Sponsor Area

Real Numbers

Question
CBSEENMA10006108

Prove that square root of 5 is irrational.

Solution
Let us assume, to the contrary, that <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre> is rational.
So, we can find coprime integers a and b (≠ 0) such that
                 space space space space space space space space space space space space square root of 5 equals straight a over straight b space
space space space rightwards double arrow space space space space space space square root of 5 space straight b equals straight a

Squaring on both sides, we get

5b2 = a2

Therefore, 5 divides a2

Therefore, 5 divides a

So, we can write

a = 5c for some integer c.

Substituting for a, we get

5b2 = 25c2

⇒    b2 = 5c2

This means that 5 divides b2, and so 5 divides b.

Therefore, a and b have at least 5 ts a common factor.

But this contradicts the fact that a and b have no common factors other than 1.

This contradiction has arisen because of our incorrect assumption that square root of 5 is rational.

So, we conclude that square root of 5 is irrational.