-->

Circles

Question
CBSEENMA9002769

In triangle ABC, points M and N on sides AB and AC respectively are taken so that

AM equals 1 fourth AB space and space AN equals 1 fourth AC comma space Prove that MN = 1 fourth

Solution
Given: In triangle ABC, points M and N on the sides AB and AC respectively are taken so that
AM equals 1 fourth AB thin space and space AN equals 1 fourth AC
To Prove: MN equals 1 fourth BC.

Construction: Join EF where E and F are the middle points of AB and AC respectively.
Proof: Y E is the mid-point of AB and F is the mid-point of AC.
therefore space EF space parallel to space BC space space space and space space space EF space equals space 1 half BC space space space space space space space.... left parenthesis 1 right parenthesis
Now comma space space space space space space space space space space space space space space space space space space AE equals 1 half AB
and space space space space space space space space space space space space space space space space space space space space AM space equals space 1 fourth AB
therefore space space space space space space space space space space space space space space space space space space space space space space AM equals 1 half space AE
Similarly comma space space space space space space space space space space space space space AN equals 1 half AF
rightwards double arrow  M and N are the mid-points of AE and AF respectively.
therefore space MN space parallel to space EF space and space MN space equals space 1 half space EF equals 1 half open parentheses 1 half BC close parentheses
                                                           | From (1)
                                 equals 1 fourth BC.