-->

Three Dimensional Geometry

Question
CBSEENMA12033221

Can a directed line have direction angles 45°, 45°, 60°?

Solution
Let l, m, n be the direction cosines of the line with direction angles 45°, 45°, 60°.
     therefore space space straight l space equals cos space 45 degree space equals fraction numerator 1 over denominator square root of 2 end fraction comma space straight m space equals space cos space 45 degree space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space straight n space equals space cos space 60 degree space equals space 1 half
These values of l, m, n do not satisfy the selection l2 + m2 + n2 = 1 as
    open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses squared plus space open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses squared plus space open parentheses 1 half close parentheses squared space equals space 1 half plus 1 half plus 1 fourth space equals 5 over 4 not equal to 1
∴ given angles cannot be the direction angles of a line.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.