Sponsor Area

Real Numbers

Question
CBSEENMA10006118

Prove that the following are irrational:

(ii)  7 square root of 5

Solution

(ii) 7 square root of 5
Let us assume to the contrary, that 7 square root of 5 is rational.
So we can find coprime integers a and b (space space not equal to0 ) such that
italic space italic space italic space italic space italic space italic space italic 7 square root of italic 5 italic equals a over b
italic rightwards double arrow italic space italic space italic space italic space square root of italic 5 italic equals fraction numerator a over denominator italic 7 b end fraction
Since, a and b are integers,  fraction numerator straight a over denominator 7 straight b end fraction is rational. and so, square root of 5 is rational
But this contradicts the fact that square root of 5 is irrational.
Therefore  7 square root of 5 is irrational.