Physics Part I Chapter 7 System Of Particles And Rotational Motion
  • Sponsor Area

    NCERT Solution For Class 11 Physics Physics Part I

    System Of Particles And Rotational Motion Here is the CBSE Physics Chapter 7 for Class 11 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 11 Physics System Of Particles And Rotational Motion Chapter 7 NCERT Solutions for Class 11 Physics System Of Particles And Rotational Motion Chapter 7 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 11 Physics.

    Question 1
    CBSEENPH110024932

    Determine the volume of 1 mole of any gas at S.T.P., assuming it behaves like an ideal Gas.

    Solution

    1 mole of any gas occupies 22.4 dm3 at stp (standard temperature and pressure, taken as 0°C and 1 atmosphere pressure). You may also have used a value of 24.0 dm3 at room temperature and pressure (taken as about 20°C and 1 atmosphere).

    These figures are actually only true for an ideal gas, and we'll have a look at where they come from.

    We can use the ideal gas equation to calculate the volume of 1 mole of an ideal gas at 0°C and 1 atmosphere pressure.

    First, we have to get the units right.

    0°C is 273 K. T = 273 K

    1 atmosphere = 101325 Pa. p = 101325 Pa

    We know that n = 1, because we are trying to calculate the volume of 1 mole of gas.

    And, finally, R = 8.31441 J K-1 mol-1.

    Slotting all of this into the ideal gas equation and then rearranging it gives:

    And finally, because we are interested in the volume in cubic decimetres, you have to remember to multiply this by 1000 to convert from cubic metres into cubic decimetres.

    The molar volume of an ideal gas is therefore 22.4 dm3 at stp.

    And, of course, you could redo this calculation to find the volume of 1 mole of an ideal gas at room temperature and pressure - or any other temperature and pressure.

    Question 2
    CBSEENPH110024936

    1. how does carnot cycle operates
    2. why does absolute zero not correspond to zero energy

    Solution
    1. The Carnot cycle consists of the following four processes: A reversible isothermal gas expansion process. In this process, the ideal gas in the system absorbs qin amount heat from a heat source at a high temperature Th, expands and does work on surroundings.
    2. As you know , absolute zero means the temperature in Kelvin scale is 0K or in Celcius scale is -273.15°C . actually, in this temperature, Gaseous molecule be rest , there is no motion of molecule in their position. due to this reason we say that energy of Gaseous molecule at this is zero. means absolute zero correspond to zero energy .

      well, it's hard to achieve Absolute zero or 0K or -273.15°C temperature. it is just theoretical. molecular can't achieve Absolute zero.

    Question 3
    CBSEENPH11020356

    A thin uniform rod of length

    • 1 third fraction numerator calligraphic l squared straight omega squared over denominator straight g end fraction
    • 1 over 6 fraction numerator calligraphic l straight omega over denominator straight g end fraction
    • 1 half fraction numerator calligraphic l squared straight omega squared over denominator straight g end fraction
    • 1 over 6 fraction numerator calligraphic l squared straight omega squared over denominator straight g end fraction

    Solution

    D.

    1 over 6 fraction numerator calligraphic l squared straight omega squared over denominator straight g end fraction 1 half open parentheses fraction numerator straight m space calligraphic l squared over denominator 3 end fraction close parentheses straight omega squared space equals space mgh
rightwards double arrow space straight h space equals space fraction numerator straight omega squared calligraphic l squared over denominator 6 straight g end fraction
    Question 14
    CBSEENPH11020421

    A wire elongates by 

    • 2

    • zero

    Solution

    B.

    Question 15
    CBSEENPH11020447

    A ‘T’ shaped object with dimensions shown in the figure, is lying on a smooth floor. A force F is applied at the point P parallel to AB, such that the object has only the translational motion without rotation. Find the location of P with respect to C

    • 2

    • 3

    • 4

    Solution

    C.

    4

    The point P must be the centre of mass of the T-shaped object since the force F does not produce any rotational motion of the object. So, we have to find the distance of the centre of mass from the point C.

    The horizontal part of the T-shaped object has length L. If the mass of the horizontal portion is ‘m’, the mass of the vertical portion of the T- shaped object is 2m since its length is 2L. For finding the centre of mass of the T shaped object, it is enough to consider two point masses m and 2m located respectively at the midpoints of the horizontal and vertical portions of the T.

    Therefore, the T-shaped object reduces to two point masses m and 2m at distances 2L and L respectively from the point C. The distance ‘r’ of the centre of mass of the system from the point C is given by

    r = (m1r1 + m2r2)/(m1 + m2) = (m×2L + 2m×L)/(m + 2m) = 4L/3

    [ Note that we have used the equation, r = (m1r1 + m2r2)/(m1 + m2) for the position vector r of the centre of mass in terms of the position vectors r1 and r2 of the point masses m1 and m2. We could use the simple equation involving the distances from C since the points are collinear].

    Question 16
    CBSEENPH11020499

    A particle is moving with a uniform speed in a circular orbit of radius R in a central force inversely proportional to the nth power of R. If the period of rotation of the particle is T, then:

    • T Rn/2

    • T R3/2 for any n

    • TRn2+1

    • T Rn+12

    Solution

    D.

    T Rn+12

    mω2R = Force 1Rn(Force = mv2R) ω2  1Rn+1 ω1Rn+12Time Period T = 2πωTime Period T Rn+12

    Question 17
    CBSEENPH11020508

    A silver atom in a solid oscillates in simple harmonic motion in some direction with a frequency of 1012/sec. What is the force constant of the bonds connecting one atom with the other? (Mole wt. of silver = 108 and Avagadro number = 6.02 × 1023 gm mole–1)

    • 5.5 N/m

    • 6.4 N/m

    • 7.1 N/m

    • 2.2 N/m

    Solution

    C.

    7.1 N/m

    Given frequency f  = 1012/sec

    Angular frequency ω = 2πf = 2π x 1012 /sec
    Force constant k = mω2

    108 x 10-36.02 x 1023 x 4π2 x 1024k = 7.1 N/m

    Sponsor Area

    Question 20
    CBSEENPH11020837

    A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?

    • Angular velocity

    • Moment of inertia

    • Angular momentum

    • Rotational Kinetic energy

    Solution

    C.

    Angular momentum

    Angular momentum remains conserved until the torque acting on sphere remains zero. τex = 0

    So, dLdt = 0

    i.e. L = constant

    So angular momentum remains constant.

    Question 21
    CBSEENPH11020850

    Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation

    • WC > WB> WA

    • WA > WB > WC

    • WA>WC>WB

    • WB>WA>WC

    Solution

    A.

    WC > WB> WA

    B.

    WA > WB > WC

    Work done required to bring them rest

    W = KEW =12Iω2W  I for same ωWA:WB: WC = 25MR2:12MR2 :MR2 = 25:12 :1= 4:5:10 WC >WB> WA

    Question 22
    CBSEENPH11020881

    A uniform rod of length l is free to rotate in a vertical plane about a fixed horizontal axis through B. The rod begins rotating from rest from its unstable equilibrium position. When, it has turned through an angle θ, its angular velocity ω is given by

    • 6gI sin θ2

    • 6gI cos θ2

    • 6gI sin θ

    • 6gl cos θ

    Solution

    A.

    6gI sin θ2

    When the rod rotates through an angle θ, the centre of gravity falls through a distance h. From  △BCG'

    cos θ = (I/2)-hμ2h =12 (1-cos θ)Decrease in PE = mg I2 (1- cos θ) ... (i)The decrease in P.E. is equal to the kinetic enrgy ofrotation 122(KE)rotational   = 12 (ml23)ω2 .. (ii)From equ. (i) and (ii) we get 12 (ml23)ω2  = mg I2 (1- cos θ)ω = 6glsin θ2

    Question 23
    CBSEENPH11020883

    ABC is the right-angled triangular plane of uniform thickness. The sides are such that AB>BC as shown in the figure. I1, I2, I3 are moments of inertia about AB, BC and AC, respectively. Then which of the following relations is correct?

    • I1 = I2 = I3

    • I2 > I1> I3

    • I3<I2<11

    • I3>I1>I2

    Solution

    B.

    I2 > I1> I3

    The moment of inertia of a body about an axis depends not only on the mass of the body but also on the distribution of mass about the axis. For a given body mass is the same, so it will depend only on the distribution of mass about the axis. The mass is farthest from axis BC, so I2 is maximum mass is nearest to axis AC, so I3 is minimum.

    Hence, the correct sequence will be I2>I1>I3

    Question 24
    CBSEENPH11020884

    An ice-berg of density 900 kgm-3 is floating in the water of density 1000 kgm-3. The percentage of the volume of ice-berg outside the water is

    • 20%

    • 35%

    • 10%

    • 11%

    Solution

    C.

    10%

    Let the volume of ice-berg is V and its density is ρ. If this ice-berg floats in water with volume Vin inside it, then Vin σg = Vρg

    Vin = ρσV Vout = V - Vin = σ - ρσ V = 1000-9001000 V = V10VoutV = 0.1 = 10%

    Question 25
    CBSEENPH11020886

    A solid cylinder is attached to a horizontal massless spring as shown in the figure. If the cylinder rolls without slipping, the time period of oscillation of the cylinder is

    • 2πxg

    • 2π2M3K

    • 2π3M8K

    • 2π3M2K

    Solution

    C.

    2π3M8K

    Let x be the extension in the spring

    Then, x = 2Rθ

    Therefore, Torque acting on the cylinder about point contact.

    T = Fx2R = - Kx(2R) = - 4R2

    Thereore, T = 2π IKe = 2π32MR24R2K = 2π3M8K

    Question 26
    CBSEENPH11024906

    Under what condition is the relation s=ut is correct

    Solution

    If either of acceleration or time , is zero
    then the relation
    s=ut ( where s=displacement, u=initial velocity,t=time,a=acceleration) holds true
    as the original formula is s=ut+1/2at^2
    and as either a and t are 0 then it becomes s=ut

    Question 27
    CBSEENPH11024907

    State relation between impulse and momentum

    Solution

    Newton second law say that , force is directly proportional to rate of change of momentum(say p).
    F=(p2-p1)÷t
    On solving this we get fundamental definition of force.i.e
    F=ma

    Question 28
    CBSEENPH11026115

    Five particles of mass 2 kg are attached to the rim of a circular disc of radius 0.1 m and negligible mass. Moment of inertia of the system about the axis passing through the centre of the disc and perpendicular to its plane is

    • 1 kg m2

    • 0.1 kg m2

    • 2 kg m2

    • 0.2 kg m2

    Solution

    B.

    0.1 kg m2

    The moment of inertia of given system that contains 5 particles each of mass = 2 kg on the rim of circular disc of radius 0.1 m and of negligible mass is given by :

    MI of disc + MI of particle

    Since the mass of the disc is negligible

    ∴ MI of the system = MI of particle

    = 5 × 2 × (0.1)2

    = 0.1 Kg m2

    Question 29
    CBSEENPH11026125

    A particle is kept at rest at the top of a sphere of diameter 42 m. When disturbed slightly, it slides down. At what height h from the bottom, the particle will leave the sphere?

    • 14 m

    • 28 m

    • 35 m

    • 7 m

    Solution

    C.

    35 m

    The condition of slipping by the particle from the top is given by

    From the figure,

    Suppose that the particle will leave the surface at height h from the centre of the sphere then it will create an angle θ with the center.

    Hence, the height from the bottom of the sphere

    h = r cos θ = 21 ×23 = 14 m

    Therefore, the required height at which the particle will leave the sphere is :

    21 + h = 21+ 14 = 35 m

    Question 30
    CBSEENPH11026139

    The angular momentum of a rotating body changes from Ao to 4Ao in 4 minutes. The torque acting on the body is:

    • 3/4 Ao

    • 4Ao

    • 3Ao

    • 3/2Ao

    Solution

    A.

    3/4 Ao

    Torque is the time rate of total angular momentum of a system of particles.

    Torque T =dLdt =4Ao -Ao4             =3Ao4

    Question 31
    CBSEENPH11026144

    If a spherical ball rolls on a table without slipping the friction of its total energy associated with rotational energy is :

    • 3/5

    • 2/7

    • 2/5

    • 3/7

    Solution

    B.

    2/7

    The rotational energy of sphere

    ER = 12I ω2For sphere moment of inertiaI = 25mR2ER =1225m R2vR2        = 15 mv2TRanslational kinetic energy Er = 12 mv2Total energy = 15mv2 + 12mv2                         = 710mv2

    Required fraction =15mv2710mv2                                = 27

    Question 32
    CBSEENPH11026145

    The equation of stationary wave along a stretched string is given by y = 5 sin πx3 cos 40πt where, x and y are in cm and t in second. The separation between two adjacent nodes is :

    • 1.5 cm

    • 3 cm

    • 6 cm

    • 4 cm

    Solution

    B.

    3 cm

    Given equation 

    y = 5 sin πx3cos 40 πt

    Compairing with standard equation

    y = A sin kx cosωt

     k = π/32π3= π3λ = 6 cmSeparation between two cosecutive nodes      λ2 = 62 = 3cm

    Question 33
    CBSEENPH11026167

    If the angle between the vectors A and B is θ, the value of the product B × A. A is equal to

    • BA2 cosθ

    • BA2 sinθ

    • BA2 sinθ cosθ

    • zero

    Solution

    D.

    zero

    B ×A. AB ×A. A = BA cosθ n^ .A                      = 0

    Here n^ is perpendicular to both A and B.

    Alternative method

    B × A .A

    Interchange the cross and dot we have,

    B × A. A = B . A × A                   = 0                       ..... A × A=0 

    The volume of a parallelopiped bounded by vectors A , A and A can be obtained by giving formula A × A. A

    Question 34
    CBSEENPH11026168

    The moment of inertia of a uniform circular disc of radius R and mass M about an axis passing from the edge of the disc and normal to the disc is

    • 12 MR2

    • MR2

    • 72 MR2

    • 32 MR2

    Solution

    D.

    32 MR2

    We should use parallel axis theorem.
    Moment of inertia of disc passing through its centre of gravity and perpendicular to its plane

    IAB = 12MR2

    Using theorem of parallel axes, we have

    ICD = IAB + MR2      = 12M R2 + M R2ICD  = 32 MR2

    The role of moment of inertia in the study of rotational motion is analogous to that of mass in study of linear motion.

    Question 35
    CBSEENPH11026181

    A force of -F k^ acts on O, the origin of the coordinate systems. The torque about the point (1, -1 ) is

    • F i^ - j^

    • - F i^ + j^

    • F i^ + j^ 

    • -F i^ - j^

    Solution

    C.

    F i^ + j^ 

    τ = r × F

    τ = i^ - j^ × -F k^      =F -i^  ×  k^  + j^  ×  k^    =F j^ + i^τ = F i^ + j^

    Question 36
    CBSEENPH11026205

    The speed of earth's rotation about its axis is o. Its speed is increased to x times to make the effective acceleration due to gravity equal to zero at the equator. Then x is

    • 1

    • 8.5

    • 17

    • 34

    Solution

    C.

    17

    Earth rotates about its own axis in 24 h.

    So,            T =24 x 60 x 60 s

    So, angular speed of earth about its own axis

                  ω = 2πTω = 2π24 × 60 × 60rad/s   

    At equator  g' = g - Re ω'2

                    0 = g - Reω'2 ω' = gRe          = 2π84.6 × 60  ω'ω = 24 ×60 × 6084.6 × 60

                              ≈ 17

                         ω' = 17ω

    So, value of x is 17.

    Question 37
    CBSEENPH11026215

    The moment of inertia of a uniform circular disc of radius R and mass M about an axis passing from the edge of the disc and normal to the disc is

    • MR2

    • 12 MR2

    • 32 MR2

    • 72 MR2

    Solution

    C.

    32 MR2

    The moment of inertia of circular disc about an axis through its centre and normal to its plane

                 ICG = 12 MR2

    Where M is the mass of the disc and R its radius.

    According to the theorem of parallel axis, the moment of inertia of the uniform circular disc about an axis passing from the edge of the disc and normal to the disc,

             I = ICG + MR2 

              = 12 MR2 + MR2

             I = 32 MR2

    Question 38
    CBSEENPH11026236

    Point masses 1,  2,  3  and  4 kg are lying at the points (0, 0, 0),  (2, 0, 0),  (0, 3, 0)  and  (- 2, -2, 0)   respectively. The moment-of inertia of this system about  X-axis  will be

    • 43 kg-m2

    • 34  kg-m2

    • 27  kg-m2

    • 72  kg-m2

    Solution

    A.

    43 kg-m2

    Moment of inertia of the whole system about the axis of rotation will be equal to the sum of the moments of inertia of all the particles.

         

               I = I1 + I2 + I3 + I4

               I = m1 r12 + m2 r22 + m3 r32 + m4 r42

               I = ( 1 × 0 ) + ( 2 × 0 ) + ( 3 × 32 ) + 4 (-2 )2

               I = 0 + 0 + 27 + 16

               I = 43 kg-m3  

    Question 39
    CBSEENPH11026237

    The radius of gyration of a body about an axis at a distance 6 cm from its centre of mass is 10 cm. Then, its radius of gyration about a parallel axis through its centre of mass will be

    • 80 cm

    • 8 cm

    • 0.8 cm

    • 80 m

    Solution

    B.

    8 cm

    The moment of inertia of a body about any axis is equal to the sum of the moment of inertia of the body about a parallel axis passing through its centre of mass and the product of its mass and the square of the distance between the two parallel axes.

    From the theorem of parallel axis, the moment of inertia I is equal to

       I = ICM + M a2

    where ICM is moment of inertia about the centre of mass and  'a'  the distance of axis from the centre.

        I = MK2 + M × (6)2

        M K12 = M K2 + 36 M

    ⇒     K12 = K2 + 36 

    ⇒       (10)2 = K2 + 36

    ⇒        K2  = 100 - 36

    ⇒         K2 = 64

    ⇒          K = 8 cm

    Sponsor Area

    Question 40
    CBSEENPH11026272

    A wheel of radius 0.4 m can rotate freely about its axis as shown in the figure. A string is wrapped over its rim and a mass of 4 kg is hung. An angular acceleration of 8 rad-s-2 produced in it due to the torque. Then, moment of inertia of the wheel is (g =10 ms-2 )

    • 2 kg-m2

    • 1 kg-m2

    • 4 kg-m2

    • 8 kg-m2

    Solution

    A.

    2 kg-m2

    Torque is defined as the moment of force or turning effect of force or turning effect of force about the given axis or point. It is measured as the cross product of position and force vector while as angular momentum is the rotational analogue of linear momentum.

    Given:-

     r = 0.4 m

     Angular acceleration α = 8 rad s-2

     m = 4 kg

     l = ?

      

     Torque τ = I α

    But we know Τ =  Fr 

    and  The equation for the force of gravity is ( F = mg ) where g is the acceleration due to gravity.

              mgr = I α

             4 × 10 × 0.4 =  I × 8

    ⇒         I = 168

               I  = 2 kg.m2

    Question 41
    CBSEENPH11026273

    An object start sliding on a frictionless inclined plane and from same height another object start falling freely.

    • both will reach with same speed

    • both will reach with same acceleration

    • both will reach in same time

    • None of the above

    Solution

    A.

    both will reach with same speed

    Both start with the same potential energy component ( gh )

    When they both reach the ground, both have converted that identical energy component kinetic energy.

    Thus, the object sliding down a frictionless incline will reach the same velocity as the one dropped straight down.

    The times to reach the speed to reach the speed will not be the same, the dropped one will reach it faster.

    Question 42
    CBSEENPH11026290

    Two rigid bodies A and B rotate with rotational kinetic energies E, and E, respectively. The moments of inertia of A and B about the axis of rotation are IA and IB respectively.

    If IA = IB2 and  EA = 100 = EB, the ratio of angular momentum (LA ) of A to the angular  momentum ( LB ) of B is

    • 25

    • 5/4

    • 5

    • 1/4

    Solution

    C.

    5

    From the formula

              Erotational = 12I ω2 

                          = L22I                    L = 

    Therefore,  L2 = 2 EI

    Hence       LA2 = 2EA IA                  .....(i)

    and           LB2 = 2EB IB                 ......(ii)

    From equatin (i) and (ii)

                   LALB = 2EA IA2EB IB

                          = 1004

                   LALB  = 5

            EBEA = 100 and IAIB = 4

    Question 43
    CBSEENPH11026291

    The working principle of a ball point pen is

    • Bernoulli's theorem

    • surface tension

    • gravity

    • viscosity

    Solution

    B.

    surface tension

    The principle of working of ball pen corresponds to surface tension. As the pen moves along the paper, the ball rotates picking up ink from the ink cartridge and leaving it on the paper.

    Question 44
    CBSEENPH11026292

    Progressive waves are represented by the equation y1 = a sin (ωt - x )  and y2 = bcos (ωt - x ).  The phase difference wave is

    • 0o

    • 45o

    • 90o

    • 180o

    Solution

    C.

    90o

    As it is clear that the phase difference between cosθ and sinθ representing two simple harmonic motion is 90o.

    Question 45
    CBSEENPH11026300

    If applied torque on a system is zero, i.e.,Τ = 0 , then for that system

    • ω = 0

    • α = 0

    • J = 0

    • F = 0

    Solution

    B.

    α = 0

    τ   the torque on a given axis is product of moment of inertia and angular acceleration. 

                  τ = I α

        I = moment of inertia

        α = angular acceleration

         If     τ = 0   = 0

         But       I ≠ 0

                     α = 0

    When the torque acting upon a system is zero, the angular momentum is constant and hence conserved. This is analogous to the linear counterpart i.e when the force on the system is zero, the momentum is conserved.

    Question 46
    CBSEENPH11026305

    Match the following

    Angular momentum 1. [M-1 L2 T-2 ]
    B. Torque 2 [M1 L2 T-2
    C. Gravitational constant 3.[M1 L2 T-2]
    D. Tension 4.[M1 L2 T-1]

    • C- 2, D - 1

    • A - 4, B - 3

    • A - 3, C -2

    • B-2, A - 1

    Solution

    B.

    A - 4, B - 3

    Dimensions of Torque = [M2 L2 T-2]

    Dimension of angular momentum = [ M1 L2 T-1]

    ∴ Relation A-4 ,B -3 is right. 

    Question 47
    CBSEENPH11026321

    A tangential force acting on the top of sphere of mass m kept on a rough horizontal place as shown in figure

                      

    If the sphere rolls without slipping, then the acceleration with which the centre of sphere moves, is

    • 10 F7 m

    • F2 m

    • 3 F7 m

    • 7 F2 m

    Solution

    A.

    10 F7 m

    Let a be the acceleration of centre of sphere. The angular acceleration about the centre of the sphere is α = θr, as there is no slipping.

    For the linear motion of the centre

       f + F = ma                  .....(i)

    and for the rotational motion about the centre

      Fr - fr = I α

                = 25 mr2 ar

     ⇒  F - f = 25 ma           ....(ii)

    From Eqs. (i) and (ii)

       2F = 75 ma

     ⇒  a  = 10 F7 m

    Question 48
    CBSEENPH11026340

    A solid sphere is set into motion on a rough horizontal surface with a linear speed v in the forward direction and an angular speed vR in the anticlockwise direction as shown in figure. Find the linear speed of the sphere when it stops rotating and ω = vR

      

    • 3v5

    • 2 v5

    • 4 v3

    • 7 v3

    Solution

    A.

    3v5

    If we take moment at A, then external torque will be zero.

    Therefore,

    the initial angular momentum= the angular momentum after rotation stop

    (i.e. only linear velocity exist )

    (i) Initial angular momentum about point A

          L = m ( v × R ) - Iω

    ⇒      Mv × R - 25 Iω = M v0 × R

    ⇒    MvR - 25 MR2 × vR = Mv0 R

    ⇒                    v03 v5

    Question 49
    CBSEENPH11026341

    Two blocks of masses m1 and m2 are connected by a spring of spring constant k. The block of mass m2 is given a sharp empulse so that it acquires a velocity vtowards right. Find the maximum elongation that the spring will suffer.

               

    • m1 m2m1 + m212 v0

    • m1 + m2m1 -  m2 v0

    • m1 + m2m1 - m212 v0 

    • 2m1 + m2m1 m212 v0

    Solution

    A.

    m1 m2m1 + m212 v0

    The centre of mass is the location of particles within a system where the total mass of the system can be considered concentrated. When the system of particles is moving, the center of mass moves along with it. 

    The centre of mass of velocity equation is the sum of each particle's momentum ( mass times velocity ) divided by the total mass of the system.

    The velocity of the centre of mass of two particles

         vcmm1 v1 + m2 v2m1 + m2

    When v1 =0  and  v2 =v0, then

        vcm = m2 v0m1 + m2

    Now, let 'x' be the elongation in the spring.

    Change in potential energy = potential energy stored in spring

    ⇒   12 m2 v02 - 12 m1 + m2m2 v0m1 + m22 =   12 kx2

    ⇒    m2 v02  1 - m2m1 + m2 = kx2 

    ⇒  m2 v02 m1 + m2 - m2m1 + m2  = kx2

    This gives

              x = m1 m2m1 + m212 v0

    Question 50
    CBSEENPH11026375

    Particles of masses m, 2m, 3m, ... , nm are placed on the same line at distances L, 2L, 3L, ... , nL from O. The distance of centre of mass from O is

    • 2n + 1 L4

    • L2n + 1

    • n n2 + 1 L2

    • 2n + 1 L3

    Solution

    D.

    2n + 1 L3

      

    Centre of mass formula

      centre of mass =  sum of all  position × mass sum of all masses

           XCM  =  mL + 2m × 2L + .... + nm × nLm + 2m + .... + nm

                      = L 12 + 22 + ..... + n21 + 2 + ..... + n

                      = L Σ n2Σ n

                      = L  n n + 1 2n + 16n n + 12

               XCM  = 2 n + 1 L3

    Question 51
    CBSEENPH11026376

    A ball of radius R rolls without slipping. Find the fraction of total energy associated with its rotational energy, if the radius of the gyration of the ball about an axis passing through its centre of mass is K.

    • K2K2 + R2

    • R2K2 + R2

    • K2 + R2R2

    • K2R2

    Solution

    A.

    K2K2 + R2

     Kinetic energy of rotation is

      Krot122                  

              = 12 MK2 v2R2

     where, k is radius of gyration.

    Kinetic energy of translation is Ktran12 Mv2

    Thus, total energy, 

              E = Krot + Ktrans

                  = 12 MK2 v2R2 +12 Mv2

                  = 12 M v2 K2R2 + 1

                  = 12 Mv2R2  K2+ R2 

           E= 12 Mv2R2  K2 +R2 

    Hence 

         KrotTotal energy, E = 12 MK2 v2R212M v2R2 K2 + R2

          KrotTotal energy E=K2K2 + R2        

    Question 52
    CBSEENPH11026379

    A solid sphere of mass M and radius 2 R rolls down an inclined plane of height h without slipping. The speed of its centre of mass when it reaches the bottom is

    • 67 gh

    • 3 gh

    • 107 gh

    • 43 gh

    Solution

    C.

    107 gh

    When solid sphere rolls down on an inclined plane, then it has both rotational and translational kinetic energy

           K = Krot + Ktrans

           K = 12 2 + 12 M v2

    where,

    I= moment of inertia of solid sphere = 25 MR2

    ∴     K = 12 25 M  2R 2 ω2 + 12 Mv2                      [R =2R ]

               = 45MR2 v2R + 12 Mv2                           [ v = Rω and R = 2R ]

            K  = 15 Mv2 + 12 Mv2

            K = 710 Mv2

    Now, gain in KE= loss in PE

              710 Mv2 = Mgh

     ⇒               v = 107 gh

    Question 53
    CBSEENPH11026382

    A wheel starts rotating from rest at time t = 0 with a angular acceleration of 50 radians/s2. The angular acceleration (α) decreases to zero value after 5 seconds. During this interval, a varies according to the equation

          α = α0 1 - t5

    The angular velocity at t = 5 s will be

    • 10 rad/s

    • 250 rad/s

    • 125 rad/s

    • 100 rad/s

    Solution

    C.

    125 rad/s

    Given:-   

                α = α0 1 - t5

    At t = 0,  α = α0

    ∴          α0 = 50 rad/s2

           dt = α 1 - t5

    ∴      0ω = α0 051 - t5

    ⇒            ω =  α0 t - t21005 

    ⇒                 = 50 5 - 2510 rad/s

    ⇒              ω = 125 rad/s  

    Question 55
    CBSEENPH11026424

    A sphere of mass 10 kg and radius 0.5 m rotates about a tangent. The moment of inertia of the sphere is

    • 5 kg m2

    • 2.7 kg m2

    • 3.5 kg m2

    • 4.5 kg m2

    Solution

    C.

    3.5 kg m2

    M.I. about tangent =  I + MR2   

                                 = 25 MR2 + MR2

                                = 75 MR2                  

                                 = 75 × (10) × (0.5 )2

    M.I. about tangent = 3.5 kg m2

    Question 56
    CBSEENPH11026435

    Assertion:  Value of radius of gyration of a body depends on axis of rotation. 

    Reason:  Radius of gyration is root mean square distance of particle of the body from the axis of rotation.

    • If both assertion and reason are true and reason is the correct explanation of assertion.

    • If both assertion and reason are true but reason is not the correct explanation of assertion.

    • If assertion is true but reason is false.

    • If both assertion and reason are false.

    Solution

    A.

    If both assertion and reason are true and reason is the correct explanation of assertion.

    Radius of gyration of body a given axis is equal to

           k = r1 2 + r2 2 + ..... + rn2n

    It thus depends upon shape and size of the body, position and configuration of the axis of rotation and also on distribution of mass of body w.r.t. the axis of rotation

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    4