-->

Areas Of Parallelograms And Triangles

Question
CBSEENMA9002597

 In figure, ABCD is a square and ∠DEC is an equilateral triangle. Prove that

(i)     ∆ADE ≅ ∆BCE
(ii)    AE = BE
(iii)   ∠DAE = 15°

Solution

Given: ABCD is a square and ∆DEC is an equilateral triangle.

To Prove:

(i)    ∆ADE ≅ ∆BCE

(ii)    AE = BE

(iii)    ∠DAE = 15°

Proof: (i) In ∆ADE and ∆BCE,
   AD = BC
           left enclose table row cell because space ABCD thin space is space straight a space square end cell row cell therefore AB equals BC equals CD equals DA end cell end table end enclose
  DE=CE
    
          left enclose table row cell because space increment EDC space is space equilateral end cell row cell therefore space ED space equals space DC space equals space CE end cell end table end enclose
 angle EDA space equals space angle ECB
space space space space space space space space space space space left enclose table row cell because space increment EDC space is space equilateral end cell row cell therefore angle EDC space equals space angle ECD space left parenthesis equals 60 degree right parenthesis space space space.... left parenthesis 1 right parenthesis end cell row cell because space ABCD space is space straight a space square end cell row cell therefore space angle ADC space equals space angle BCD space equals left parenthesis 90 degree right parenthesis space space.... left parenthesis 2 right parenthesis end cell row cell Adding space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma end cell row cell table row cell angle EDC space plus space angle ADC space equals space angle ECD plus angle BCD end cell row cell rightwards double arrow space angle EDA space equals space angle ECB end cell end table end cell end table end enclose

∴ ∆ADE ≅ ∆BCE | SAS congruence rule
(ii)    ∵ ∆ADE ≅ ∆BCE | Proved in (1)
∴ AE = BE    | CPCT
(iii)    In ∆DAE,
∵ DE = DA    | Given
∴ ∠DAE = ∠DEA    ...(1)
| Angles opposite to equal sides of a triangle are equal Also, ∠ADE + ∠DAE + ∠DEA = 180°
| Angle sum property of a triangle
⇒ (∠ADC + ∠EDC) + ∠DAE + ∠DEA = 180°
⇒ (90° + 60°) + ∠DAE + ∠DEA = 180°
⇒ ∠DAE + ∠DEA = 30°    ...(2)
From (1) and (2),
∠DAE = 15° = ∠DEA