In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see the given figure).
Show that:
(i) ΔAPD ≅ ΔCQB
(ii) AP = CQ
(iii) ΔAQB ≅ ΔCPD
(iv) AQ = CP
(v) APCQ is a parallelogram
(i) In ΔAPD and ΔCQB,
∠ADP = ∠CBQ (Alternate interior angles for BC || AD)
AD = CB (Opposite sides of parallelogram ABCD)
DP = BQ (Given)
∴ ΔAPD ≅ ΔCQB (Using SAS congruence rule)
(ii) As we had observed that ΔAPD ≅ ΔCQB,
∴ AP = CQ (CPCT)
(iii) In ΔAQB and ΔCPD,
∠ABQ = ∠CDP (Alternate interior angles for AB || CD)
AB = CD (Opposite sides of parallelogram ABCD)
BQ = DP (Given)
∴ ΔAQB ≅ ΔCPD (Using SAS congruence rule)
(iv) As we had observed that ΔAQB ≅ ΔCPD,
∴ AQ = CP
(v) From the result obtained in (ii) and (iv),
AQ = CP and
AP = CQ
Since opposite sides in quadrilateral APCQ are equal to each other, APCQ is a parallelogram.