direction ratios of the normal to the plane 

    It is given that the plane (1) passes through the point 9 0, 1, 0 ).

     a - 3 + b - 3 + c - 1 = 0

    3a + 3b + c = 0                                  ...............(2)

    It is also given that the plane (1) is parallel to the line 

     

    x + 32 = y - 37 = z - 25.

     

    So, this line is perpendicular to the normal of the plane (1).

     2a + 7b + 5c = 0                                 ................(3)

    Solving equations (2) and (3), we have:

    a3 x5 - 7 x 1 = b1 x 2 - 5 x 3 = c3 x 7 - 2 x 3 a8 = b-13 = c15

    So, the direction ratios of the normal to the required plane are multiples of 8, -13, 15.

    Therefore, equation (1) becomes:

    8 ( x - 3 ) -13 ( y - 4 ) + 15 ( z - 1) = 0

     8x - 13y + 15z + 13 = 0.

    Which is the required equation of the plane.

    Question 315
    CBSEENMA12035883

    Find the value of λ so that the lines, 1 - x3 = y - 22λ = z - 32 and x - 13λ = y - 11 = 6 - z7 are perpendicular to each other.

    Solution

    Given lines are  

    1 - x3 = y - 22λ = z - 32   and    x - 13λ = y - 11 = 6 - z7

    let us rewrite the equations of the given lines as follows:

    - x - 1 3 = y - 22λ = z - 32   and    x - 13λ = y - 11 = -  z - 67

    That is we have, 

    x - 1-3 = y - 22λ = z - 32

    And 

    x - 13λ = y - 11 = z - 6-7

    The lines are perpendicular so angle between them is 90°

    So, cosθ = 0

    Here ( a1, b1, c1 ) = ( -3, 2λ , 2 ) 

    and

     ( a2, b2, c2 ) = ( 3λ, 1, -7 )

    For perpendicular lines

    a1a2 + b1b2 + c1c2 = 0-9λ + 2λ - 14 = 0-7λ - 14 = 0 λ = 14-7 λ = -2

    Question 316
    CBSEENMA12035893

    Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

    Solution

    Let the equation of the plane be,

    A ( x - x1 ) + B ( y - y1 ) + C ( z - z1 ) = 0

    Plane passes throughthe points ( -1, 3, 2 )

     A ( x + 1 ) + B ( y - 3 ) + C ( z - 2 ) = 0          ........(i)

    Now applying the condition of perpendicularity to the plane (i) with planes

    x + 2y + 3z = 5  and   3x + 3y + z = 0, We have,

    A + 2B + 3C = 0

    3A + 3B + C = 0 

    Solving we get

    A + 2B + 3C = 0

    9A + 9B + 3C = 0 

    By cross multiplication, we have,

    A2 x 3 - 9 x 3 = B9 x 3 - 1 x 3 = C1 x 9 - 2 x 9 A6- 27 = B27 - 3 = C9 - 18 A- 21 = B24 = C- 9 A- 7 = B8 = C- 3 A = 7 λ;    B = - 8 λ;   C = 3 λ

    By substituting A and C in equation (i), we get,

    Substituting the values of A, B and C in equation (i), we have,

    7 λ ( x + 1 ) - 8 λ ( y - 3 ) + 3 λ ( z - 2  ) =0 7x + 7 - 8y + 24 + 3z - 6 = 0 7x - 8y + 3z +25 = 0

    Question 317
    CBSEENMA12035900

    What is the cosine of the angle which the vector 2 i^ + j^ + k  makes with y-axis?

    Solution

    The y-axis can be represented in vector form by j^  and -j^.

    Let    a = 2 i^ + j^ + k    and    b = j^   or  -j^ cosθ = a^ . b a^   b  cosθ =  2 i^ + j^ + k  .  ± j^  2 i^ + j^ + k   .   j ^= ± 1 x 122 + 12 + 12 x 12 =  ± 1 4 =  ± 1 2So, the cosine of the  angle which the vector  2 i^ + j^ + k  makeswith y-axis is  ±12

    Question 318
    CBSEENMA12035904

    Write the vector equation of the following line:

    x - 53 = y + 47 = 6 - z2

    Solution

    The given equation of line is  x - 53 = y + 47 = 6 - z2i.e. in standard form   x - 53 = y -(- 4 )7 = z - 6-2Comparing this equation with standard form   x - x1a = y - y1b = z - z1c

     

    We get,   x1 = 5,    y1 = -4,   z1 = 6,    a = 3,     b = 7,   c = -2

     

    Thus, the required line is parallel to the vector   3i^ + 7j^ - 2k and passes through the point ( 5, -4, 6 ).

    The vector form of the line can be written as r = a + λ b, where λ is a constant.

    Thus, the required equation is r =  5i^ - 4j^ + 6k  + λ  3i^ + 7j^ - 2k 

    Question 319
    CBSEENMA12035914

    Find the Cartesian equation of the plane passing through the points A(0, 0, 0) and B(3, -1, 2) and parallel to the line  x - 41 = y + 3-4 = z + 17

    Solution

    Let the equation of the plane be  ax + by + cz + d = 0       ........(i)

    Since the plane passes through the point  A ( 0, 0, 0 )  and   B ( 3, -1, 2),

    we have 

    a x 0 + b x 0 + c x 0 + d = 0

     d = 0                 ................(ii)

    Similarly for point B ( 3, -1, 2 ),    a x 3 + b x ( - 1 ) + c x 2 + d = 0

    3a - b + 2c = 0           ( Using ,  d = 0 )             ............(iii)

    Given equation of the line is  x - 41 = y + 3- 4 = z + 17We can also write the above equation as  x - 41 = y - ( -  3 )- 4 = z - ( -1 )7

    The required plane is parellel to the above line .

    Therefore,  a x 1 + b x ( - 4 ) + c x 7 = 0

     a - 4b + 7c = 0         ............(iv)

    Cross multiplying equations (iii) and (iv), we obtain:

    a( - 1 ) x 7 - ( - 4 ) x 2 = b2 x 1 - 3 x 7 = c3 x ( -4 ) - 1 x ( - 1 ) a- 7 + 8 = b2 - 21 = c- 12 + 1 a1 = b- 19 = c- 11 = k a = k,  b = - 19 k,  c = - 11 k

    Substituting the values of  a,  b  and c  in equation ( 1 ), we obtain the equation of plane as: 

    kx - 19ky - 11kz + d = 0

     k ( x - 19y - 11z )  = 0              ..........( From equation (ii) )

     x - 19y - 11z  = 0

    So, the equation of the required plane is  x - 19y - 11z .

    Question 320
    CBSEENMA12035931

    Write the vector equations of the following lines and hence determine the distance between them:

     x -12 = y - 23 = z + 46;    x - 34 = y - 36 = z + 512

    Solution

    Given equation of line is  x - 12 = y - 23 = z + 46This can also be written in the standard form as   x - 12 = y - 23 = z -( - 4 )6

    The vector form of the above equation is,

    r =  i^ + 2 j^ - 4 k  + λ  2i^ + 3 j^ + 6k   r = a1  + λ b           ......(i)where,    a1  = i^ + 2 j^ - 4 k    and   b = 2i^ + 3 j^ + 6kThe second equation of line is   x - 34 = y - 36 = z + 512The above can also be written as   x - 34 = y - 36 = z - ( - 5 )12

    The vector form of this equation is

          r =  3 i^ + 3 j^ - 5 k  + μ  4 i^ + 6 j^ + 12 k  r =  3 i^ + 3 j^ - 5 k  + 2 μ  2 i^ + 3 j^ + 6 k  r = a2  + 2 μ b             .........(ii)Where   a2  =  3 i^ + 3 j^ - 5 k    and   b = 2 i^ + 3 j^ + 6 k

    Since  b  is same in equation (i)  and  (ii),  the two lines are parallel.

    Distance  d, between the two parallel lines is given by the formula,

    d =  b x  a2  - a1   bHere, b =  2 i^ + 3 j^ + 6 k       a2  =   3 i^ + 3 j^ - 5 k   and   a1  =   i^ + 2 j^ - 4 k 

    On substitution, we get

    d =    2 i^ + 3 j^ + 6 k  x  ( 3 i^ + 3 j^ - 5 k  -   i^ + 2 j^  - 4 k  ) 4 + 9 + 36= 149   2 i^ + 3 j^ + 6 k  x   2 i^ + j^ - k  = 17    i^     j^       k2     3       6 2     1  - 1 = 17  i^  - 3 - 6  - j^  - 2 - 12  + k  2 - 6  =  17  - 9 i^ +14 j^ - 4 k 

    = 17   81 + 196 + 16 =  2937Thus, the distance between the two given lines is   2937

    Question 321
    CBSEENMA12035941

    Write the intercept cut off by the plane 2x + y – z = 5 on x-axis.

    Solution

    2 x + y - z = 5

    Dividing both sides by 5,

    2 x5 + y5 - z5 = 1  x52+ y5 + z- 5 = 1It is known that the equation of a plane in intercept form is  xa + yb + cz = 1,where  a,  b  and  c are the intercepts cut off by the plane at  x,  y,  and  z- axesrespectively.

    Thus, the intercept cut off by the given plane on the x-axis is  52.

    Question 322
    CBSEENMA12035956

    Find the angle between the following pair of lines:  

    - x + 2- 2 = y - 17 = z + 3- 3   and   x + 2- 1 = 2 y - 84 = z - 54

    And check whether the lines are parallel or perpendicular.

    Solution

    Let  b1  and   b2  be the two vector parallel to the pair to lines,- x + 2- 2 = y - 17 = z + 3- 3    and    x + 2- 1 = 2 y - 84 = z - 54, respectively.Now,  - x + 2- 2 = y - 17 = z + 3- 3  x - 2 2 = y - 17 = z + 3- 3 x + 2- 1 = 2 y - 84 = z - 54 x + 2- 1 =  y - 42 = z - 54

     b1  =  2 i^ + 7 j^ - 3 k^   and     b2  =  - i^ + 2 j^ + 4 k^  b1  =   2 2 +  7 2 +  - 3 2 =  62  b2  =   - 1 2 +  2 2 +   4  2 =  21b1 . b2  =   2 i^ + 7 j^ - 3 k^  . - i^ + 2 j^ + 4 k^              = 2 ( - 1 ) + 7 x 2 + ( - 3 ) . 4

               = - 2 + 14 - 12

               = 0

    The angle  θ  between the given pair of lines is given by the relation,

    cos θ =  b1 . b2 b1   b2    cos θ = 0 62 x  21 = 0 θ = cos-1 ( 0 ) = π2

    Thus, the given lines are perpendicular to each other and the angle

    between them is 900.

    Question 323
    CBSEENMA12035964

    Find the equation of the plane which contains the line of intersection of the planes 

    r.  i^ + 2 j^ + 3 k  - 4 = 0,     r.  2 i^ + j^  - k  + 5 = 0  and which is perpendicular to

    the plane  r.  5 i^ + 3 j^  - 6 k  + 8 = 0.

    Solution

    The equations of the given planes are

    r.  i^ + 2 j^ + 3 k  - 4 = 0              ..............( i )r.  2 i^ +  j^  - k   + 5 = 0             ...............( ii )

    The equation of the plane passing through the line of intersection of the given

    planes is 

     r.  i^ + 2 j^ + 3 k  - 4  + λ  r.  2 i^ +  j^  -  k   + 5 = 0r.   1 + 2 λ  i^ + 2 + λ  j^  +  3 -  λ  k  +  - 4 + 5 λ  = 0           .........( iii )The plane in equation ( iii ) is perpendicular to the plane,   r.  5 i^ + 3 j^  - 6 k  + 8 = 0 5  1 + 2 λ  + 3  2 + λ  - 6  3 -  λ  = 0 5 + 10 λ + 6 + 3 λ - 18 + 6 λ = 0 19 λ - 7 = 0 λ = 719Substituting   λ = 719  in equation  ( iii ), 

    r.  3319 i^ + 4519 j^ + 5019 k  - 4119 = 0 r.  33 i^ + 45 j^ + 50 k  - 41 = 0

    This is the vector equation of the required plane.

    Question 325
    CBSEENMA12036140

    Let the line fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 5 end fraction space equals space fraction numerator straight z plus 2 over denominator 2 end fraction lie in the plane x + 3y – αz + β = 0. Then (α, β) equals

    • (6, – 17)

    • (–6, 7)

    • (5, –15)

    • (–5, 5)

    Solution

    B.

    (–6, 7)

    2 + 3 × 1 – α (–2) + β = 0
    2α + β = –5 ... (i)
    3 – 15 – 2α = 0
    2α = –12
    B = –5 + 12 = 7
    (α, β) ≡ (–6, 7)

    Question 326
    CBSEENMA12036145

    If P and Q are the points of intersection of the circles x2+ y2+ 3x + 7y + 2p – 5 = 0 and x2+ y2+ 2x + 2y – p2 = 0, then there is a circle passing through P, Q and (1, 1) for

    • all values of p

    • all except one value of p

    • all except two values of p

    • exactly one value of p 

    Solution

    B.

    all except one value of p

    Radical axis is x + 5y + p2 + 2p – 5 =0
    Equation of circle is
    x2 + y2 + 3x + 7y + 2p – 5 + λ [x + 5y + p2 + 2p – 5 ] = 0 …. (i)
    (i) passes through (1, 1)
    rightwards double arrow space straight lambda space equals negative space fraction numerator left parenthesis 2 straight p space plus 7 right parenthesis over denominator left parenthesis straight p plus 1 right parenthesis squared end fraction space space space space space space space space space space space space space space left parenthesis straight p space not equal to negative 1 right parenthesis

    Question 329
    CBSEENMA12036160

    If the straight lines fraction numerator straight x minus 1 over denominator straight k end fraction space equals fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 3 end fraction space and space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator straight k end fraction space equals fraction numerator straight z minus 1 over denominator 2 end fraction intersect at a point, then the integer k is equal to

    • -5

    • 2

    • 5

    • -5

    Solution

    A.

    -5

    fraction numerator straight x minus 1 over denominator straight k end fraction space equals space fraction numerator straight y minus 2 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator 3 end fraction space and space fraction numerator straight x minus 2 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator straight k end fraction space equals space fraction numerator straight z minus 1 over denominator 2 end fraction
Since space lines space intersect space in space straight a space point
open vertical bar table row straight k 2 3 row 3 straight k 2 row 1 1 cell negative 2 end cell end table close vertical bar space equals space 0
    ∴ 2k2 + 5k − 25 = 0
    k = − 5, 5/2
    Question 330
    CBSEENMA12036174

    Let L be the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2z = 2. If L makes an angle α with the positive x-axis, then cos α equals-

    • fraction numerator 1 over denominator square root of 3 end fraction
    • 1/2

    • 1

    • fraction numerator 1 over denominator square root of 2 end fraction

    Solution

    A.

    fraction numerator 1 over denominator square root of 3 end fraction

    If direction cosines of L be l, m, n, then
    2l + 3m + n = 0
    l + 3m + 2n = 0
    solving comma space we space get comma space straight l over 3 space equals space fraction numerator straight m over denominator negative 3 end fraction space equals space straight n over 3
therefore space straight l colon straight m colon straight n space equals space fraction numerator 1 over denominator square root of 3 end fraction colon fraction numerator 1 over denominator square root of 3 end fraction colon fraction numerator 1 over denominator square root of 3 end fraction
rightwards double arrow space space cos space straight alpha space equals space fraction numerator 1 over denominator square root of 3 end fraction

    Question 331
    CBSEENMA12036175

    The resultant of two forces P N and 3 N is a force of 7 N. If the direction of the 3 N force were reversed, the resultant would be square root of 19N. The value of P is

    • 5N

    • 6N

    • 4N

    • 3N

    Solution

    A.

    5N


    72 = P2 + 32 + 2 × 3 × P cosθ …(1)
    left parenthesis square root of 19 right parenthesis squared space equals space straight P squared space plus space left parenthesis negative 3 right parenthesis squared space plus 2 space straight x space left parenthesis negative 3 right parenthesis straight x space straight P space cos space straight theta space..... space left parenthesis 2 right parenthesis
    adding we get
    68 = 2P2 + 18 ⇒ P = 5.
    Question 332
    CBSEENMA12036178

    If a line makes an angle of π/4 with the positive directions of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is

    • π/6

    • π/3

    • π/4

    • π/2

    Solution

    D.

    π/2

    l = cos π/4 , m = cos π/4
    we know l2 + m2 + n2 = 1
    1 half space plus space 1 half space plus straight n squared space equals 1
rightwards double arrow space straight n space equals space 0
    Hence angle with the positive direction of z-axis is π/2 .

    Question 333
    CBSEENMA12036183

    If (2, 3, 5) is one end of a diameter of the sphere x2+ y2+ z2 − 6x − 12y − 2z + 20 = 0, then the coordinates of the other end of the diameter are

    • (4, 9, –3)

    • (4, –3, 3)

    • (4, 3, 5)

    • (4, 3, –3)

    Solution

    A.

    (4, 9, –3)

    Coordinates of centre (3, 6, 1)
    Let the coordinates of the other end of diameter are (α, β, γ)
    then space fraction numerator straight alpha space plus 2 over denominator 2 end fraction space equals space 3 comma space fraction numerator straight beta space plus space 3 over denominator 2 end fraction space equals 6 comma space space fraction numerator straight gamma space plus 5 over denominator 2 end fraction space equals 1
    Hence α = 4, β = 9 and γ = −3.

    Question 336
    CBSEENMA12036187

    If one of the lines of my2+ (1 − m2)xy − mx2 = 0 is a bisector of the angle between the lines xy = 0, then m is

    • −1/2

    • -2

    • 1

    • 2

    Solution

    C.

    1

    Equation of bisectors of lines xy = 0 are y = ± x
    put y = ± x in my2+ (1 − m2)xy − m = 0,
    we get (1 − m2) x2 = 0
    ⇒ m = ± 1

    Question 339
    CBSEENMA12036218

    The normal to the curve x = a(cosθ + θ sinθ), y = a( sinθ - θ cosθ) at any point ‘θ’ is such that

    • it passes through the origin

    • it makes angle π/2 + θ with the x-axis

    • it passes through (aπ/2 ,-a)

    • it is at a constant distance from the origin

    Solution

    D.

    it is at a constant distance from the origin

    Clearly dy/dx = an θ
    ⇒ slope of normal = - cot θ
    Equation of normal at ‘θ’ is
    y – a(sin θ - θ cos θ) = - cot θ(x – a(cos θ + θ sin θ)
    ⇒ y sin θ - a sin2 θ + a θ cos θ sin θ = -x cos θ + a cos2 θ + a θ sin θ cos θ
    ⇒ x cos θ + y sin θ = a
    Clearly this is an equation of straight line which is at a constant distance ‘a’ from origin.

    Question 341
    CBSEENMA12036232

    If the angle θ between the line fraction numerator straight x plus 1 over denominator 1 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 2 over denominator 2 end fractionand the plane space 2 straight x minus space straight y plus space square root of straight lambda space straight z space plus 4 space equals 0 is such of sin θ = 1/3 the value of λ is

    • 5/3

    • -3/5

    • 3/4

    • -4/3

    Solution

    A.

    5/3

    Angle between line and normal to plane is 
    cos space open parentheses straight pi over 2 minus straight theta close parentheses space equals space fraction numerator 2 minus 2 space plus space 2 square root of straight lambda over denominator 3 space straight x square root of 5 space plus straight lambda end root end fraction where θ is the angle between line & plane
    rightwards double arrow space sin space straight theta space equals space fraction numerator 2 space square root of straight lambda over denominator 3 square root of 5 plus straight lambda end root end fraction space equals space 1 third
straight lambda space equals space 5 over 3

    Question 342
    CBSEENMA12036233

    The angle between the lines 2x = 3y = − z and 6x = − y = − 4z is

    • 0o

    • 90o

    • 45o

    • 30o

    Solution

    B.

    90o

    Angle between the lines 2x = 3y = - z & 6x = -y = -4z is 90°
    Since a1a2 + b1b2 + c1c2 = 0

    Question 343
    CBSEENMA12036234

    If the plane 2ax − 3ay + 4az + 6 = 0 passes through the midpoint of the line joining the centres of the spheres

    x2 + y2 + z2 + 6x − 8y − 2z = 13 and x2 + y2 + z2 − 10x + 4y − 2z = 8, then a equals

    • -1

    • 1

    • -2

    • 2

    Solution

    C.

    -2

    Plane 2ax – 3ay + 4az + 6 = 0 passes through the mid point of the centre of spheres x2 + y2 + z2 + 6x – 8y – 2z = 13 and x2 + y2 + z2 – 10x + 4y – 2z = 8 respectively centre of spheres are (-3, 4, 1) & (5, - 2, 1) Mid point of centre is (1, 1, 1) Satisfying this in the equation of plane,
    we get 2a – 3a + 4a + 6 = 0
    ⇒ a = -2.

    Question 344
    CBSEENMA12036235

    The distance between the line straight r with rightwards arrow on top space equals space 2 straight i with hat on top space minus 2 straight j with hat on top space plus 3 straight k with hat on top space plus space straight lambda space left parenthesis straight i with hat on top minus straight j with hat on top space plus 4 straight k with hat on top right parenthesis and the plane straight r with rightwards arrow on top. left parenthesis straight i with hat on top space plus 5 straight j with hat on top space plus straight k with hat on top right parenthesis space equals space 5 space is

    • 10/9

    • fraction numerator 10 over denominator 3 square root of 3 end fraction
    • 3/10

    • 10/3

    Solution

    B.

    fraction numerator 10 over denominator 3 square root of 3 end fraction

    Distance between the line 
    straight r with rightwards arrow on top space equals space 2 straight i with hat on top space minus 2 space straight j with hat on top space plus 3 straight k with hat on top space plus straight lambda space left parenthesis straight i with hat on top space minus straight j with hat on top space plus 4 straight k with hat on top right parenthesis space and space the space plane space straight r with rightwards arrow on top. space left parenthesis straight i with hat on top space plus 5 straight j with hat on top space plus straight k with hat on top right parenthesis space equals space 5
    equation of plane is x + 5y + z = 5 ∴ Distance of line from this plane = perpendicular distance of point (2, -2, 3) from the plane
    straight i. straight e space open vertical bar fraction numerator 2 minus 10 plus 3 minus 5 over denominator square root of 1 plus 5 squared plus 1 end root end fraction close vertical bar space equals space fraction numerator 10 over denominator 3 square root of 3 end fraction

    Question 345
    CBSEENMA12036237

    If a vertex of a triangle is (1, 1) and the mid-points of two sides through this vertex are (-1, 2) and (3, 2), then the centroid of the triangle is

    • (-1, 7/3)

    • (-1/3, 7/3)

    • (1, 7/3)

    • (1/3, 7/3)

    Solution

    C.

    (1, 7/3)

    Vertex of triangle is (1, 1) and midpoint of sides through this vertex is (-1, 2) and (3, 2) ⇒ vertex B and C come out to be (-3, 3) and (5, 3)
     therefore centroid  is fraction numerator 1 minus 3 plus 5 over denominator 3 end fraction comma fraction numerator 1 plus 3 plus 3 over denominator 3 end fraction
rightwards double arrow space left parenthesis 1 comma 7 divided by 3 right parenthesis 

    Question 347
    CBSEENMA12036246

    The plane x + 2y – z = 4 cuts the sphere x2 + y2 + z2 – x + z – 2 = 0 in a circle of radius

    • 3

    • 1

    • 2

    • square root of 2

    Solution

    B.

    1

    Perpendicular distance of centre open parentheses 1 half comma 0 comma fraction numerator negative 1 over denominator 2 end fraction close parentheses from x + 2y – 2 = 4
    fraction numerator open vertical bar begin display style 1 half plus 1 half minus 4 end style close vertical bar over denominator square root of 6 end fraction space equals space square root of 3 over 2 end root
space radius space equals space square root of 5 over 2 minus 3 over 2 end root space equals space 1

    Question 348
    CBSEENMA12036270
    Question 349
    CBSEENMA12036271

    A line makes the same angle θ, with each of the x and z-axis. If the angle β, which it makes with y-axis, is such that sin2β = 3sin2θ , then cos2θ equals 

    • 2/3

    • 1/5

    • 3/5

    • 2/3

    Solution

    C.

    3/5

    A line makes angle θ with x-axis and z-axis and β with y-axis.
    ∴ l = cosθ, m = cosβ,n = cosθ
    We know that, l2+ m2+ n2= 1

    cos2θ + cos2β +cos2θ =1
    2cos2θ = 1- cos2β
    2cos2θ = sin2β
    But sin2β = 3 sin2θ
    therefore from equation (i) and (ii)
    3sin2θ = 2cos2θ
    3(1-cos2θ) = 2cos2θ
    3-3cos2θ = 2cos2θ
    3 = 5cos2θ

    Question 350
    CBSEENMA12036272

    Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is

    • 3/2

    • 5/2

    • 7/2

    • 9/2

    Solution

    C.

    7/2

    The distance between 4x + 2y + 4z - 16 = 0 and 4x + 2y + 4z + 5 = 0 is
    open vertical bar fraction numerator 5 plus 16 over denominator square root of 16 plus 4 plus 16 end root end fraction close vertical bar space equals space open vertical bar fraction numerator 21 over denominator square root of 36 end fraction close vertical bar space equals space 21 over 6 space equals space 7 over 2

    Question 351
    CBSEENMA12036273

    A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by

    • (3a, 3a, 3a), (a, a, a)

    • (3a, 2a, 3a), (a, a, a)

    • (3a, 2a, 3a), (a, a, 2a)

    • (2a, 3a, 3a), (2a, a, a)

    Solution

    B.

    (3a, 2a, 3a), (a, a, a)

    Any point on the line straight x over 1 space equals fraction numerator straight y plus straight a over denominator 1 end fraction space equals straight z over 1 space equals space straight t subscript 1 space left parenthesis say right parenthesis space is space left parenthesis straight t subscript 1 comma space straight t subscript 1 minus straight a comma space straight t subscript 1 right parenthesis and any point on the line fraction numerator straight x plus straight a over denominator 2 end fraction space equals space straight y over 1 space equals straight z over 1 space equals space straight t subscript 2 space left parenthesis say right parenthesis space is space left parenthesis 2 straight t subscript 2 minus straight a comma space straight t subscript 2 comma space straight t subscript 2 right parenthesis
    Now direction cosine of the lines intersecting the above lines is proportional to (2t2 – a – t1, t2 – t1 + a, t2 – t1).
    Hence 2t2 – a – t1 = 2k , t2 – t1 + a = k and t2 – t1 = 2k
    On solving these, we get t1 = 3a , t2 = a. Hence points are (3a, 2a, 3a) and (a, a, a).

    Question 352
    CBSEENMA12036274

    If the straight lines x = 1 + s, y = –3 – λs, z = 1 + λs and x = t/ 2 , y = 1 + t, z = 2 – t with parameters s and t respectively, are co-planar then λ equals

    • –2

    • –1

    • -1/2

    • 0

    Solution

    A.

    –2

    Given fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative straight lambda end fraction space equals space fraction numerator straight z minus 1 over denominator straight lambda end fraction space equals space straight s space space and space fraction numerator straight x over denominator 1 divided by 2 end fraction space equals fraction numerator straight y minus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 2 over denominator negative 1 end fraction space equals space straight t  are coplanar then plan passing through these lines has normal perpendicular to these lines
    ⇒ a - bλ + cλ = 0 and a/2 +b -c =0 (where a, b, c are direction ratios of the normal to the plan) On solving, we get λ = -2.

    Question 353
    CBSEENMA12036275

    The intersection of the spheres x2 +y2 +z2 + 7x -2y-z =13 and x2 +y2 +z2 -3x +3y +4z = 8 is the same as the intersection of one of the sphere and the plane

    • x-y-z =1

    • x-2y-z =1

    • x-y-2z=1

    • 2x-y-z =1

    Solution

    D.

    2x-y-z =1

    Required plane is S1 – S2 = 0 where
    S1 = x2 + y2 + z2 + 7x – 2y – z – 13 = 0 
    and S2 = x2 + y2 + z2 – 3x + 3y + 4z – 8 = 0
    ⇒ 2x – y – z = 1.

    Question 354
    CBSEENMA12036283

    If the straight line y = mx + c (m > 0) touches the parabola y2 = 8(x + 2), then the minimum value taken by c is

    • 12

    • 8

    • 4

    • 6

    Solution

    C.

    4

    The tangent of slope m must be of the form y = m(x + 2) + a/m
    so comma space 2 straight m space plus 2 over straight m space equals space straight c
rightwards double arrow space straight c space equals 2 open parentheses straight m plus 1 over straight m close parentheses greater or equal than space 2 space straight x space 2 space
therefore straight c subscript min space equals space 4

    Question 355
    CBSEENMA12036284

    The equation of the plane which contains the line of intersection of the planes x + y + z – 6 = 0 and 2x + 3y + z + 5 = 0 and perpendicular to the xy plane is:

    • x – 2y + 11 = 0

    • x + 2y + 11 = 0

    • x + 2y – 11 = 0

    • x – 2y – 11 = 0

    Solution

    B.

    x + 2y + 11 = 0

    Equation of the required plane is
    (x + y + z – 6) + λ(2x + 3y + z + 5) = 0
    i.e. (1 + 2λ)x + (1 + 3λ)y + (1 + λ)z + (–6 + 5λ) = 0
    This plane is perpendicular to xy plane whose
    equation is z = 0
    i.e. 0 . x + 0 . y + z = 0
    ∴ By condition of perpendicularity
    0 .(1 + 2λ) + 0. (1 + 3λ) + (1 + λ) .1 = 0
    i.e. λ = –1
    ∴ Equation of required plane is
    (1 – 2)x + (1 – 3)y + (1 – 1)z + (–6 – 5) =0
    or x + 2y + 11 = 0

    Question 356
    CBSEENMA12036285

    The curve y = (λ + 1)x2 + 2 intersects the curve y = λx + 3 in exactly one point, if λ equals -

    • {–2, 2}

    • {1}

    • {-2}

    • {2}

    Solution

    C.

    {-2}

    for point of intersection at exactly one point
    λx + 3 = (λ + 1)x2 + 2
    (λ + 1)x2 – λx – 1 = 0
    Δ = 0
    λ2 + 4(λ + 1) = 0
    λ2 + 4λ + 4 = 0
    (λ + 2)2 = 0 λ = – 2

    Question 357
    CBSEENMA12036287

    If the curves y2 = 6x, 9x2 + by2 = 16 intersect each other at right angles, then the value of b is

    • 9/2

    • 6

    • 7/2

    • 4

    Solution

    A.

    9/2

    y2 = 6xm1 = - -62y = 3y= 9x2 + by2 = 16m2  = -18x2bym1m2 = -13y.-18y2by = -127xby2 = 1 y2x = 627b x 16 = 1b = 276 b = 92

    Question 358
    CBSEENMA12036289

    If L1 is the line of intersection of the plane 2x – 2y + 3z – 2 = 0, x – y + z + 1 = 0 and L2 is the line of intersection of the plane x + 2y – z – 3 = 0, 3x – y + 2z – 1 = 0, then the distance of the origin from the plane containing the lines L1
    and L2 is :

    • 12

    • 142

    • 132

    • 122

    Solution

    C.

    132

    L1 is parallel to i^j^k^2-231-11 = i^ + j^L2 is parallel to i^j^k^12-13-12 = 3i^ -5j^-7k^Also, L2 passes through 57,87,0So required plane is x-57y-87z1103-5-7 = 0 7x -7y + 8z + 3 = 0Now, perpendicular distance  = 3162 = 132

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation