Permutations And Combinations


How many words, with or without meaning, can be formed with the letters of word ‘MONDAY’ assuming, that no letter is repeated, if 4 letters are used but the first letter is a vowel ?


Number of letters in word 'MONDAY' = 6 (all district)
    Number of vowels = 2 (O and A)
Number of letters to be used in 4 and first letter is a vowel,
rightwards double arrow   
Number of arrangements for box 1 = straight P presuperscript 2 subscript 1 space equals space fraction numerator 2 factorial over denominator 1 factorial end fraction equals 2                                         (i)
(Two vowels for 1 box)
We now have 5 letters left and 3 boxes for them.
rightwards double arrow                            n = 5,  r = 3
∴          The number of permutations <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/ at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/ line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/ mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/ com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/ com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/ com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/ com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>  ...(ii)
Hence, from (i) and (ii), the total number of permutations i.e., the number of words formed:
                                               = 2 x 60 = 120.

Sponsor Area

Some More Questions From Permutations and Combinations Chapter

Determine K, so that K + 2, 4K – 6 and 3K – 2 are three consecutive terms of an A.P.