Question
In ∆ABC, if ∠A = 50° and ∠B = 60°, determine the shortest and the longest side of the triangle.
Solution
Solutuion not provided.
Solutuion not provided.
Line I is the bisector of an angle ∠A and B is any point on I. BP and BQ are perpendiculars from B to the arms of ∠A (see figure). Show that:
(i) ∆APB ≅ ∆AQB
(ii) BP = BQ or B is equidistant from the arms of ∠A.
(i) ∆DAP ≅ ∆EBP
(ii) AD = BE.
AB is a line-segment. AX and BY are two equal line-segments drawn on opposite sides of line AB such that AX || BY. If AB and XY intersect each other at P. Prove that:
(i) ∆APX ≅ ∆BPY
(ii) AB and XY bisect each other at P.
Mock Test Series