-->

Moving Charges And Magnetism

Question
CBSEENPH12047834

A coil of n number of turns is wound tightly in the form of a spiral with inner and outer radii a and b respectively. When a current of strength I is passed through the coil, the magnetic field at its centre is

  • μo nIb - a loge ab

  • μo n I2 b - a

  • 2 μo nIb

  • μo nI2 b - a loge ba

Solution

D.

μo nI2 b - a loge ba

Consider an element of thickness (dr) at a distance 'r' from the centre of spiral-coil.

Number of turns in coil =  n

Number of turns per unit length = nb - a

a is the inner radii and b is the outer radii of spiral winding.

Number of turns in element dr = dn

Number of turns per unit length in element

                dr = n drb - a

⇒              dn = n drb - a  

Magnetic field at its centre due to element dr is

                   dB  =  μo I dn2 r

                         = μo I 2 nb - a drr

By integrating on both side

∴                  B = ab μo I n dr2 b - a r

                      = μo I n2 b - a abdrr

                     = μo I n2 b - a loge rab                                ab1r = loge rab                                         

                    = μo I n2 b - a loge ba