Mathematics Part I Chapter 3 Matrices
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part I

    Matrices Here is the CBSE Mathematics Chapter 3 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Matrices Chapter 3 NCERT Solutions for Class 12 Mathematics Matrices Chapter 3 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12032843

    Consider the following information regarding the number of men and women workers in three factories I. II and III

     

    Men Workers

    Women Workers

    I

    30

    25

    II

    25

    31

    III

    27

    26

    Represent the above information in the form of a 3 x 2 matrix. What does the entry in the third row and second column represent ?

    Solution

    The given information is

    Factory

    Men Workers

    Women Worker:

    I

    , 30

    25

    II

    ' 25

    31

    III

    27

    26

    The information is represented in the form of a 3 X 2 matrix as follows :
    straight A equals open square brackets table row 30 25 row 25 31 row 27 26 end table close square brackets
    The entry in the third row and second column represents the number of women workers in factory III.

    Question 2
    CBSEENMA12032845

    In the matrix straight A equals open square brackets table row 2 5 19 cell negative 7 end cell row 35 cell negative 2 end cell cell 5 over 12 end cell 12 row cell square root of 5 end cell 1 cell negative 5 end cell 17 end table close square brackets. space Write

    (i) The order of the matrix
    (ii) The number of elements,
    (iii) Write the elements a13,a21 a33 a24’ a23

    Solution
    Here
    straight A equals left parenthesis straight a subscript straight i right parenthesis equals open square brackets table row 2 5 19 cell negative 7 end cell row 35 cell negative 2 end cell cell 5 over 12 end cell 12 row cell square root of 5 end cell 1 cell negative 5 end cell 17 end table close square brackets. space Write

    ( i) Now A has 3 rows and 4 columns and so A is of order 3 x 4.

    (ii) Number of elements = 3 x 4 = 12

    (iii) a13, =- 19., a21 =35, a33 = 5, J24 = 12, a23 equals 5 over 2

    Question 3
    CBSEENMA12032846

    If a matrix has 8 elements, what arc the possible orders it can have ?

     

    Solution

    We know' that if a matrix is of order m x n, it has mn elements. Therefore, for finding all possible orders of a matrix with 8 elements, we will find all ordered pairs of natural numbers, whose product is 8.

    ∴ all possible ordered pairs are (1.8), (8, I), (4, 2). (2, 4)
    ∴ possible orders are I x 8, 8 x 1, 2 x 4, 4 x 2.

    Question 4
    CBSEENMA12032848

    If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

    Solution

    We know that a matrix of order m x n has mn elements. Therefore, for finding all possible orders of a matrix with 24 elements, w e will find all ordered pairs with products of elements as 24.
    ∴ all possible ordered pairs are
    (1, 24), (24. 1), (2, 12), (12. 2). (3, 8), (8, 3), (4. 6), (6, 4)
    ∴ possible orders are
    1 x 24. 24 x 1, 2 x 12, 12 x 2, 3 x 8, 8 x 3, 4 x 6. 6 x 4
    If number of elements  =13, then possible orders are 1 x 13, 13 x l.

    Question 5
    CBSEENMA12032849

    If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

    Solution

    We know that a matrix of order m x n has mnelements. Therefore, for finding all possible orders of a matrix with 18 elements, we will find all ordered pairs with products of elements as 18
    ∴ all possible ordered pairs areall possible ordered pairs areall possible ordered pairs areall possible ordered pairs areall possible ordered pairs areall possible ordered pairs are  (I, 18). (18, 1). (2, 9). (9. 2). (3, 6). (0, 3)
    ∴ possible orders are 1 x 18. 18 x 1. 2 x 9,-9 X 2, 3 x 6. 6 x 3.
    If number of elements = 5, then possible orders arc 1 x 5. 5 x I.

    Question 6
    CBSEENMA12032850

    If a matrix A has 12 elements, what arc the possible orders it can have 7 What if it has 7 elements ?

    Solution

    Number of elements = 12
    ∴possible orders of the matrix are
    1 x 12, 12 x 1,2 X 6. 6 x 2,3 x 4,4 x 3
    If numbers of elements = 7, then possible orders are 1 x 7. 7 x 1

    Question 7
    CBSEENMA12032851

    Construct a 3 x 3 matrix w'hose elements are giv en by a,1, = 2 i – 3 j

    Solution

    Let A = [a i] be required 3 x3 matrix    
    where a,ij , = 2 i – 3 j    
    ∴ a11, = 2–3 = –1. a12 = 2–6 = 4. a13,= 2–9 = 7
    a21 = 4 — 3 = 1. a22 = 4 — 6 = —2 . a23  = 4 –9 = 5
    a31 = 6 – 3 = 3, = 6 – 6 = 0 , a33 = 6 – 9 = –3
    therefore space space space space space straight A equals open square brackets table row cell negative 1 end cell cell negative 4 end cell cell negative 7 end cell row 1 cell negative 2 end cell cell negative 5 end cell row 3 0 cell negative 3 end cell end table close square brackets

    Question 8
    CBSEENMA12032853

    Construct a 3 x 4 matrix whose elements are

    ai  j = i +J  

    Solution

    Let A = [ aii] be required 3 x 4 matrix where aij= i + j
    therefore space space spacea11 = 1 + 1 = 2, a12 =1+2, a13=1 + 3 = 4, a14 = 1 + 4 = 5
          a21 = 1 + 1 = 2, a22 =1+2, a23=1 + 3 = 4, a24 = 1 + 4 = 6
          a31 = 1 + 1 = 2, a32 =1+2, a33=1 + 3 = 4, a34 = 1 + 4 = 7 

    therefore space space space space straight A equals open square brackets table row 2 3 4 5 row 3 4 5 6 row 4 5 6 7 end table close square brackets   
    Question 9
    CBSEENMA12032855

    Construct a 3 x 4 matrix whose elements are

    ai  j = i –J

    Solution

    Let A = [ aii] be required 3 x 4 matrix where aij= i - j
    therefore space space spacea11 = 1 - 1 = 0, a12 =1 - 2= - 1, a13=1 - 3 = - 2, a14 = 1 - 4 = -3
          a21 = 2 - 1 = 1, a22 =2 - 2= 0, a23=2 - 3 = -1, a24 = 2 - 4 = - 2
          a31 = 3 - 1 = 2, a32 =3 - 2, a33=3 - 3 = 0, a34 = 3 - 4 = - 1 
    therefore space space space straight A equals open square brackets table row 0 cell negative 1 end cell cell negative 2 end cell cell negative 3 end cell row 1 0 cell negative 1 end cell cell negative 2 end cell row 2 1 0 cell negative 1 end cell end table close square brackets

       
    Question 10
    CBSEENMA12032857

    Construct a 3 x 4 matrix whose elements are

    ai j = i.j

    Solution

    Let A = [ aii] be required 3 x 4 matrix where aij= i.j
    therefore space space spacea11 = 1 - 1 = 0, a12 =1 - 2= - 1, a13=1 - 3 = - 2, a14 = 1 - 4 = -3
          a21 = 2 - 1 = 1, a22 =2 - 2= 0, a23=2 - 3 = -1, a24 = 2 - 4 = - 2
          a31 = 3 - 1 = 2, a32 =3 - 2, a33=3 - 3 = 0, a34 = 3 - 4 = - 1 
    therefore space space space straight A equals open square brackets table row 0 cell negative 1 end cell cell negative 2 end cell cell negative 3 end cell row 1 0 cell negative 1 end cell cell negative 2 end cell row 2 1 0 cell negative 1 end cell end table close square brackets

       
    Question 11
    CBSEENMA12032861

    Construct a 3 x 4 matrix whose elements are

    ai j = i.j

    Solution

    Let A = [ aii] be required 3 x 4 matrix where aij=  i.j
    therefore space space spacea11 = 1 . 1 = 1, a12 =1 . 2 = 2, a13 = 1 . 3 = 3, a14 = 1 . 4 = 4
          a21 = 2 . 1 = 2, a22 =2 . 2 = 4, a23 = 2 . 3 = 6, a24 = 2 . 4 = 8
          a31 = 3 . 1 = 3, a32 =3 . 2 = 6, a33 = 3 . 3 = 9, a34 = 3 . 4 = 12 
    therefore space space space straight A equals open square brackets table row 1 2 3 4 row 2 4 6 8 row 3 6 9 12 end table close square brackets

       
    Question 12
    CBSEENMA12032864

    Construct a 2 x 3 matrix whose elements are given by aij. = i + 2 j .

    Solution

    Let A = [aij] be required 2 x 3 matrix where aij = i + 2 j
    therefore   a11 = 1 + 2 = 3, a12 = 1 + 4 = 5, a13 = 1 + 6 = 7
           a21 = 2 + 2 = 4, a22 = 2 + 4 = 6, a23 = 2 + 6 = 8
    therefore space space space space space straight A equals open square brackets table row 3 5 7 row 4 6 8 end table close square brackets

    Question 13
    CBSEENMA12032866

    Construct a 2 x 3 matrix whose elements are given by aij. = i + 2 j .

    Solution

    Here aij = 2 i - j
    therefore   a11 = 2 (1) - 2 = 2 - 1 = 1,    a12 = 2 (1) - 2 = 2 - 2 = 0
           a13 = 2 (1) - 3 = 2 - 3 = - 1,    a14 = 2 (1) - 4 = 2 - 4 = - 2
           a21 = 2 (2) - 1 = 4 - 1 = 3,    a22 = 2 (2) - 2 = 4 - 2 = 2 
           a23 = 2 (2) - 3 = 4 - 3 = 1,    a24 = 2 (2) - 4 = 4 - 4 = 0 
    therefore space space space space space straight A equals open square brackets table row 1 0 cell negative 1 end cell cell negative 2 end cell row 3 2 1 0 end table close square brackets 

    Question 14
    CBSEENMA12032867

    Construct a 2 x 2 matrix, A = [ai j], whose elements are given by :

    straight a subscript ij equals fraction numerator left parenthesis straight i plus straight j right parenthesis squared over denominator 2 end fraction

    Solution

     A = [ai j] is 2 x 2 matrix where , aijfraction numerator left parenthesis straight i plus straight j right parenthesis squared over denominator 2 end fraction
    therefore space space space space straight a subscript 11 equals fraction numerator left parenthesis 1 plus 1 right parenthesis squared over denominator 2 end fraction equals 4 over 2 equals 2 space space space space space space space space space space space space space space space space space straight a subscript 12 equals fraction numerator left parenthesis 1 plus 2 right parenthesis squared over denominator 2 end fraction equals 9 over 2
space space space space space space space straight a subscript 21 equals fraction numerator left parenthesis 2 plus 1 right parenthesis squared over denominator 2 end fraction equals 9 over 2 space space space space space space space space space space space space space space space space space space space space space straight a subscript 23 equals fraction numerator left parenthesis 2 plus 2 right parenthesis squared over denominator 2 end fraction equals 16 over 2 equals 8
therefore space space space space straight A equals open square brackets table row 2 cell 9 over 2 end cell row cell 9 over 2 end cell 8 end table close square brackets

    Question 15
    CBSEENMA12032869

    Construct a 2 x 2 matrix, A = [ai j], whose elements are given by :

    straight a subscript ij equals i over j

    Solution

    A = [aij] is 2 x 2 matrix where aijstraight i over straight j
    therefore space space straight a subscript 11 equals 1 over 1 equals 1 comma space space space space space straight a subscript 12 equals 1 half
space space space space space straight a subscript 21 equals 2 over 1 equals 2 comma space space space space space straight a subscript 22 equals 2 over 2 equals 1
therefore space space space space straight A minus open square brackets table row 1 cell 1 half end cell row 2 1 end table close square brackets

    Question 16
    CBSEENMA12032870

    Construct a 2 x 2 matrix, A = [ai j], whose elements are given by :

    straight a subscript ij equals fraction numerator left parenthesis straight i plus 2 space straight j right parenthesis squared over denominator 2 end fraction

    Solution

    A = [ aij ] is 2 x 2 matrix where straight a subscript ij equals fraction numerator left parenthesis straight i plus 2 space straight j right parenthesis squared over denominator 2 end fraction
    therefore space space straight a subscript 11 equals fraction numerator left parenthesis 1 plus 2 right parenthesis squared over denominator 2 end fraction equals 9 over 2 comma space space space space space space space space space space space space space space space space straight a subscript 12 equals fraction numerator left parenthesis 1 plus 4 right parenthesis squared over denominator 2 end fraction equals 25 over 2
space space space space space straight a subscript 21 equals fraction numerator left parenthesis 2 plus 2 right parenthesis cubed over denominator 2 end fraction equals 16 over 2 equals 8 space space space space space space space space space space space straight a subscript 22 equals fraction numerator left parenthesis 2 plus 4 right parenthesis squared over denominator 2 end fraction equals 36 over 2 equals 18
therefore space space space space space straight A equals open square brackets table row cell 9 over 2 end cell cell 25 over 2 end cell row 8 18 end table close square brackets

    Question 17
    CBSEENMA12032872

    Construct a 3 X 2 matrix whose elements are given by straight a subscript ij equals 1 half left square bracket straight i minus 3 space straight j right square bracket

    Solution
    Let A = [ai j ) be required 3x2 matrix, where straight a subscript ij equals 1 half left square bracket straight i minus 3 space straight j right square bracket
    straight a subscript 11 equals 1 half open vertical bar 1 minus 3 close vertical bar equals 1 half left parenthesis 2 right parenthesis equals 1 comma space space space straight a subscript 12 equals 1 half open vertical bar 1 minus 6 close vertical bar equals 1 half left parenthesis 5 right parenthesis equals 5 over 2
straight a subscript 21 equals 1 half open vertical bar 2 minus 3 close vertical bar equals 1 half left parenthesis 1 right parenthesis equals 1 half. space straight a subscript 22 equals 1 half open vertical bar 2 minus 6 close vertical bar equals 1 half left parenthesis 4 right parenthesis equals 2
straight a subscript 31 equals 1 half open vertical bar 3 minus 3 close vertical bar equals 1 half left parenthesis 0 right parenthesis equals 0 comma space space space space straight a subscript 32 equals 1 half open vertical bar 3 minus 6 close vertical bar equals 1 half left parenthesis 3 right parenthesis equals 3 over 2
straight A equals open square brackets table row 1 cell 5 over 2 end cell row cell 1 half end cell 2 row 0 cell 3 over 2 end cell end table close square brackets  

    Sponsor Area

    Question 18
    CBSEENMA12032876

    Construct a 3 x 4 matrix, whose elements are given by :

    straight a subscript ij equals 1 half open vertical bar negative 3 straight i plus straight j close vertical bar

    Solution
    Let A = [ai j be required 3x4 matrix where straight a subscript ij equals 1 half open vertical bar negative 3 straight i plus straight j close vertical bar
    therefore space space straight a subscript 11 equals 1 half open vertical bar negative 3 plus 1 close vertical bar equals 1 half left parenthesis 2 right parenthesis equals 1 comma space space space straight a subscript 12 equals 1 half open vertical bar negative 3 plus 2 close vertical bar equals 1 half left parenthesis 1 right parenthesis equals 1 half
space space space space space straight a subscript 13 equals 1 half open vertical bar negative 3 plus 3 close vertical bar equals 1 half left parenthesis 0 right parenthesis equals 0 comma space space space straight a subscript 14 equals 1 half open vertical bar negative 3 plus 4 close vertical bar equals 1 half left parenthesis 1 right parenthesis equals 1 half
space space space space space straight a subscript 21 equals 1 half open vertical bar negative 6 plus 1 close vertical bar equals 1 half left parenthesis 5 right parenthesis equals 5 over 2 comma space space space straight a subscript 22 equals 1 half open vertical bar negative 6 plus 2 close vertical bar equals 1 half left parenthesis 4 right parenthesis equals 2
space space space space space straight a subscript 23 equals 1 half open vertical bar negative 6 plus 3 close vertical bar equals 1 half left parenthesis 3 right parenthesis equals 3 over 2 comma space space space straight a subscript 24 equals 1 half open vertical bar negative 6 plus 4 close vertical bar equals 1 half left parenthesis 3 right parenthesis equals 1
space space space space space straight a subscript 31 equals 1 half open vertical bar negative 9 plus 1 close vertical bar equals 1 half left parenthesis 8 right parenthesis equals 4 comma space space space straight a subscript 32 equals 1 half open vertical bar negative 9 plus 2 close vertical bar equals 1 half left parenthesis 7 right parenthesis equals 7 over 2
space space space space space straight a subscript 33 equals 1 half open vertical bar negative 9 plus 3 close vertical bar equals 1 half left parenthesis 6 right parenthesis equals 3 comma space space space straight a subscript 34 equals 1 half open vertical bar negative 9 plus 4 close vertical bar equals 1 half left parenthesis 5 right parenthesis equals 5 over 2
therefore space space space space space straight A equals open square brackets table row 1 cell 1 half end cell 0 cell 1 half end cell row cell 5 over 2 end cell 2 cell 3 over 2 end cell 1 row 4 cell 7 over 2 end cell 3 cell 5 over 2 end cell end table close square brackets
    Question 19
    CBSEENMA12032878

    Construct a 3 x 4 matrix, whose elements are given by :

    aij = 2 i - j

    Solution

    Let A = [ai j ] be required 3x4 matrix where aij-= 2 i – j
    therefore   a11 = 2 - 1 = 1,   a12 = 2 - 2 = 0,   a13 = 2 - 3 = - 1,
          a14 = 2 - 4 = - 2 
          a21 = 4 - 1 = 3,  a22 = 4 - 2 = 2,  a23 = 4 - 3 = 1, 
          a24 = 4 - 4 = 0, 
         a31 = 6 - 1 = 5,   a32 = 6 - 2 = 4,  a33 = 6 - 3 = 3, 
         a34 = 6 - 4 = 2
    therefore space space space space space straight A equals open square brackets table row 1 0 cell negative 1 end cell cell negative 2 end cell row 3 2 1 0 row 5 4 3 2 end table close square brackets

    Question 20
    CBSEENMA12032880

    If open square brackets table row cell straight x minus 2 straight y end cell cell negative straight y end cell row cell 3 straight x end cell 4 end table close square brackets equals open square brackets table row cell negative 4 end cell 3 row 6 4 end table close square brackets find the values of .x and y.

    Solution

    We are given that open square brackets table row cell straight x minus 2 straight y end cell cell negative straight y end cell row cell 3 straight x end cell 4 end table close square brackets equals open square brackets table row cell negative 4 end cell 3 row 6 4 end table close square brackets

    From the definition of equality of matrices, we have
    x + 2y= 4    ...(1)
    – y = 3    ...(2)
    3 x = 6    ...(3)
    From (2).    y = –3
    From (3),    x = 2
    Also (1) is satisfied for x = 2, y = – 3 we have x = 2, y = – 3

    Question 21
    CBSEENMA12032881

    If open square brackets table row cell straight x plus 2 straight y end cell cell 3 straight y end cell row cell 4 straight x end cell 2 end table close square brackets equals open square brackets table row 0 cell negative 3 end cell row 8 2 end table close square brackets find the values of x and y.

    Solution

    We are given that open square brackets table row cell straight x plus 2 straight y end cell cell 3 straight y end cell row cell 4 straight x end cell 2 end table close square brackets equals open square brackets table row 0 cell negative 3 end cell row 8 2 end table close square brackets

    From the definition of equality of matrices, we have
    x+ 2y = 0        -(I)
    3.y= – 3    ...(2)
    4 x =8     ...(3)
    From (2),    y = – 1
    From (3).    x = 2
    Also (1) is satisfied for ,x = 2. y = – 1 we have x = 2. y= – 1

    Question 22
    CBSEENMA12032885

    If open square brackets table row cell straight x minus straight y end cell cell 2 straight x plus straight z end cell row cell 2 straight x minus straight y end cell cell 3 straight z plus straight w end cell end table close square brackets equals open square brackets table row cell negative 1 end cell 5 row 0 13 end table close square bracketsfind x. y. z. w

    Solution
    We are given that  
    open square brackets table row cell straight x minus straight y end cell cell 2 straight x plus straight z end cell row cell 2 straight x minus straight y end cell cell 3 straight z plus straight w end cell end table close square brackets equals open square brackets table row cell negative 1 end cell 5 row 0 13 end table close square brackets

    From the definition of equality of matrices, we have,
    x–y = – 1    ....(1)
    2 x – y = 0    ...(2)
    2.x+z = 5 ...(3)
    3z + w = 13    . (4)
    Subtracting (1) from (2), ,x = 1
    ∴ from (I), 1 – y = - 1 ;⇒ y = 2
    From (3). 2 +z = 5;⇒ z = 3
    From (4), 9 +' w=13;⇒ w = 4
    ∴ x= 1. y = 2, z= 3. w = 4

    Question 23
    CBSEENMA12032887

    Find the values of.x, y and z from the following equations :

    open square brackets table row 4 3 row straight x 5 end table close square brackets equals open square brackets table row y z row 1 5 end table close square brackets

    Solution

    We are given that
    open square brackets table row 4 3 row straight x 5 end table close square brackets equals open square brackets table row straight y straight z row 1 5 end table close square brackets

    By definition of equality of matrices
    4 = y.3 =z,.x = 1
    ,∴ x = I. y = 4, z = 3

    Question 24
    CBSEENMA12032888

    Find the values of.x, y and z from the following equations :

    open square brackets table row cell straight x plus straight y end cell 2 row cell 5 plus straight z end cell cell straight x space straight y end cell end table close square brackets equals open square brackets table row 6 2 row 5 8 end table close square brackets

    Solution

    We are given that
    open square brackets table row cell straight x plus straight y end cell 2 row cell 5 plus straight z end cell cell straight x space straight y end cell end table close square brackets equals open square brackets table row 6 2 row 5 8 end table close square brackets

    By definition of equality of matrices,
    x+.y= 6    ....(1)
    5 + z =5    ....(2)
    x y =8    ...(3)
    From (2). z= 0
    From (I). y= 6 – x   ...(4)
    Putting y = 6 –x in (3). we get.
    x(6 – x) = 8 or 6 x – x2 –8 = 0
    ∴x2–6x + 8 = 0 ⇒ (.x –2) (x–4) = 0;⇒ .x=2.4
    ;∴ from (4). y = 6 – 2. 6 – 4 = 4, 2
    ∴we have
    x = 2, ,y = 4, z = 0 ; .x = 4, y = 2, z = 0


     

    Question 25
    CBSEENMA12032889

    Find the values of.x, y and z from the following equations :

    open square brackets table row cell straight x plus straight y plus straight z end cell row cell straight x plus straight z end cell row cell straight y plus straight z end cell end table close square brackets equals open square brackets table row 9 row 5 row 7 end table close square brackets

    Solution

    We are given that
    open square brackets table row cell straight x plus straight y plus straight z end cell row cell straight x plus straight z end cell row cell straight y plus straight z end cell end table close square brackets equals open square brackets table row 9 row 5 row 7 end table close square brackets

    By definition of equality of matrices.
    x.+ y + z = 9    ,..(1)
    .x + z = 5    ...(2)
    y + z = 7    ...(3)
    Subtracting (2) from (1), y = 4
    Subtracting (3) from (1). x = 2
    ∴from (2), 2 + z = 5 ;⇒ z =3
    ∴x = 2, .y = 4, z = 3


     

    Question 26
    CBSEENMA12032890

    Find the values of a. b, c and rf from the equation :

    open square brackets table row cell straight s minus straight b end cell cell 2 straight a plus straight c end cell row cell 2 straight a minus straight b end cell cell 3 straight c plus straight d end cell end table close square brackets equals open square brackets table row cell negative 1 end cell 5 row 0 13 end table close square brackets

    Solution

    We are given that
    open square brackets table row cell straight s minus straight b end cell cell 2 straight a plus straight c end cell row cell 2 straight a minus straight b end cell cell 3 straight c plus straight d end cell end table close square brackets equals open square brackets table row cell negative 1 end cell 5 row 0 13 end table close square brackets

    By definition of equality of mgtijices,
    a – h = - 1    ...(1)
    2a – h = 0    ...(2)
    2a + c‘ - 5    ,    ...(3)
    3    c + d= 13    ...(4)
    Subtracting (1) from (2), a = 1
    ∴ from (1). 1– b = – 1 ;⇒ b= 2
    From (3), 2 + c = 5 ;⇒ c = 3
    From (4). 9 + d = 13 ;⇒ d = 4
    ∴a = 1, b= 2, c = 3.d = 4


     

    Question 27
    CBSEENMA12032892

    If open square brackets table row straight x cell 3 straight x minus straight y end cell row cell 2 straight x plus straight z end cell cell 3 straight y minus straight w end cell end table close square brackets equals open square brackets table row 3 2 row 4 7 end table close square brackets find x, y, z w.

    Solution

    Wea are  given that 
    open square brackets table row straight x cell 3 straight x minus straight y end cell row cell 2 straight x plus straight z end cell cell 3 straight y minus straight w end cell end table close square brackets equals open square brackets table row 3 2 row 4 7 end table close square brackets

    From the definition of equality of matrices, we have,
    x = 3    ...(1)
    3 .x – y = 2    .... (2)
    2 .x + z =4    ...(3)
    3y – W'=7    ...(4)
    From (1) and (2), 9- y = 2 ;⇒ y= 7
    From (1) and (3), b + z=4 ;⇒ z = –2
    From (4),    21 –w = 7 ⇒ w= = 14
    ∴ x = 3. y = 7,z = -2, w= 14

    Question 28
    CBSEENMA12032894

    Find ,x, y , a and b if

    open square brackets table row cell 2 straight x minus 3 straight y end cell cell straight a minus straight b end cell 3 row 1 cell straight x plus 4 straight y end cell cell 3 straight a plus 4 straight b end cell end table close square brackets equals open square brackets table row 1 cell negative 2 end cell 3 row 1 6 29 end table close square brackets

    Solution

    We are given that
    open square brackets table row cell 2 straight x minus 3 straight y end cell cell straight a minus straight b end cell 3 row 1 cell straight x plus 4 straight y end cell cell 3 straight a plus 4 straight b end cell end table close square brackets equals open square brackets table row 1 cell negative 2 end cell 3 row 1 6 29 end table close square brackets

    From the definition of equality of matrices, we have,
    2    x – 3 v = 1    ...(I)
    x + 4 y = 6 ...(2)
    a – b= – 2 ...(3)
    3a + 4 b = 29    ...(4)
    (1) and (2) can be writta/i«s
    2 x – 3 y – I = 0
    x + 4 y – 6 = 0

    therefore space space space space space space space fraction numerator straight x over denominator 18 plus 4 end fraction equals fraction numerator straight y over denominator negative 1 plus 12 end fraction equals fraction numerator 1 over denominator 8 plus 3 end fraction
therefore space space space space space space space straight x over 22 equals straight y over 11 1 over 11
therefore space space space space space space space straight x equals 22 over 11 equals 2 comma space space space straight y equals 11 over 11 equals 1

    (3) and (4) can be written as
    a–b+2-0
    3 a + 4 b – 29 = 0

    therefore space space space space space space fraction numerator straight s over denominator 29 minus 8 end fraction equals fraction numerator straight b over denominator 6 plus 29 end fraction equals fraction numerator 1 over denominator 4 plus 3 end fraction space space space space rightwards double arrow space space straight a over 21 equals straight b over 32 equals 1 over 7
therefore space space space space space space straight a equals 21 over 7 equals 3 comma space space space space space space straight b equals 35 over 7 equals 5
    ∴ solution is x = 2, y= 1, a = 3, b = 5.
    Question 29
    CBSEENMA12032895

    If open square brackets table row cell straight a plus straight b end cell 2 row 5 cell space straight a space straight b end cell end table close square brackets equals open square brackets table row 6 2 row 5 8 end table close square brackets  find the values of a and b.

    Solution

    Here
     open square brackets table row cell straight a plus straight b end cell 2 row 5 cell space straight a space straight b end cell end table close square brackets equals open square brackets table row 6 2 row 5 8 end table close square brackets

    ⇒a + b = 6 ... (1)
    and a b = 8    (2)
    From (1). b = 6 – a    ...(3)
    ∴from (2), a (6 –a) = 8 ;⇒ – a2 + (6 a – 8 = 0
    ⇒    a – 6 a+ 8 = 0;⇒ (a – 2) (a – 4) = 0
    ⇒ a = 2, 4
    ∴ from (3). b = 6 – 2. 6–4 = 4. 2
    ∴we have a-=2. b = 4 : a = 4. b = 2     

    Question 30
    CBSEENMA12032897

    Find the values of x and  y if

    open square brackets table row cell straight x plus 10 end cell cell straight y squared plus 2 straight y end cell row 0 cell negative 4 end cell end table close square brackets equals open square brackets table row cell 3 x plus 4 end cell 3 row 0 cell y squared minus 5 y end cell end table close square brackets

    Solution

    We are given that 
    open square brackets table row cell straight x plus 10 end cell cell straight y squared plus 2 straight y end cell row 0 cell negative 4 end cell end table close square brackets equals open square brackets table row cell 3 straight x plus 4 end cell 3 row 0 cell straight y squared minus 5 straight y end cell end table close square brackets

    From the definition of equality of matrices, we have,
    x + 10 = 3x + 4, y2+2y=3, -4= y–5y
    Now x + 10 = 3 x + 4 ⇒2x= 6 ⇒ ,x = 3
    y2 + 2 y – =3 ;⇒ y2+2y – 3 =0 ⇒ (y + 3) ( y –1) = 0 ⇒ y = 1. –3
    – 4 = y 2 – 5 y ⇒ y2 – 5 y + 4 = 0 ⇒ ( y – 1) ( y – 4) = 0 ;⇒ y – 1. 4
    Since both the equations y2 + 2 y =3 and - 4 ='y2 -5 y are to be satisfied, so we have y'= 1
    ∴ x = 3. y = I.

    Question 31
    CBSEENMA12032898

    For what values of ,x and y are the following matrices equal 7

    straight A equals open square brackets table row cell 2 straight x plus 1 end cell cell 3 straight y end cell row 0 cell straight y squared minus 5 straight y end cell end table close square brackets comma space space straight B equals open square brackets table row cell straight x plus 3 end cell cell straight y squared plus 2 end cell row 0 cell negative 6 end cell end table close square brackets

    Solution

    Here
    straight A equals open square brackets table row cell 2 straight x plus 1 end cell cell 3 straight y end cell row 0 cell straight y squared minus 5 straight y end cell end table close square brackets comma space space straight B equals open square brackets table row cell straight x plus 3 end cell cell straight y squared plus 2 end cell row 0 cell negative 6 end cell end table close square brackets
    Now,  A = B
    rightwards double arrow space space space space open square brackets table row cell 2 straight x plus 1 end cell cell 3 straight y end cell row 0 cell straight y squared minus 5 straight y end cell end table close square brackets equals open square brackets table row cell straight x plus 3 end cell cell straight y squared plus 2 end cell row 0 cell negative 6 end cell end table close square brackets

    ∴ by the definition of equality of matrices.
    2 x + 1 = .x + 3, 3 y = + 2 , y2 –5 y = – 6
    Now 2 x + I = x + 3 ⇒ x= 2
    3 x = y2 +2 ⇒ y2 -3 y + 2 = 0 ⇒ ( y –1) (y – 2) = 0 ⇒ y = I, 2
    y–5 y =-6 ;⇒ -5 y + 6 = 0 ;⇒ (y–2)(y–3) = 0 ;⇒ y = 2.3
    Since both the equations 3 y = y2 +2 and y2 –5 y = – 6 arc to be satisfied
    simultaneously, so we have y = 2.
    ∴A – B when x = 2, y – 2.

    Question 32
    CBSEENMA12032900

    If open square brackets table row cell straight x minus straight y end cell straight z row cell 2 straight x minus straight y end cell straight w end table close square brackets equals open square brackets table row cell negative 1 end cell 4 row 0 5 end table close square brackets
 find .x. y. z .w.

    Solution

    We are given that
    open square brackets table row cell straight x minus straight y end cell straight z row cell 2 straight x minus straight y end cell straight w end table close square brackets equals open square brackets table row cell negative 1 end cell 4 row 0 5 end table close square brackets

    From the definition of equality of matrices, we have
    x –y = –1    ..(I)
    2.x–y=0    ...(2)
    z = 4    ...(3)
    w = 5     ..(4)
    Subtracting (1) from (2). we get,
    x= 1
    ∴from (1). I -y = –l ⇒ y = 2    
    ∴.x – 1. y = 2. z =-4. w- = 5

    Question 33
    CBSEENMA12032903

    Which of the given values of x and y make the following pair of matrices equal 

    open square brackets table row cell 3 straight x plus 7 end cell 5 row cell straight y plus 1 end cell cell 2 minus 3 straight x end cell end table close square brackets. open square brackets table row 0 cell straight y minus 2 end cell row 8 4 end table close square brackets
    • straight x equals fraction numerator negative 1 over denominator 3 end fraction comma space space straight y space equals 7
    • Not possible to find

    • straight y equals 7 comma space space space straight x equals fraction numerator negative 2 over denominator 3 end fraction
    • straight x equals fraction numerator negative 1 over denominator 3 end fraction comma space space straight y space equals fraction numerator negative 2 over denominator 3 end fraction

    Solution

    B.

    Not possible to find

    We are given that 
    open square brackets table row cell 3 straight x plus 7 end cell 5 row cell straight y plus 1 end cell cell 2 minus 3 straight x end cell end table close square brackets. open square brackets table row 0 cell straight y minus 2 end cell row 8 4 end table close square brackets

    By definition of equality of matrices.
    3.x + 7 = 0. 5-= y – 2. y + I = 8, 2 – 3 .r = 4
    therefore space space space space space space space space straight x equals 7 over 3 comma space space space straight y equals 7 comma space space space straight x equals negative 2 over 3
    ∴ (B) is correct answer.

    Question 34
    CBSEENMA12032904

    A - {a.i j ]m x n is a square matrix, if
    • m < n
    • m > n 
    • m = n
    • None of these

    Solution

    C.

    m = n

    For A = [a I J ]m x n to be square matrix.
    number of row s = number of columns
    ∴m = n
    ∴ (C)    is correct.

    Question 35
    CBSEENMA12032907

    The number of all possible matrices of order 3 x 3 with each entry 0 or 1 is.
    • 27
    • 18  
    • 81
    • 512

    Solution

    D.

    512

    A matrix of order 3 x 3 has 9 elements. Now each element can be 0 or 1.
    ∴ 9 places can be filled up in 29 ways
    required number of matrices = 29
    =2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
    =512 ,
    ∴  (D)    is correct answer.

    Question 36
    CBSEENMA12032908

    If straight A equals open square brackets table row 2 4 row 3 2 end table close square brackets space and space straight B equals open square brackets table row cell space 1 end cell 3 row cell negative 2 space end cell 5 end table close square brackets then find A – B.

    Solution
    Here
    straight A equals open square brackets table row 2 4 row 3 2 end table close square brackets space and space straight B equals open square brackets table row 1 3 row cell negative 2 end cell 5 end table close square brackets

therefore space space space straight A minus straight B equals open square brackets table row 2 4 row 3 2 end table close square brackets minus open square brackets table row 1 3 row cell negative 2 end cell 5 end table close square brackets equals open square brackets table row 2 4 row 3 2 end table close square brackets space plus open square brackets table row cell negative 1 end cell cell negative 3 end cell row 2 cell negative 5 end cell end table close square brackets

space space space space space space space space space space space space space equals straight A space open square brackets table row cell 2 minus 1 end cell cell 4 minus 3 end cell row cell 3 plus 2 end cell cell 2 minus 5 end cell end table close square brackets equals open square brackets table row 1 cell space space space 1 end cell row 5 cell negative 3 end cell end table close square brackets
    Question 37
    CBSEENMA12032911

    Given straight A equals open square brackets table row cell square root of 3 end cell 1 cell negative 1 end cell row 2 3 0 end table close square brackets space and space straight B equals open square brackets table row 2 cell square root of 5 end cell 1 row cell negative 2 end cell 3 cell 1 half end cell end table close square brackets, Find A + B.

    Solution

    Here A, B are the same type 2 x 3
    So A + B is defined
    therefore space space space space space straight A plus straight B space equals space open square brackets table row cell square root of 3 plus 2 end cell cell 1 plus square root of 5 end cell cell negative 1 plus 1 end cell row cell 2 minus 2 end cell cell 3 plus 3 end cell cell 0 plus 1 half end cell end table close square brackets equals open square brackets table row cell 2 plus square root of 3 end cell cell 1 plus square root of 5 end cell 0 row 0 6 cell 1 half end cell end table close square brackets

    Question 38
    CBSEENMA12032914

    If straight A equals open square brackets table row 2 3 cell negative 4 end cell row 1 0 6 row cell negative 2 end cell 1 5 end table close square brackets comma space straight B equals open square brackets table row 5 1 2 row 6 cell negative 1 end cell 4 row 5 3 cell negative 4 end cell end table close square brackets,  find 2A - 3B.

    Solution

    Here
    straight A equals open square brackets table row 2 3 cell negative 4 end cell row 1 0 6 row cell negative 2 end cell 1 5 end table close square brackets comma space straight B equals open square brackets table row 5 1 2 row 6 cell negative 1 end cell 4 row 5 3 cell negative 4 end cell end table close square brackets

therefore space space space space space 2 straight A equals straight A equals open square brackets table row 4 6 cell negative 8 end cell row 2 0 12 row cell negative 4 end cell 2 10 end table close square brackets comma space straight B equals open square brackets table row 15 3 6 row 18 cell negative 3 end cell 12 row 15 9 cell negative 12 end cell end table close square brackets

therefore space space space 2 straight A minus 3 straight B space equals space open square brackets table row 4 6 cell negative 8 end cell row 2 0 12 row cell negative 4 end cell 2 10 end table close square brackets comma space straight B equals open square brackets table row 15 3 6 row 18 cell negative 3 end cell 12 row 15 9 cell negative 12 end cell end table close square brackets

space space space space space space space space space space space space space space space equals space space open square brackets table row cell 4 minus 15 end cell cell 6 minus 3 end cell cell negative 8 minus 6 end cell row cell 2 minus 18 end cell cell 0 plus 3 end cell cell 12 minus 12 end cell row cell negative 4 minus 15 end cell cell 2 minus 9 end cell cell 10 plus 12 end cell end table close square brackets comma equals open square brackets table row cell negative 11 end cell 3 cell negative 14 end cell row cell negative 16 end cell 3 0 row cell negative 19 end cell cell negative 7 end cell 22 end table close square brackets

    Question 39
    CBSEENMA12032916

    Compute the following :


    open square brackets table row straight a straight b row cell negative straight b end cell straight a end table close square brackets plus open square brackets table row straight a straight b row straight b straight a end table close square brackets

    Solution
    open square brackets table row straight a straight b row cell negative straight b end cell straight a end table close square brackets plus open square brackets table row straight a straight b row straight b straight a end table close square brackets equals open square brackets table row cell straight a plus straight a end cell cell straight b plus straight b end cell row cell negative straight b plus straight b end cell cell straight a plus straight a end cell end table close square brackets equals open square brackets table row cell 2 straight a end cell cell 2 straight b end cell row 0 cell 2 straight a end cell end table close square brackets

    Sponsor Area

    Question 40
    CBSEENMA12032917

    Compute the following :

    open square brackets table row cell straight a squared plus straight b squared space space space space space end cell cell straight b squared plus straight c squared end cell row cell straight a squared plus straight c squared space space space space space space end cell cell straight a squared plus straight b squared end cell end table space close square brackets plus open square brackets table row cell 2 ab end cell cell space space space space space space space 2 bc end cell row cell negative 2 ac end cell cell space space space space minus 2 ab end cell end table close square brackets

    Solution
    open square brackets table row cell straight a squared plus straight b squared end cell cell straight b squared plus straight c squared end cell row cell straight a squared plus straight c squared end cell cell straight a squared plus straight b squared end cell end table space close square brackets plus open square brackets table row cell 2 ab end cell cell 2 bc end cell row cell negative 2 ac end cell cell negative 2 ab end cell end table close square brackets

space space space space space space space space space space space space space equals open square brackets table row cell straight a squared plus straight b squared plus 2 ab end cell cell straight b squared plus straight c squared plus 2 bc end cell row cell straight a squared plus straight c squared minus 2 ac end cell cell straight a squared plus straight b squared minus 2 ab end cell end table close square brackets equals open square brackets table row cell left parenthesis straight a plus straight b right parenthesis squared end cell cell left parenthesis straight b plus straight c right parenthesis squared end cell row cell left parenthesis straight a minus straight c right parenthesis squared end cell cell left parenthesis straight a minus straight b right parenthesis squared end cell end table close square brackets
    Question 41
    CBSEENMA12032919

    Compute the following :

    open square brackets table row cell negative 1 end cell 4 cell negative 6 end cell row 8 5 16 row 2 8 5 end table close square brackets plus open square brackets table row 12 7 6 row 8 0 5 row 3 2 4 end table close square brackets

    Solution
    open square brackets table row cell negative 1 end cell 4 cell negative 6 end cell row 8 5 16 row 2 8 5 end table close square brackets plus open square brackets table row 12 7 6 row 8 0 5 row 3 2 4 end table close square brackets equals open square brackets table row cell negative 1 plus 12 end cell cell 4 plus 7 end cell cell negative 6 plus 6 end cell row cell 8 plus 8 end cell cell 5 plus 0 end cell cell 16 plus 5 end cell row cell 2 plus 3 end cell cell 8 plus 2 end cell cell 5 minus 4 end cell end table close square brackets

space space space space space space space space space space space space space space space space equals open square brackets table row 11 11 0 row 16 5 21 row 5 10 9 end table close square brackets
    Question 42
    CBSEENMA12032921

    Compute the following :

    open square brackets table row cell cos squared straight x end cell cell sin squared straight x end cell row cell sin squared straight x end cell cell cos squared straight x end cell end table close square brackets plus open square brackets table row cell sin squared x end cell cell cos squared x end cell row cell cos squared x end cell cell sin squared x end cell end table close square brackets

    Solution
    open square brackets table row cell cos squared straight x end cell cell sin squared straight x end cell row cell sin squared straight x end cell cell cos squared straight x end cell end table close square brackets plus open square brackets table row cell sin squared straight x end cell cell cos squared straight x end cell row cell cos squared straight x end cell cell sin squared straight x end cell end table close square brackets

space space space space space space equals open square brackets table row cell cos squared straight x end cell cell sin squared straight x end cell row cell sin squared straight x end cell cell cos squared straight x end cell end table space space space space space table row cell sin squared straight x end cell cell cos squared straight x end cell row cell cos squared straight x end cell cell sin squared straight x end cell end table close square brackets equals open square brackets table row 1 1 row 1 1 end table close square brackets
    Question 43
    CBSEENMA12032923

    If straight A equals open square brackets table row 1 4 cell negative 1 end cell row 2 6 5 end table close square brackets space and space straight B equals open square brackets table row 3 cell negative 2 end cell cell negative 6 end cell row 2 0 cell negative 7 end cell end table close square brackets, find A + B and A - B.

    Solution
    straight A equals open square brackets table row 1 4 cell negative 1 end cell row 2 6 5 end table close square brackets comma space space space straight B equals open square brackets table row 3 cell negative 2 end cell cell negative 6 end cell row 2 0 cell negative 7 end cell end table close square brackets

therefore space space space straight A plus straight B equals straight A equals open square brackets table row 1 4 cell negative 1 end cell row 2 6 5 end table close square brackets plus open square brackets table row 3 cell negative 2 end cell cell negative 6 end cell row 2 0 cell negative 7 end cell end table close square brackets equals open square brackets table row cell 1 plus 3 end cell cell 4 minus 2 end cell cell negative 1 minus 6 end cell row cell 2 plus 2 end cell cell 6 plus 6 end cell cell 5 minus 7 end cell end table close square brackets
space
space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 4 2 cell negative 7 end cell row 4 6 cell negative 2 end cell end table close square brackets

space space space straight A minus straight B equals straight A equals open square brackets table row 1 4 cell negative 1 end cell row 2 6 5 end table close square brackets minus plus open square brackets table row 3 cell negative 2 end cell cell negative 6 end cell row 2 0 cell negative 7 end cell end table close square brackets equals open square brackets table row cell 1 minus 3 end cell cell 4 plus 2 end cell cell negative 1 plus 6 end cell row cell 2 minus 2 end cell cell 6 minus 0 end cell cell 5 plus 7 end cell end table close square brackets space
space space
space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell negative 2 end cell 6 5 row 0 6 12 end table close square brackets
    Question 44
    CBSEENMA12032929

    If straight A equals open square brackets table row 1 2 cell negative 3 end cell row 5 0 2 row 1 cell negative 1 end cell 1 end table close square brackets comma space straight B equals open square brackets table row 3 cell negative 1 end cell 2 row 4 2 5 row 2 0 3 end table close square brackets space and space straight C equals open square brackets table row 4 1 2 row 0 3 3 row 1 cell negative 2 end cell 3 end table close square brackets.  compute (A + B) and (B – C). Also verify that A+ (B – C) = (A + B) – C.

    Solution
    straight A equals open square brackets table row 1 2 cell negative 3 end cell row 5 0 2 row 1 cell negative 1 end cell 1 end table close square brackets comma space straight B equals open square brackets table row 3 cell asterisk times 1 end cell 2 row 4 2 5 row 2 0 3 end table close square brackets comma space straight C equals open square brackets table row 4 1 2 row 0 3 2 row 1 cell negative 2 end cell 3 end table close square brackets

straight A plus straight B equals open square brackets table row 1 2 cell negative 3 end cell row 5 0 2 row 1 cell negative 1 end cell 1 end table close square brackets plus open square brackets table row 3 cell negative 1 end cell 2 row 4 2 5 row 2 0 3 end table close square brackets
space space space space space
space space space space space space equals open square brackets table row cell 1 plus 3 end cell cell 2 minus 1 end cell cell negative 3 plus 2 end cell row cell 5 plus 4 end cell cell 0 plus 2 end cell cell 2 plus 5 end cell row cell 1 plus 2 end cell cell negative 1 plus 0 end cell cell 1 plus 3 end cell end table close square brackets equals open square brackets table row 4 1 cell negative 1 end cell row 9 2 7 row 3 cell negative 1 end cell 4 end table close square brackets

straight B minus straight C equals open square brackets table row 3 cell negative 1 end cell 2 row 4 2 5 row 2 0 3 end table close square brackets minus open square brackets table row 4 1 2 row 0 3 2 row 1 cell negative 2 end cell 3 end table close square brackets

space space space space space space space space space space open square brackets table row cell 3 minus 4 end cell cell negative 1 minus 1 end cell cell 2 minus 2 end cell row cell 4 minus 0 end cell cell 2 minus 3 end cell cell 5 minus 2 end cell row cell 2 minus 1 end cell cell 0 plus 2 end cell cell 3 minus 3 end cell end table close square brackets equals open square brackets table row cell negative 1 end cell cell negative 2 end cell 0 row 4 cell negative 1 end cell 3 row 1 2 0 end table close square brackets
Now space

space space space space straight A plus left parenthesis straight B minus straight C right parenthesis equals open square brackets table row 1 2 cell negative 3 end cell row 5 0 2 row 1 cell negative 1 end cell 1 end table close square brackets plus open square brackets table row cell negative 1 end cell cell negative 2 end cell 0 row 4 cell negative 1 end cell 3 row 1 2 0 end table close square brackets

space space space space space space space space space space space space space space space space space space equals open square brackets table row cell 1 minus 1 end cell cell 2 minus 2 end cell cell negative 3 plus 0 end cell row cell 5 plus 4 end cell cell 0 minus 1 end cell cell 2 plus 3 end cell row cell 1 plus 1 end cell cell negative 1 plus 2 end cell cell 1 plus 0 end cell end table close square brackets

therefore space space space space space straight A plus left parenthesis straight B minus straight C right parenthesis space equals space open square brackets table row 0 0 cell negative 3 end cell row 9 cell negative 1 end cell 5 row 2 1 1 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

space space space space space space space left parenthesis straight A plus straight B right parenthesis minus straight C equals open square brackets table row 4 1 cell negative 1 end cell row 9 2 7 row 3 cell negative 1 end cell 4 end table close square brackets minus open square brackets table row 4 1 2 row 0 3 2 row 1 cell negative 2 end cell 3 end table close square brackets

space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 4 minus 4 end cell cell 1 minus 1 end cell cell negative 1 minus 2 end cell row cell 9 minus 0 end cell cell 2 minus 3 end cell cell 7 minus 2 end cell row cell 3 minus 1 end cell cell negative 1 plus 2 end cell cell 4 minus 3 end cell end table close square brackets

therefore space space space left parenthesis straight A plus straight B right parenthesis minus straight C equals open square brackets table row 0 0 cell negative 3 end cell row 9 cell negative 1 end cell 5 row 2 1 1 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    From (1) and (2), A + (B - C) = (A + B)-C
    Question 45
    CBSEENMA12032930

    If straight A equals open square brackets table row 1 2 3 row 2 3 1 end table close square brackets space and space straight B equals open square brackets table row 3 cell negative 1 end cell 3 row cell negative 1 end cell 0 2 end table close square brackets, then find 2A - B.

    Solution
    straight A equals open square brackets table row 1 2 3 row 2 3 1 end table close square brackets. space straight B equals open square brackets table row 3 cell negative 1 end cell 3 row cell negative 1 end cell 0 2 end table close square brackets
therefore space space space space space 2 A equals open square brackets table row 2 4 6 row 4 6 2 end table close square brackets
therefore space space space 2 A minus B equals open square brackets table row 2 4 6 row 4 6 2 end table close square brackets minus open square brackets table row 3 cell negative 1 end cell 3 row cell negative 1 end cell 0 2 end table close square brackets
space space space space space space space space space space space space space space space equals open square brackets table row 2 4 6 row 4 6 2 end table close square brackets plus open square brackets table row cell negative 3 end cell 1 cell negative 3 end cell row 1 0 cell negative 2 end cell end table close square brackets
space space space space space space space space space space space space space space space equals open square brackets table row cell 2 minus 3 end cell cell 4 plus 1 end cell cell 6 minus 3 end cell row cell 4 plus 1 end cell cell 6 plus 0 end cell cell 2 minus 2 end cell end table close square brackets equals open square brackets table row cell negative 1 end cell 5 3 row 5 6 0 end table close square brackets
    Question 46
    CBSEENMA12032934

     If space space straight A equals open square brackets table row cell 2 over 3 end cell 1 cell 5 over 3 end cell row cell 1 third end cell cell 2 over 3 end cell cell 4 over 3 end cell row cell 7 over 3 end cell 2 cell 2 over 3 end cell end table close square brackets space and space straight B space equals open square brackets table row cell 2 over 5 end cell cell 3 over 5 end cell 1 row cell 1 fifth end cell cell 2 over 5 end cell cell 4 over 5 end cell row cell 7 over 5 end cell cell 6 over 5 end cell cell 2 over 5 end cell end table close square brackets
 then computer 3A-5B

    Solution
    straight A equals open square brackets table row cell 2 over 3 end cell 1 cell 5 over 3 end cell row cell 1 third end cell cell 2 over 3 end cell cell 4 over 3 end cell row cell 7 over 3 end cell 2 cell 2 over 3 end cell end table close square brackets comma space space straight B space equals open square brackets table row cell 2 over 5 end cell cell 3 over 5 end cell 1 row cell 1 fifth end cell cell 2 over 5 end cell cell 4 over 5 end cell row cell 7 over 5 end cell cell 6 over 5 end cell cell 2 over 5 end cell end table close square brackets

therefore space space 3 A minus 5 B equals 3 straight A equals open square brackets table row cell 2 over 3 end cell 1 cell 5 over 3 end cell row cell 1 third end cell cell 2 over 3 end cell cell 4 over 3 end cell row cell 7 over 3 end cell 2 cell 2 over 3 end cell end table close square brackets space minus 5 space open square brackets table row cell 2 over 5 end cell cell 3 over 5 end cell 1 row cell 1 fifth end cell cell 2 over 5 end cell cell 4 over 5 end cell row cell 7 over 5 end cell cell 6 over 5 end cell cell 2 over 5 end cell end table close square brackets

space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 2 3 5 row 1 2 4 row 7 6 2 end table close square brackets minus open square brackets table row 2 3 5 row 1 2 4 row 7 6 2 end table close square brackets
space space space space space space space
space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 2 minus 2 end cell cell 3 minus 3 end cell cell 5 minus 5 end cell row cell 1 minus 1 end cell cell 2 minus 2 end cell cell 4 minus 4 end cell row cell 7 minus 7 end cell cell 6 minus 6 end cell cell 2 minus 2 end cell end table close square brackets equals open square brackets table row 0 0 0 row 0 0 0 row 0 0 0 end table close square brackets equals 0
    ∴ 3A – 5B = O
    Question 48
    CBSEENMA12032937

    Simplify space cosθ space open square brackets table row cell cos space straight theta end cell cell sin space straight theta end cell row cell negative sin space straight theta end cell cell cos space straight theta end cell end table close square brackets plus sin space straight theta space open square brackets table row cell sin space straight theta end cell cell negative cos space straight theta end cell row cell cos space straight theta end cell cell sin space straight theta end cell end table close square brackets

space space space space space space space space space space space space space space space space space space space

    Solution

    Consider
    open square brackets table row cell cos space straight theta end cell cell sin space straight theta end cell row cell negative sin space straight theta end cell cell cos space straight theta end cell end table close square brackets plus sin space straight theta space open square brackets table row cell sin space straight theta end cell cell negative cos space straight theta end cell row cell cos space straight theta end cell cell sin space straight theta end cell end table close square brackets

space space space space space space space space space space space space space space space space space space space space equals open square brackets table row cell cos squared space straight theta end cell cell sin space straight theta space cos space straight theta end cell row cell negative sin space straight theta space cos squared space straight theta end cell cell cos squared space straight theta end cell end table close square brackets plus open square brackets table row cell sin squared space straight theta end cell cell negative sin space straight theta space cos space straight theta end cell row cell sin space straight theta space cos space straight theta end cell cell sin squared space straight theta end cell end table close square brackets

space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell cos squared space straight theta space plus sin squared space straight theta end cell cell sin space straight theta space cos space straight theta space minus space sin space straight theta space cos space straight theta end cell row cell negative sin space straight theta space cos space straight theta space plus sin space straight theta space cos space straight theta end cell cell cos squared space straight theta space plus space sin squared space straight theta end cell end table close square brackets

space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 1 0 row 0 1 end table close square brackets

    Question 49
    CBSEENMA12032938

    If space straight A equals open square brackets table row 2 4 row 3 5 end table close square brackets. space straight B equals open square brackets table row 3 2 row 4 5 end table close square brackets comma space straight C equals open square brackets table row 1 3 row 5 7 end table close square brackets

    Solution

    We have
    A equals open square brackets table row 2 4 row 3 5 end table close square brackets. space straight B equals open square brackets table row 3 2 row 4 5 end table close square brackets comma space straight C equals open square brackets table row 1 3 row 5 7 end table close square brackets
    Consider 2A + B - 3C
    equals 2 open square brackets table row 2 4 row 3 5 end table close square brackets plus open square brackets table row 3 2 row 4 5 end table close square brackets minus 3 open square brackets table row 1 3 row 5 7 end table close square brackets
equals space open square brackets table row 4 8 row 6 10 end table close square brackets plus open square brackets table row 3 2 row 4 5 end table close square brackets plus open square brackets table row cell negative 3 space space space space space end cell cell negative 9 end cell row cell negative 15 space space space space space end cell cell negative 21 end cell end table close square brackets equals open square brackets table row cell 4 plus 3 minus 3 space space space space space end cell cell 8 plus 2 minus 9 end cell row cell 6 plus 4 minus 15 space space space end cell cell 10 plus 5 minus 21 end cell end table close square brackets
therefore space space space 2 straight A plus straight B minus 3 straight C

    Question 50
    CBSEENMA12032939

    If space straight A equals open square brackets table row 1 cell negative 3 end cell 2 row 2 0 2 end table close square brackets comma space straight B equals open square brackets table row 2 cell negative 1 end cell cell negative 1 end cell row 1 0 cell negative 1 end cell end table close square brackets .find the matrix C such that A + B + C is a zero matrix.

    Solution
    We have
    straight A equals open square brackets table row 1 cell negative 3 end cell 2 row 2 0 2 end table close square brackets comma space straight B equals open square brackets table row 2 cell negative 1 end cell cell negative 1 end cell row 1 0 cell negative 1 end cell end table close square brackets
    Now A + B + C = O
    rightwards double arrow space space space space space straight C minus straight A minus straight B equals negative open square brackets table row 1 cell negative 3 end cell 2 row 2 0 2 end table close square brackets minus open square brackets table row 2 cell negative 1 end cell cell negative 1 end cell row 1 0 cell negative 1 end cell end table close square brackets
space space space space space space space space equals open square brackets table row cell negative 1 end cell 3 cell negative 2 end cell row cell negative 2 end cell 0 cell negative 2 end cell end table close square brackets plus open square brackets table row cell negative 2 end cell 1 1 row cell negative 1 end cell 0 1 end table close square brackets equals open square brackets table row cell negative 1 minus 2 end cell cell 3 plus 1 end cell cell negative 2 plus 1 end cell row cell negative 2 minus 1 end cell cell 0 plus 0 end cell cell negative 2 plus 1 end cell end table close square brackets
therefore space space space space straight C equals open square brackets table row cell negative 3 end cell 4 cell negative 1 end cell row cell negative 3 end cell 0 cell negative 1 end cell end table close square brackets
    Question 51
    CBSEENMA12032940

    Find a matrix X such that 2A + B + X = O,  where straight A equals open square brackets table row cell negative 1 end cell 2 row 3 4 end table close square brackets comma space straight B equals open square brackets table row 3 cell negative 2 end cell row 1 5 end table close square brackets.

    Solution
    Here space straight A space equals space open square brackets table row cell negative 1 end cell 2 row 3 4 end table close square brackets space comma space straight B equals open square brackets table row 3 cell negative 2 end cell row 1 5 end table close square brackets
    Now 2A + B + X = 0  rightwards double arrow  X= - 2A - B
    therefore space space space space space space space space straight X equals negative 2 open square brackets table row cell negative 1 end cell 2 row 3 4 end table close square brackets minus open square brackets table row 3 cell negative 2 end cell row 1 5 end table close square brackets equals open square brackets table row 2 cell negative 4 end cell row cell negative 6 end cell cell negative 8 end cell end table close square brackets plus open square brackets table row cell negative 3 end cell 2 row cell negative 1 end cell cell negative 5 end cell end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 2 minus 3 end cell cell negative 4 plus 2 end cell row cell negative 6 minus 1 end cell cell negative 8 minus 5 end cell end table close square brackets equals open square brackets table row cell negative 1 end cell cell negative 2 end cell row cell negative 7 end cell cell negative 13 end cell end table close square brackets
space space
    Question 52
    CBSEENMA12032945

    If space straight A equals open square brackets table row 8 0 row 4 cell negative 2 end cell row 3 6 end table close square brackets comma space straight B equals open square brackets table row 2 cell negative 2 end cell row 4 2 row cell negative 5 end cell 1 end table close square brackets, then find the matrix X. such that 2A + 3X = 5B.

    Solution

    Here
    straight A equals open square brackets table row 8 0 row 4 cell negative 2 end cell row 3 6 end table close square brackets comma space straight B equals open square brackets table row 2 cell negative 2 end cell row 4 2 row cell negative 5 end cell 1 end table close square brackets
    Now 2A + 3X = 5B 3X=-2A + 5B
    therefore space space space space space space 3 straight X equals negative 2 open square brackets table row 8 0 row 4 cell negative 2 end cell row 3 6 end table close square brackets plus 5 open square brackets table row 2 cell negative 2 end cell row 4 2 row cell negative 5 end cell 1 end table close square brackets
space space space space space space space space space space space space equals space open square brackets table row cell negative 16 end cell 0 row cell negative 8 end cell 4 row cell negative 6 end cell cell negative 12 end cell end table close square brackets plus open square brackets table row 10 cell negative 10 end cell row 20 10 row cell negative 25 end cell 5 end table close square brackets equals open square brackets table row cell negative 16 plus 10 end cell cell 0 minus 10 end cell row cell 8 plus 20 end cell cell 4 plus 10 end cell row cell negative 6 minus 25 end cell cell negative 12 plus 5 end cell end table close square brackets
therefore space space space 3 straight X equals open square brackets table row cell negative 6 end cell cell negative 10 end cell row 12 14 row cell negative 31 end cell cell negative 7 end cell end table close square brackets space space space space rightwards double arrow space straight X equals 1 third space open square brackets table row cell negative 6 end cell cell negative 10 end cell row 12 14 row cell negative 31 end cell cell negative 7 end cell end table close square brackets
therefore space space space straight X equals open square brackets table row cell negative 2 end cell cell negative 10 over 3 end cell row 4 cell 14 over 3 end cell row cell negative 31 over 3 end cell cell negative 7 over 3 end cell end table close square brackets

     
    Question 53
    CBSEENMA12032948

    If space straight A space equals space open square brackets table row 2 3 row 4 5 end table close square brackets comma space straight B equals open square brackets table row 3 4 row 5 6 end table close square brackets comma space then find a matrix X such that 3A - 2B + 4X=O, where straight O equals open square brackets table row 0 0 row 0 0 end table close square brackets

    Solution

    We have
    straight A equals open square brackets table row 2 3 row 4 5 end table close square brackets comma space straight B equals open square brackets table row 3 4 row 5 6 end table close square brackets
    Now    3A - 2B + 4X = O   rightwards double arrow  4X = -3A + 2B
    rightwards double arrow space space space 4 straight X space equals space minus 3 space open square brackets table row 2 3 row 4 5 end table close square brackets plus 2 space open square brackets table row 3 4 row 5 6 end table close square brackets
rightwards double arrow space space space 4 straight X space equals space open square brackets table row cell negative 6 end cell cell negative 9 end cell row cell negative 12 end cell cell negative 15 end cell end table close square brackets plus open square brackets table row 6 8 row 10 12 end table close square brackets
rightwards double arrow space space space 4 straight X space equals space open square brackets table row cell negative 6 plus 6 end cell cell negative 9 plus 8 end cell row cell negative 12 plus 10 end cell cell negative 15 plus 12 end cell end table close square brackets
rightwards double arrow space space space 4 straight X equals open square brackets table row 0 cell negative 1 end cell row cell negative 2 end cell cell negative 3 end cell end table close square brackets space space space rightwards double arrow space straight X equals 1 fourth open square brackets table row 0 cell negative 1 end cell row cell negative 2 end cell cell negative 3 end cell end table close square brackets
rightwards double arrow space space space straight X equals open square brackets table row 0 cell negative 1 fourth end cell row cell negative 1 half end cell cell negative 3 over 4 end cell end table close square brackets

    Question 54
    CBSEENMA12032950

    Find X if Y equals open square brackets table row 3 2 row 1 4 end table close square brackets space and space 2 space straight X plus straight Y equals open square brackets table row 1 0 row cell negative 3 end cell 2 end table close square brackets

    Solution

    Here
    2 straight X plus straight Y equals open square brackets table row 1 0 row cell negative 3 end cell 2 end table close square brackets space where space straight Y equals open square brackets table row 3 2 row 1 4 end table close square brackets
therefore space space space 2 straight X equals open square brackets table row 1 0 row cell negative 3 end cell 2 end table close square brackets space minus straight Y
rightwards double arrow space space space 2 straight X equals open square brackets table row 1 0 row cell negative 3 end cell 2 end table close square brackets minus open square brackets table row 3 2 row 1 4 end table close square brackets
rightwards double arrow space space space space 2 straight X equals open square brackets table row cell negative 2 end cell cell negative 2 end cell row cell negative 4 end cell cell negative 2 end cell end table close square brackets space space space space space rightwards double arrow space space straight X equals 1 half open square brackets table row cell negative 2 end cell cell negative 2 end cell row cell negative 4 end cell cell negative 2 end cell end table close square brackets
rightwards double arrow space space space space 2 straight X equals open square brackets table row cell negative 1 end cell cell negative 1 end cell row cell negative 2 end cell cell negative 1 end cell end table close square brackets

    Question 55
    CBSEENMA12032953

    Find X and Y if X + Y = open square brackets table row 7 0 row 2 5 end table close square brackets comma space X minus Y equals open square brackets table row 3 0 row 0 3 end table close square brackets.

    Solution
    We have X + Y = open square brackets table row 7 0 row 2 5 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space                              ....(1)
    and X - Y = open square brackets table row 3 0 row 0 3 end table close square brackets                                                        ....(2)
    Adding (1) and (2), we get,
    2 straight X equals open square brackets table row 10 0 row 2 8 end table close square brackets. space space space space space space space space therefore space space straight X equals open square brackets table row 5 0 row 1 4 end table close square brackets
    Subtracting (2) from (I), we get
    2 straight Y equals open square brackets table row 4 0 row 2 2 end table close square brackets
therefore space space space space space straight Y equals 1 half open square brackets table row 4 0 row 2 2 end table close square brackets equals open square brackets table row 2 0 row 1 1 end table close square brackets
    Question 56
    CBSEENMA12032954

    Find matrices X and Y if X + Y = open square brackets table row 5 2 row 0 9 end table close square brackets space and space straight X minus straight Y space open square brackets table row 3 6 row 0 cell negative 1 end cell end table close square brackets

    Solution
    We have
    straight X plus straight Y equals open square brackets table row 5 2 row 0 9 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space comma comma comma left parenthesis 1 right parenthesis
straight X minus straight Y equals open square brackets table row 3 6 row 0 cell negative 1 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Adding (1) and (2), we get,
    2 space straight X equals open square brackets table row 8 8 row 0 8 end table close square brackets space space space space space space rightwards double arrow space space straight X equals open square brackets table row 4 4 row 0 4 end table close square brackets
    Subtracting (2) from (1), we get,
    2 space straight Y space equals space open square brackets table row 2 cell negative 4 end cell row 0 10 end table close square brackets space space space space space space rightwards double arrow space space straight Y equals open square brackets table row 1 cell negative 2 end cell row 0 5 end table close square brackets
    Question 57
    CBSEENMA12032957

    Find X and Y, if 2x+ 3Y = open square brackets table row 2 3 row 4 0 end table close square brackets space and space 3 straight X plus 2 straight Y equals open square brackets table row 2 cell negative 2 end cell row cell negative 1 end cell 5 end table close square brackets

    Solution
    2 straight X plus 3 straight Y equals open square brackets table row 2 3 row 4 0 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
3 straight X plus 2 straight Y equals open square brackets table row 2 cell negative 2 end cell row cell negative 1 end cell 5 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Multiplying (1) by 2 and (2) by 3, we.get,
    4 straight X plus 6 straight Y space equals space open square brackets table row 4 6 row 8 0 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space comma.. left parenthesis 3 right parenthesis
9 straight X plus 6 straight Y equals space open square brackets table row 6 cell negative 6 end cell row cell negative 3 end cell 15 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 4 right parenthesis

    Subtracting (3) from (4), we ge},
    5 straight X equals open square brackets table row cell 6 minus 4 end cell cell negative 6 minus 6 end cell row cell negative 3 minus 8 end cell cell 15 minus 0 end cell end table close square brackets
therefore space space 5 straight X equals open square brackets table row 2 cell negative 12 end cell row cell negative 11 end cell cell negative 15 end cell end table close square brackets space space space space space space rightwards double arrow straight X equals 1 fifth open square brackets table row 2 cell negative 12 end cell row cell negative 11 end cell 15 end table close square brackets
therefore space space space space straight X equals open square brackets table row cell 2 over 5 end cell cell negative 12 over 5 end cell row cell negative 11 over 5 end cell 3 end table close square brackets
therefore space space space from left parenthesis 1 right parenthesis comma space open square brackets table row cell 4 over 5 end cell cell negative 24 over 5 end cell row cell negative 22 over 5 end cell 6 end table close square brackets
therefore space space space 3 straight Y equals space open square brackets table row 2 3 row 4 0 end table close square brackets minus open square brackets table row cell 4 over 5 end cell cell negative 24 over 5 end cell row cell negative 22 over 5 end cell 6 end table close square brackets
therefore space space space 3 straight Y equals open square brackets table row cell 2 minus 4 over 5 end cell cell 3 plus 24 over 5 end cell row cell 4 plus 22 over 5 end cell cell 0 minus 6 end cell end table close square brackets space space rightwards double arrow space 3 straight Y equals open square brackets table row cell 6 over 5 end cell cell 39 over 5 end cell row cell 42 over 5 end cell cell negative 6 end cell end table close square brackets
therefore space space space space straight Y equals 1 third open square brackets table row cell 6 over 5 end cell cell 39 over 5 end cell row cell 42 over 5 end cell cell negative 6 end cell end table close square brackets space rightwards double arrow space straight Y equals open square brackets table row cell 2 over 5 end cell cell 13 over 5 end cell row cell 14 over 5 end cell cell negative 2 end cell end table close square brackets
    Question 58
    CBSEENMA12032960

    If space 2 straight X plus 3 straight Y equals space open square brackets table row 2 3 row 4 0 end table close square brackets space and space 3 straight X plus 2 straight Y equals open square brackets table row cell negative 2 end cell 3 row 1 cell negative 5 end cell end table close square brackets .find X and Y.

    Solution
    2 straight X plus 3 straight Y equals space open square brackets table row 2 3 row 4 0 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
3 straight X plus 2 straight Y equals open square brackets table row cell negative 2 end cell 3 row 1 cell negative 5 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Multiplying (I) by 2 and (2) by 3, we get,
    4 straight X plus 6 straight Y equals open square brackets table row 4 6 row 8 0 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
9 straight X plus 6 straight Y equals open square brackets table row cell negative 6 end cell 6 row 3 cell negative 15 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space... left parenthesis 4 right parenthesis
    Subtracting (3) from (4), we get,
    5 straight x equals open square brackets table row cell negative 6 minus 4 end cell cell 6 minus 6 end cell row cell 3 minus 8 end cell cell negative 15 minus 6 end cell end table close square brackets
therefore space space space 5 straight x equals open square brackets table row cell negative 10 end cell 0 row cell negative 5 end cell cell negative 15 end cell end table close square brackets space rightwards double arrow space straight X equals 1 third open square brackets table row cell negative 10 end cell 0 row cell negative 5 end cell cell negative 15 end cell end table close square brackets
therefore space space space straight x equals open square brackets table row cell negative 2 end cell 0 row cell negative 1 end cell cell negative 3 end cell end table close square brackets
therefore space from left parenthesis 1 right parenthesis comma space open square brackets table row cell negative 4 end cell 0 row cell negative 2 end cell cell negative 6 end cell end table close square brackets plus 3 straight Y equals open square brackets table row 2 3 row 4 0 end table close square brackets
therefore space space space 3 straight Y equals open square brackets table row 2 3 row 4 0 end table close square brackets minus open square brackets table row cell negative 4 end cell 0 row cell negative 2 end cell cell negative 6 end cell end table close square brackets space space rightwards double arrow space 3 straight Y equals open square brackets table row cell 2 plus 4 end cell cell space space space space space 3 minus 0 end cell row cell 4 plus 2 end cell cell space space space space space space 0 plus 6 end cell end table close square brackets
rightwards double arrow space space space 3 straight Y equals open square brackets table row 6 3 row 6 6 end table close square brackets space space space rightwards double arrow straight y equals 1 third open square brackets table row 6 3 row 6 6 end table close square brackets equals open square brackets table row 2 1 row 2 2 end table close square brackets
therefore space space straight X equals open square brackets table row cell negative 2 end cell 0 row cell negative 1 end cell cell negative 3 end cell end table close square brackets comma space straight Y equals open square brackets table row 2 1 row 2 2 end table close square brackets
    Question 59
    CBSEENMA12032963

    Find matrices X and Y, if

    2 straight X minus straight Y equals open square brackets table row 6 cell negative 6 end cell 0 row cell negative 4 end cell 2 1 end table close square brackets space and space straight x plus 2 straight y equals open square brackets table row 3 2 5 row cell negative 2 end cell 1 cell negative 7 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

    Solution
    The given equations are

    space space space space space space space space space space space space 2 straight X minus straight Y equals open square brackets table row 6 cell negative 6 end cell 0 row cell negative 4 end cell 2 1 end table close square brackets space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space and space space space space space space space straight x plus 2 straight y equals open square brackets table row 3 2 5 row cell negative 2 end cell 1 cell negative 7 end cell end table close square brackets space space space space space space space space space space space space... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis space straight Y space equals space 2 straight C minus open square brackets table row 6 cell negative 6 end cell 0 row cell negative 4 end cell 2 1 end table close square brackets space space space space space space space space space... left parenthesis 3 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

    from (2) and (3), we get,
    straight X plus 4 straight X minus 2 open square brackets table row 6 cell negative 6 end cell 0 row cell negative 4 end cell 2 1 end table close square brackets equals open square brackets table row 3 2 5 row cell negative 2 end cell 1 cell negative 7 end cell end table close square brackets
therefore space space space space space space 5 straight X space equals open square brackets table row 3 2 5 row cell negative 2 end cell 1 cell negative 7 end cell end table close square brackets space plus 2 space open square brackets table row 6 cell negative 6 end cell 0 row cell negative 4 end cell 2 1 end table close square brackets
space space space space space space space space space space space space space equals open square brackets table row 3 2 5 row cell negative 2 end cell 1 cell negative 7 end cell end table close square brackets plus 2 space open square brackets table row 12 cell negative 12 end cell 0 row cell negative 8 end cell 4 2 end table close square brackets
therefore space space space space space space 5 straight X space equals space open square brackets table row cell 3 plus 12 end cell cell 2 minus 12 end cell cell 5 plus 0 end cell row cell negative 2 minus 8 end cell cell 1 plus 4 end cell cell negative 7 plus 2 end cell end table close square brackets
rightwards double arrow space space space space space 5 straight X equals open square brackets table row 15 cell negative 10 end cell 5 row cell negative 10 end cell 5 cell negative 5 end cell end table close square brackets
therefore space space space space space space straight X equals 1 over 15 open square brackets table row 15 cell negative 10 end cell 5 row cell negative 10 end cell 5 cell negative 5 end cell end table close square brackets space space space space rightwards double arrow space space straight X equals open square brackets table row 3 cell negative 2 end cell 1 row cell negative 2 end cell 1 cell negative 1 end cell end table close square brackets

    Question 60
    CBSEENMA12032966

    Find the values of .x and y from the following equation

    2 space open square brackets table row straight X 5 row 7 cell straight Y minus 3 end cell end table close square brackets plus open square brackets table row 3 cell negative 4 end cell row 1 2 end table close square brackets equals open square brackets table row 7 6 row 15 14 end table close square brackets

    Solution
    The given matrix equation is
    space space space space space space space space space space 2 space open square brackets table row straight X 5 row 7 cell straight Y minus 3 end cell end table close square brackets plus open square brackets table row 3 cell negative 4 end cell row 1 2 end table close square brackets equals open square brackets table row 7 6 row 15 14 end table close square brackets
or space space space space space space space 2 space open square brackets table row straight X 5 row 7 cell straight Y minus 3 end cell end table close square brackets equals open square brackets table row 7 6 row 15 14 end table close square brackets minus open square brackets table row 3 cell negative 4 end cell row 1 2 end table close square brackets
or space space space space space space space 2 space open square brackets table row straight x 5 row 7 cell straight y minus 3 end cell end table close square brackets equals open square brackets table row cell 7 minus 3 space space space end cell cell 6 plus 4 end cell row cell 15 minus 1 space space space end cell cell 14 minus 2 end cell end table close square brackets
therefore space space space space space space space 2 space open square brackets table row cell 2 straight x end cell 10 row 14 cell 2 straight y minus 6 end cell end table close square brackets equals open square brackets table row 4 10 row 14 12 end table close square brackets

    By definition of equality of matrices, we have
    2.x = 4, 2 y –6 = 12
    ∴-x = 2, 2y = 18
    ∴.x = 2, y = 9.


    Question 61
    CBSEENMA12032968

    Find.v and y, if 2 space open square brackets table row 1 3 row 0 straight x end table close square brackets plus open square brackets table row straight y 0 row 1 2 end table close square brackets equals open square brackets table row 5 6 row 1 8 end table close square brackets

    Solution

    The given matrix equation is :
    space space space space space space 2 space open square brackets table row 1 3 row 0 straight x end table close square brackets plus open square brackets table row straight y 0 row 1 2 end table close square brackets equals open square brackets table row 5 6 row 1 8 end table close square brackets
or space space space space space open square brackets table row 2 6 row 0 cell 2 straight x end cell end table close square brackets plus open square brackets table row straight y 0 row 1 2 end table close square brackets equals open square brackets table row 5 6 row 1 8 end table close square brackets
or space space space space space open square brackets table row cell 2 plus straight y space space end cell cell 6 plus 0 end cell row cell 0 plus 1 space space space end cell cell 2 straight x plus 2 end cell end table close square brackets equals open square brackets table row 5 6 row 1 8 end table close square brackets
therefore space space space space space open square brackets table row cell 2 plus straight y end cell 6 row 1 cell 2 straight x plus 2 end cell end table close square brackets equals open square brackets table row 5 6 row 1 8 end table close square brackets

    By definition of equality of matrices,
    2 + y= 5, 2 .x + 2 = 8
    ∴ y = 5-2, 2x = 8 –'2
    ∴y = 3, .x = 3
    ∴.x =- 3, y = 3.

    Question 62
    CBSEENMA12032970

    Solve the equation for x, y, z and t, if

    2 space open square brackets table row x z row y t end table close square brackets plus 3 open square brackets table row 1 cell negative 1 end cell row 0 2 end table close square brackets equals 3 open square brackets table row 3 5 row 4 6 end table close square brackets

    Solution

    The given matrix equation is

    space space space space space space 2 space open square brackets table row straight x straight z row straight y straight t end table close square brackets plus 3 open square brackets table row 1 cell negative 1 end cell row 0 2 end table close square brackets equals 3 open square brackets table row 3 5 row 4 6 end table close square brackets
or space space space space space space open square brackets table row cell 2 straight x end cell cell 2 straight z end cell row cell 2 straight y end cell cell 2 straight t end cell end table close square brackets plus open square brackets table row 3 cell negative 3 end cell row 0 6 end table close square brackets equals open square brackets table row 9 15 row 12 18 end table close square brackets
or space space space space space space open square brackets table row cell 2 straight x end cell cell 2 straight z end cell row cell 2 straight y end cell cell 2 straight t end cell end table close square brackets equals open square brackets table row 9 15 row 12 18 end table close square brackets minus open square brackets table row 3 cell negative 3 end cell row 0 6 end table close square brackets
or space space space space space space open square brackets table row cell 2 straight x end cell cell 2 straight z end cell row cell 2 straight y end cell cell 2 straight t end cell end table close square brackets equals open square brackets table row 6 18 row 12 12 end table close square brackets

    By definition of equality of matrices, we get,
    2x = 6, 2y= 12, 2z = 18,2 t = 12
    ∴x = 3, y = 6, z = 9, t = 6

    Question 63
    CBSEENMA12032971

    If space straight x open parentheses table row 2 row 3 end table close parentheses plus straight y open square brackets table row cell negative 1 end cell row 1 end table close square brackets equals open square brackets table row 10 row 5 end table close square brackets space find the values of x and y.    

    Solution
    The given matrix equation is
    space space space space space space straight x space open parentheses table row 2 row 3 end table close parentheses plus straight y open square brackets table row cell negative 1 end cell row 1 end table close square brackets equals open square brackets table row 10 row 5 end table close square brackets space
or space space space space open square brackets table row cell 2 straight x end cell row cell 3 straight x end cell end table close square brackets plus open square brackets table row cell negative straight y end cell row straight y end table close square brackets equals open square brackets table row 10 row 5 end table close square brackets
or space open square brackets table row cell 2 straight x minus straight y end cell row cell 3 straight x plus straight y end cell end table close square brackets equals open square brackets table row 10 row 5 end table close square brackets

    By definition of equality of matrices, we get,
    2x – y= 10    ..,(1)
    3x +y = 5    .,.(2)
    Adding (1) and (2), we get,
    5 x = 15 or x = 3
    ∴ from (1), 6 – y=-10 ⇒ y = – 4
    ∴. x = 3, y = – 4.


    Question 64
    CBSEENMA12032973

    Given 3 open square brackets table row straight x straight y row straight z straight w end table close square brackets space equals space open square brackets table row straight x 6 row cell negative 1 end cell cell 2 space straight w end cell end table close square brackets plus open square brackets table row 4 cell straight x plus straight y end cell row cell straight z plus straight w end cell 3 end table close square bracketsfind the values of .x, y, z and w.

    Solution
    The given matrix equation is
    3 space open square brackets table row straight x straight y row straight z straight w end table close square brackets equals open square brackets table row straight x 6 row cell negative 1 end cell cell 2 straight w end cell end table close square brackets plus open square brackets table row 4 cell straight x plus straight y end cell row cell straight z plus straight w end cell 3 end table close square brackets
or space open square brackets table row cell 3 straight x end cell cell 3 straight y end cell row cell 3 straight z end cell cell 3 straight w end cell end table close square brackets space equals space open square brackets table row cell straight x plus 4 end cell cell 6 plus straight x plus straight y end cell row cell negative 1 plus straight z plus straight w end cell cell 2 space straight w plus 3 end cell end table close square brackets

    By definition of equality of matrices, we get,
    3 x = .x + 4    ...(1)
    3y = 6+x+ y    -(2)
    3: = – I +z + w    ’ ...(3)
    3 w’ = 2 w + 3    ....(4)
    From (1), 3 .x – .x = 4 or 2 .x = 4 ⇒ x = 2
    From (4), 3 w – 2 w = 3 or w = 3
    Putting x = 2 in (2), we get,
    3 y = 6 + 2 + y or 2 y = 8 ⇒ y = 4
    Putting w = 3 in (3), we get,
    3z= – l + z + 3 or 2 : = 2 ⇒ z  = l
    ∴ we have
    x = 2, y = 4, z = 1, w = 3.

    Question 65
    CBSEENMA12032977

    Solve the matrix equation

    space space space space space space open square brackets table row cell straight x squared end cell row cell straight y squared end cell end table close square brackets minus 3 space open square brackets table row x row cell 2 space y end cell end table close square brackets equals open square brackets table row cell negative 2 end cell row 9 end table close square brackets

space




    Solution
    space space space space space open square brackets table row cell straight x squared end cell row cell straight y squared end cell end table close square brackets minus 3 space open square brackets table row straight x row cell 2 space straight y end cell end table close square brackets equals open square brackets table row cell negative 2 end cell row 9 end table close square brackets
or space space space open square brackets table row cell straight x squared end cell row cell straight y squared end cell end table close square brackets plus open square brackets table row cell negative 3 space straight x end cell row cell negative 6 straight y end cell end table close square brackets equals open square brackets table row cell negative 2 end cell row 9 end table close square brackets
therefore space space space open square brackets table row cell straight x squared minus 3 straight x end cell row cell straight y squared minus 6 straight y end cell end table close square brackets equals open square brackets table row cell negative 2 end cell row 9 end table close square brackets
    ⇒ x2 – 3 .x = – 2 or ,x2–3.x + 2 = 0    ...(I)
    and y2-6y=9 or y2-6y-9 = 0    ...(2)
    From(l), (.x –1) (.x – 2) = 0 ⇒ x = 1,2
    From space left parenthesis 2 right parenthesis space space straight y equals fraction numerator 6 plus-or-minus square root of 36 plus 36 end root over denominator 2 end fraction equals fraction numerator 6 plus-or-minus square root of 72 over denominator 2 end fraction equals fraction numerator 6 plus-or-minus 6 square root of 2 over denominator 2 end fraction equals 3 plus-or-minus 3 square root of 2
    ∴   we have
    x=1, 2 ; y = 3 plus-or-minus 3 square root of 2
    Question 66
    CBSEENMA12032980

    Two farmers Ramkishan and Gurcharan Singh cultivate only three varieties of rice namely Basmati, Permal and Naura. The sale (in Rupees) of these varieties of rice by both the farmers in the month of September and October are given by the following matrices A and B.

    September Sales (in Rupees)

    space space space space space space italic space italic space italic space B a s m a t i italic space italic space italic space italic space italic space P e r m a l italic space italic space italic space italic space italic space N a u r a
A equals open square brackets table row cell 10 comma 000 space space space space space space space space 20 comma 000 space space space space space 30 comma 000 end cell row cell 50 comma 000 space space space space space space space space 30 comma 000 space space space space space 10 comma 000 space end cell end table close square brackets space table row Ramkrishan row cell Gurcharan space Singh end cell end table

    October Sales (in Rupees)

    space space space space space space italic space italic space italic space Basmati italic space italic space italic space italic space italic space Permal italic space italic space italic space italic space italic space Naura
straight A equals open square brackets table row cell 5 comma 000 space space space space space space space space 20 comma 000 space space space space space 6 comma 000 end cell row cell 20 comma 000 space space space space space space space space 10 comma 000 space space space space space 10 comma 000 space end cell end table close square brackets space table row Ramkrishan row cell Gurcharan space Singh end cell end table

    (i) Find the combined sales in September and October for each farmer in each variety.
    (ii) Find the decrease in sales from September to October.
    (iii) If both farmers receive 2% profit on gross sales, compute the profit for each farmer and for cach variety sold in October.


    Solution
    The sale (in Rupees) of these varieties of rice by both the fanners in the month of September and October are given by the following matrices A and B.
    September Sales (in Rupees)
    space space space space space space italic space italic space italic space Basmati italic space italic space italic space italic space italic space Permal italic space italic space italic space italic space italic space Naura
straight A equals open square brackets table row cell 10 comma 000 space space space space space space space space 20 comma 000 space space space space space 30 comma 000 end cell row cell 50 comma 000 space space space space space space space space 30 comma 000 space space space space space 10 comma 000 space end cell end table close square brackets space table row Ramkrishan row cell Gurcharan space Singh end cell end table
    October Sales (in Rupees)
    space space space space space space italic space italic space italic space Basmati italic space italic space italic space italic space italic space Permal italic space italic space italic space italic space italic space Naura
straight A equals open square brackets table row cell 5 comma 000 space space space space space space space space 20 comma 000 space space space space space 6 comma 000 end cell row cell 20 comma 000 space space space space space space space space 10 comma 000 space space space space space 10 comma 000 space end cell end table close square brackets space table row Ramkrishan row cell Gurcharan space Singh end cell end table
    (i) Combined sales in September and October for each farmer in each variety is given by
    space space space space space space italic space italic space italic space Basmati italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space Permal italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space Naura
straight A equals open square brackets table row cell 10 comma 000 plus 5 comma 000 space space space space space space space space space space space space space 20 comma 000 plus 10 comma 000 space space space space space 30 comma 000 plus 6 comma 000 end cell row cell 50 comma 000 plus 20 comma 000 space space space space space space space space space 30 comma 000 plus 10 comma 000 space space space space space 10 comma 000 plus 10 comma 000 space end cell end table close square brackets space
space equals space open square brackets table row cell 15 comma 000 space space space 30 comma 000 space space space 36 comma 000 end cell row cell 70 comma 000 space space space space 40 comma 000 space space space space space 20 comma 000 space space space end cell end table close square brackets space table row Ramkishan row cell Gurcharan space Singh end cell end table
    (ii) Change in sales from September to October is given by
    space space space space space space italic space italic space italic space Basmati italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space Permal italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space Naura
straight A equals open square brackets table row cell 10 comma 000 minus 5 comma 000 space space space space space space space space space space space space space 20 comma 000 minus 10 comma 000 space space space space space 30 comma 000 minus 6 comma 000 end cell row cell 50 comma 000 minus 20 comma 000 space space space space space space space space space 30 comma 000 minus 10 comma 000 space space space space space 10 comma 000 minus 10 comma 000 space end cell end table close square brackets space
space equals space open square brackets table row cell 5 comma 000 space space space 10 comma 000 space space space 24 comma 000 end cell row cell 30 comma 000 space space space space 20 comma 000 space space space space space 0 space space space end cell end table close square brackets space table row Ramkishan row cell Gurcharan space Singh end cell end table
    left parenthesis iii right parenthesis space 2 percent sign space of space straight B equals 2 over 100 cross times straight B equals 0.02 cross times straight B
space space space space space space italic space italic space italic space italic space italic space italic space Basmati italic space italic space italic space italic space italic space Permal italic space italic space italic space italic space italic space italic space italic space italic space italic space Naura
equals 0.02 space open square brackets table row cell 5 comma 000 end cell cell space space space space space space 10 comma 000 end cell cell space space space space space 6 comma 000 end cell row cell 20 comma 000 end cell cell space space space space space space space 10 comma 000 end cell cell space space space space space 10 comma 000 end cell end table close square brackets space
space equals space open square brackets table row 100 200 120 row 400 200 200 end table close square brackets space table row Ramkishan row cell space space space Gurcharan space Singh end cell end table
    Thus, in October Ramkishan receives Rs. 100, Rs. 200 and Rs. 120 as profit in the sale of each variety of rice, respectively, and Gurcharan Singh receives profit of Rs. 400, Rs. 200 and Rs. 200 in the sale of each variety of rice, respectively.

    Question 67
    CBSEENMA12032981

    X, Z are matrices of order 2 x 2 X p respectively.
    If n = p, then the order of the matrix 7X – 5Z is :

    • p x 2  

    • 2 x n   

    • n x 3
    • p x n

    Solution

    B.

    2 x n   

    X, Z are matrices of order 2 X n, 2 X p respectively. Also n = p. So X, Z are matrices of the same type 2 X n

    ∴ 7X - 5Z is defined and of type 2 X

    ∴ (B)    is correct answer.

    Question 69
    CBSEENMA12032987

    Find AB, if A = open square brackets table row 6 9 row 2 3 end table close square brackets space and space space straight B space equals space open square brackets table row 2 6 0 row 7 9 8 end table close square brackets

    Solution

    Here A equals open square brackets table row bold 6 bold 9 row bold 2 bold 3 end table close square brackets bold space bold B bold space bold equals bold space open square brackets table row bold 2 bold 6 bold 0 row bold 7 bold 9 bold 8 end table close square brackets

    The matrix A is of type 2 x 2 and B is of type 2 x 3.
    Number of columns of A = number of rows of B = 2. So AB is defined
    AB equals open square brackets table row 6 9 row 2 3 end table close square brackets open square brackets table row 2 6 0 row 7 9 8 end table close square brackets
space space space space equals space open square brackets table row cell left parenthesis 6 right parenthesis left parenthesis 2 right parenthesis left parenthesis 9 right parenthesis left parenthesis 7 right parenthesis end cell cell left parenthesis 6 right parenthesis left parenthesis 6 right parenthesis plus left parenthesis 9 right parenthesis left parenthesis 9 right parenthesis end cell cell left parenthesis 6 right parenthesis left parenthesis 0 right parenthesis plus left parenthesis 9 right parenthesis left parenthesis 8 right parenthesis end cell row cell left parenthesis 2 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis 3 right parenthesis left parenthesis 7 right parenthesis end cell cell left parenthesis 2 right parenthesis left parenthesis 6 right parenthesis plus left parenthesis 3 right parenthesis left parenthesis 9 right parenthesis end cell cell left parenthesis 2 right parenthesis left parenthesis 0 right parenthesis plus left parenthesis 3 right parenthesis left parenthesis 8 right parenthesis end cell end table close square brackets
space space space space equals space open square brackets table row cell 12 plus 63 end cell cell 36 plus 81 end cell cell 0 plus 72 end cell row cell 4 plus 21 end cell cell 12 plus 27 end cell cell 0 plus 24 end cell end table close square brackets
therefore space space AB equals open square brackets table row 75 117 72 row 25 39 24 end table close square brackets

    Note 1. Here AB is defined. But BA is not defined as number of columns of B is not equal to number of rows of A.
    Note 2. If A and B are square matrices of the same order, then AB and BA are both defined.

    Question 70
    CBSEENMA12032989

    If  A=open square brackets table row 1 cell negative 2 end cell 3 row cell negative 4 end cell 2 5 end table close square brackets space and space straight B space equals space open square brackets table row 1 3 row 4 5 row 2 1 end table close square brackets   then find AB, BA.

    Show that AB ≠ BA.

    Solution
    straight A equals open square brackets table row 1 cell negative 2 end cell 3 row cell negative 4 end cell 2 5 end table close square brackets comma space straight B equals open square brackets table row 2 3 row 4 5 row 2 1 end table close square brackets

    A is of type 2 x 3 and B is of type 3 x 2.
    AB equals open square brackets table row 1 cell negative 2 end cell 3 row cell negative 4 end cell 2 5 end table close square brackets open square brackets table row 2 3 row 4 5 row 2 1 end table close square brackets
space space space space equals space open square brackets table row cell 2 minus 8 plus 6 end cell cell 3 minus 10 plus 3 end cell row cell negative 8 plus 8 plus 10 end cell cell negative 12 plus 10 plus 5 end cell end table close square brackets equals open square brackets table row 0 cell negative 4 end cell row 10 3 end table close square brackets
BA equals open square brackets table row 2 3 row 4 5 row 2 1 end table close square brackets open square brackets table row 1 cell negative 2 end cell 3 row cell negative 4 end cell 2 5 end table close square brackets
space space space space space equals space open square brackets table row cell 2 minus 12 end cell cell negative 4 plus 6 end cell cell 6 plus 15 end cell row cell 4 minus 20 end cell cell negative 8 plus 10 end cell cell 12 plus 25 end cell row cell 2 minus 4 end cell cell negative 4 plus 2 end cell cell 6 plus 5 end cell end table close square brackets equals open square brackets table row cell negative 10 end cell 2 21 row cell negative 16 end cell 2 37 row cell negative 2 end cell cell negative 2 end cell 11 end table close square brackets
therefore space space space space space AB space not equal to space BA.
    Since number of columns of A = number of rows of B =3
    ∴ AB is defined.
    Again number of columns of B = number of rows of A = 2
    ∴ BA is defined.
    Note 1. From above example, it is clear that though AB and BA are defined, yet AB ;≠ BA. Here A and B are of different types.
    Note 2. Even if A and B are of same order, there are chances that AB≠ BA.
    ∴ we can say that matrix multiplication is not commutative.
    Note 3. Even if AB ≠ BA in many cases, there are cases when AB = BA.

    Question 71
    CBSEENMA12032991
    Question 72
    CBSEENMA12032993

    Find AB, if A = open square brackets table row 0 cell negative 1 end cell row 0 2 end table close square brackets space and space straight B equals space open square brackets table row 3 5 row 0 0 end table close square brackets

    Solution
    A equals open square brackets table row 0 cell negative 1 end cell row 0 2 end table close square brackets space straight B equals space open square brackets table row 3 5 row 0 0 end table close square brackets
therefore space space space AB equals open square brackets table row 0 cell negative 1 end cell row 0 2 end table close square brackets space open square brackets table row 3 5 row 0 0 end table close square brackets equals open square brackets table row cell 0 plus 0 end cell cell 0 plus 0 end cell row cell 0 plus 0 end cell cell 0 plus 0 end cell end table close square brackets equals open square brackets table row 0 0 row 0 0 end table close square brackets equals 0

    Note : In the case of real numbers a, b if a b = 0 then either a = 0 or b = 0.
    But if the product of two matrices is a zero matrix, then it is not necessary that one of the matrices is a zero matrix.

    Question 73
    CBSEENMA12032997
    Question 74
    CBSEENMA12032999
    Question 75
    CBSEENMA12033001
    Question 76
    CBSEENMA12033002
    Question 77
    CBSEENMA12033004
    Question 78
    CBSEENMA12033005
    Question 79
    CBSEENMA12033007

    Sponsor Area

    Question 80
    CBSEENMA12033010

    Evaluate the following :

    open parentheses open square brackets table row 1 3 row cell negative 1 end cell cell negative 4 end cell end table close square brackets plus open square brackets table row 3 cell negative 1 end cell row cell negative 1 end cell 1 end table close square brackets close parentheses space open square brackets table row 1 3 5 row 2 4 6 end table close square brackets

    Solution
    open parentheses open square brackets table row 1 3 row cell negative 1 end cell cell negative 4 end cell end table close square brackets plus open square brackets table row 3 cell negative 1 end cell row cell negative 1 end cell 1 end table close square brackets close parentheses space open square brackets table row 1 3 5 row 2 4 6 end table close square brackets
space space space space equals open square brackets table row 4 1 row cell negative 2 end cell cell negative 3 end cell end table close square brackets open square brackets table row 1 3 5 row 2 4 6 end table close square brackets equals open square brackets table row cell 4 plus 2 end cell cell 12 plus 4 end cell cell 20 plus 6 end cell row cell negative 2 minus 6 end cell cell negative 6 minus 12 end cell cell negative 10 minus 18 end cell end table close square brackets
space space space space equals space open square brackets table row 6 16 26 row cell negative 8 end cell cell negative 18 end cell cell negative 28 end cell end table close square brackets
    Question 81
    CBSEENMA12033012

    open square brackets table row 1 2 3 end table close square brackets space space open square brackets table row 1 0 2 row 2 0 1 row 0 1 2 end table close square brackets space open square brackets table row 2 row 4 row 6 end table close square brackets

    Solution
    open square brackets table row 1 2 3 end table close square brackets space space open square brackets table row 1 0 2 row 2 0 1 row 0 1 2 end table close square brackets space open square brackets table row 2 row 4 row 6 end table close square brackets equals left square bracket space 1 plus 4 plus 0 space space space space space 0 plus 0 plus 3 space space space space 2 plus 2 plus 6 space right square bracket space open square brackets table row 2 row 4 row 6 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left square bracket space 5 space 3 space 10 space right square bracket space open square brackets table row 2 row 4 row 6 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left square bracket space 10 plus 12 plus 60 space right square bracket space equals left square bracket space 82 space right square bracket space space
    Question 82
    CBSEENMA12033013

    Evaluate the following :

    open square brackets table row straight a straight b end table close square brackets open square brackets table row straight c row straight d end table close square brackets plus open square brackets table row straight a straight b straight c straight d end table close square brackets open square brackets table row straight a row straight b row straight c row straight d end table close square brackets

    Solution
    open square brackets table row straight a straight b end table close square brackets open square brackets table row straight c row straight d end table close square brackets plus open square brackets table row straight a straight b straight c straight d end table close square brackets open square brackets table row straight a row straight b row straight c row straight d end table close square brackets equals left square bracket space straight a space straight c space plus space straight b space straight d space right square bracket plus space left square bracket space straight a squared plus straight b squared plus straight c squared plus straight d squared space right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals left square bracket space ac space plus space bd space plus straight a squared plus straight b squared plus straight c squared plus straight d squared space right square bracket
    Question 83
    CBSEENMA12033015

    Evaluate the following :

    open square brackets table row 1 2 end table close square brackets space open square brackets table row 3 row 4 end table close square brackets plus open square brackets table row 1 2 3 4 end table close square brackets open square brackets table row cell negative 1 end cell row 0 row 1 row 0 end table close square brackets

    Solution
    open square brackets table row 1 2 end table close square brackets space open square brackets table row 3 row 4 end table close square brackets plus open square brackets table row 1 2 3 4 end table close square brackets open square brackets table row cell negative 1 end cell row 0 row 1 row 0 end table close square brackets equals left square bracket space 3 plus 8 space right square bracket space plus space left square bracket negative 1 plus 0 plus 3 plus 0 space right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals left square bracket space 11 space right square bracket space plus left square bracket space 2 space right square bracket equals space left square bracket space 13 space right square bracket
    Question 84
    CBSEENMA12033017

    Evaluate the following :

    open square brackets table row 1 cell negative 1 end cell row 0 2 row 2 3 end table close square brackets space open parentheses open square brackets table row 1 0 2 row 2 0 1 end table close square brackets minus open square brackets table row 0 1 2 row 1 0 2 end table close square brackets close parentheses


    Solution
    open square brackets table row 1 cell negative 1 end cell row 0 2 row 2 3 end table close square brackets space open parentheses open square brackets table row 1 0 2 row 2 0 1 end table close square brackets minus open square brackets table row 0 1 2 row 1 0 2 end table close square brackets close parentheses equals open square brackets table row 1 cell negative 1 end cell row 0 2 row 2 3 end table close square brackets space open square brackets table row 1 cell negative 1 end cell 0 row 1 0 cell negative 1 end cell end table close square brackets
space space space space space space space space space space space space equals space open square brackets table row cell 1 minus 1 end cell cell negative 1 minus 0 end cell cell 0 plus 1 end cell row cell 0 plus 2 end cell cell 0 plus 0 end cell cell 0 minus 2 end cell row cell 2 plus 3 end cell cell negative 2 plus 0 end cell cell 0 minus 3 end cell end table close square brackets equals open square brackets table row 0 cell negative 1 end cell 1 row 2 0 cell negative 2 end cell row 5 cell negative 2 end cell cell negative 3 end cell end table close square brackets
    Question 85
    CBSEENMA12033018

    Write as single matrix

    open square brackets table row 1 cell negative 2 end cell 3 end table close square brackets space open square brackets table row 2 cell negative 1 end cell 5 row 0 2 4 row cell negative 7 end cell 5 0 end table close square brackets minus open square brackets table row 2 cell negative 5 end cell 7 end table close square brackets

    Solution
    open square brackets table row 1 cell negative 2 end cell 3 end table close square brackets space open square brackets table row 2 cell negative 1 end cell 5 row 0 2 4 row cell negative 7 end cell 5 0 end table close square brackets minus open square brackets table row 2 cell negative 5 end cell 7 end table close square brackets
space space space space
           = [ 2 - 0 - 21     - 1 - 4 + 15   5 - 8 + 0 ] - [2       - 5    7 ]
           = [ - 19    10    - 3 ] - [ 2      - 5     7 ]
           = [ - 19    -2     10+5  - 3  - 7 ] 
           = [ -21     15    -10]
    Question 86
    CBSEENMA12033020

    Evaluate


    open square brackets table row 1 3 5 end table close square brackets space open square brackets table row 1 0 3 row 2 0 1 row 0 1 2 end table close square brackets space open square brackets table row 1 row 4 row 6 end table close square brackets

    Solution
    open square brackets table row 1 3 5 end table close square brackets space open square brackets table row 1 0 3 row 2 0 1 row 0 1 2 end table close square brackets space open square brackets table row 1 row 4 row 6 end table close square brackets equals open square brackets table row 1 3 5 end table close square brackets space open square brackets table row cell 1 plus 0 plus 18 end cell row cell 2 plus 0 plus 6 end cell row cell 0 plus 4 plus 12 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 1 3 5 end table close square brackets space open square brackets table row 19 row 8 row 16 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 19 plus 24 plus 80 equals left square bracket space 123 end cell end table close square brackets
    Question 87
    CBSEENMA12033022

    Evaluate

    open square brackets table row 1 1 1 end table close square brackets space open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets space open square brackets table row 4 row 4 row 4 end table close square brackets

    Solution
    open square brackets table row 1 1 1 end table close square brackets space open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets space open square brackets table row 4 row 4 row 4 end table close square brackets equals open square brackets table row cell 1 plus 0 plus 0 end cell cell 0 plus 1 plus 0 end cell cell 0 plus 0 plus 1 end cell end table close square brackets space open square brackets table row 4 row 4 row 4 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 1 1 1 end table close square brackets space open square brackets table row 4 row 4 row 4 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets space 4 plus 4 plus 4 space close square brackets space equals space open square brackets table row 12 end table close square brackets
    Question 88
    CBSEENMA12033023

    Let space straight A space equals space open square brackets table row cell cos space straight theta end cell cell sin space straight theta end cell row cell negative sin space straight theta end cell cell cos space straight theta end cell end table close square brackets comma space show space that space straight A squared equals open square brackets table row cell cos space 2 straight theta end cell cell space sin space 2 straight theta end cell row cell negative sin space 2 straight theta end cell cell cos space 2 straight theta end cell end table close square brackets

    Solution
    Here space straight A space equals bold Let bold space bold A bold space bold equals bold space open square brackets table row cell bold cos bold space bold theta end cell cell bold sin bold space bold theta end cell row cell bold minus bold sin bold space bold theta end cell cell bold cos bold space bold theta end cell end table close square brackets
bold therefore bold space bold space bold A to the power of bold 2 bold space bold equals bold A bold space bold. bold space bold A bold space bold equals bold space bold Let bold space bold A bold space bold equals bold space open square brackets table row cell bold cos bold space bold theta end cell cell bold sin bold space bold theta end cell row cell bold minus bold sin bold space bold theta end cell cell bold cos bold space bold theta end cell end table close square brackets bold. open square brackets table row cell bold cos bold space bold theta end cell cell bold sin bold space bold theta end cell row cell bold minus bold sin bold space bold theta end cell cell bold cos bold space bold theta end cell end table close square brackets
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold equals bold space open square brackets table row cell bold cos to the power of bold 2 bold space bold theta end cell cell bold minus bold sin to the power of bold 2 bold space bold theta end cell row cell bold minus bold sin bold space bold theta bold space bold cos bold space bold theta end cell cell bold cos to the power of bold 2 bold space bold theta bold space bold minus bold space bold sin to the power of bold 2 bold space bold theta end cell end table close square brackets
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold equals bold space open square brackets table row cell bold cos bold space bold 2 bold theta end cell cell bold sin bold space bold 2 bold theta end cell row cell bold minus bold sin bold space bold 2 bold theta end cell cell bold cos bold space bold 2 bold theta end cell end table close square brackets
    Question 89
    CBSEENMA12033026

    Evaluate

    If A = open square brackets table row 2 cell negative 1 end cell row 3 2 end table close square brackets space and space straight B equals open square brackets table row 0 4 row cell negative 1 end cell 7 end table close square brackets comma space find space 3 straight A squared minus 2 straight B.

    Solution
    Here space A space equals space open square brackets table row 2 cell negative 1 end cell row 3 2 end table close square brackets comma space straight B equals open square brackets table row 0 4 row cell negative 1 end cell 7 end table close square brackets comma space
therefore space space space 3 straight A squared minus 2 straight B equals 3 space open square brackets table row 2 cell negative 1 end cell row 3 2 end table close square brackets space open square brackets table row 2 cell negative 1 end cell row 3 2 end table close square brackets minus 2 space open square brackets table row 0 4 row cell negative 1 end cell 7 end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 4 minus 3 space space space space end cell cell negative 2 minus 2 end cell row cell 6 plus 6 space space space space end cell cell negative 3 plus 4 end cell end table close square brackets minus 2 open square brackets table row 0 4 row cell negative 1 end cell 7 end table close square brackets
space space space space space space space space space space space space space space space space space equals space 3 space open square brackets table row 1 cell negative 4 end cell row 12 1 end table close square brackets space minus 2 space open square brackets table row 0 4 row cell negative 1 end cell 7 end table close square brackets equals open square brackets table row 3 cell negative 12 end cell row 36 3 end table close square brackets minus open square brackets table row 0 8 row cell negative 2 end cell 14 end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 3 minus 0 end cell cell negative 12 minus 8 end cell row cell 36 plus 2 end cell cell 3 minus 14 end cell end table close square brackets equals open square brackets table row 3 cell negative 20 end cell row 38 cell negative 11 end cell end table close square brackets
    Question 90
    CBSEENMA12033028

    Evaluate

    If A = open square brackets table row 2 cell negative 1 end cell row 3 2 end table close square brackets comma space B equals open square brackets table row 0 4 row cell negative 1 end cell 7 end table close square brackets comma space find space 3 straight A squared minus 2 straight B plus straight I.

    Solution
    Here space space space space straight A equals space open square brackets table row bold 2 cell bold minus bold 1 end cell row bold 3 bold 2 end table close square brackets bold comma bold space bold B bold equals open square brackets table row bold 0 bold 4 row cell bold minus bold 1 end cell bold 7 end table close square brackets bold space
bold therefore bold space bold space bold A to the power of bold 2 bold space bold equals bold space open square brackets table row bold 2 cell bold minus bold 1 end cell row bold 3 bold 2 end table close square brackets bold space bold equals open square brackets table row cell bold 4 bold minus bold 3 end cell cell bold minus bold 2 bold minus bold 2 end cell row cell bold 6 bold plus bold 6 end cell cell bold minus bold 3 bold plus bold 4 end cell end table close square brackets bold equals open square brackets table row bold 1 cell bold minus bold 4 end cell row bold 12 bold 1 end table close square brackets
bold Consider bold space bold space bold 3 bold space bold A to the power of bold 2 bold minus bold 2 bold B bold plus bold I bold equals bold 3 bold space open square brackets table row bold 1 cell bold minus bold 4 end cell row bold 12 bold 1 end table close square brackets bold minus bold 2 open square brackets table row bold 0 bold 4 row cell bold minus bold 1 end cell bold 7 end table close square brackets bold plus open square brackets table row bold 1 bold 0 row bold 0 bold 1 end table close square brackets
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold equals open square brackets table row bold 3 cell bold minus bold 12 end cell row bold 36 bold 3 end table close square brackets bold plus open square brackets table row bold 0 cell bold minus bold 8 end cell row bold 2 cell bold minus bold 14 end cell end table close square brackets bold plus open square brackets table row bold 1 bold 0 row bold 0 bold 1 end table close square brackets
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold equals bold space open square brackets table row cell bold 3 bold plus bold 0 bold plus bold 1 end cell cell bold minus bold 12 bold minus bold 8 bold plus bold 0 end cell row cell bold 36 bold plus bold 2 bold plus bold 0 end cell cell bold 3 bold minus bold 14 bold plus bold 1 end cell end table close square brackets bold equals open square brackets table row bold 4 cell bold minus bold 20 end cell row bold 38 cell bold minus bold 10 end cell end table close square brackets
    Question 91
    CBSEENMA12034140

    If straight A equals space open square brackets table row 0 0 1 row 0 1 0 row 1 0 0 end table close square brackets comma space verify that straight A squared space equals space 1.

    Solution
    straight A equals space open square brackets table row 0 0 1 row 0 1 0 row 1 0 0 end table close square brackets
    straight A squared equals open square brackets table row 0 0 1 row 0 1 0 row 1 0 0 end table close square brackets open square brackets table row 0 0 1 row 0 1 0 row 1 0 0 end table close square brackets
    equals open square brackets table row cell 0 plus 0 plus 1 end cell cell 0 plus 0 plus 0 end cell cell 0 plus 1 plus 0 end cell row cell 0 plus 0 plus 0 end cell cell 0 plus 1 plus 0 end cell cell 0 plus 0 plus 0 end cell row cell 0 plus 0 plus 0 end cell cell 0 plus 0 plus 0 end cell cell 1 plus 0 plus 0 end cell end table close square brackets space equals space open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets

    therefore space space space straight A squared equals 1.
     
    Question 92
    CBSEENMA12034145

    If straight A equals open square brackets table row 1 cell space space 2 end cell row 3 cell space space 4 end cell row 5 cell space space 6 end cell end table close square brackets space and space straight B equals open square brackets table row 4 cell space 5 end cell cell space space 6 end cell row 7 cell space 8 end cell cell space space 9 end cell end table close square brackets then find AB and BA. Is AB= BA ? What conclusion do you draw?

    Solution
    straight A equals space open square brackets table row 1 cell space 2 end cell row 3 cell space space 4 end cell row 5 cell space space 6 end cell end table close square brackets comma space straight B equals open square brackets table row 4 cell space 5 space end cell 6 row 7 cell space 8 end cell cell space 9 end cell end table close square brackets
    Since number of columns of A = number of rows of B.
    therefore space AB space is space definded.
    AB equals open square brackets table row 1 cell space 2 end cell row 3 cell space space 4 end cell row 5 cell space space 6 end cell end table close square brackets open square brackets table row 4 cell space space 5 end cell cell space space 6 end cell row 7 cell space space 8 end cell cell space 9 end cell end table close square brackets
equals open square brackets table row cell 4 plus 14 end cell cell space 5 plus 16 end cell cell space 6 plus 18 end cell row cell 12 plus 28 end cell cell space space 15 plus 32 end cell cell space 18 plus 36 end cell row cell 20 plus 42 end cell cell space space 25 plus 48 end cell cell space space 30 plus 54 end cell end table close square brackets equals open square brackets table row 18 cell space space 21 end cell cell space space 24 end cell row 40 cell space 47 end cell cell space 54 end cell row 62 cell space 73 end cell cell space space 84 end cell end table close square brackets
    Again number of columns of B = number of rows of A 
    therefore space BA space is space defined.BA equals space open square brackets table row 4 cell space space 5 end cell cell space space 6 end cell row 7 cell space space 8 end cell cell space space 9 end cell end table close square brackets open square brackets table row 1 cell space space 2 end cell row 3 cell space space 4 end cell row 5 cell space space 6 end cell end table close square brackets
equals open square brackets table row cell 4 plus 15 plus 30 end cell cell space space space 8 plus 20 plus 36 end cell row cell 7 plus 24 plus 45 space end cell cell space 14 plus 32 plus 54 end cell end table close square brackets
    But space AB not identical to BA space as space AB space and space BA space are space of space different space orders.
    We conclude that multiplication of matrices is not commutative.
    Question 93
    CBSEENMA12034151

    If space straight A equals open square brackets table row 2 cell negative 1 end cell 3 row cell negative 3 end cell 2 0 row 5 1 cell negative 1 end cell end table close square brackets comma straight B equals space open square brackets table row cell negative 3 end cell 2 cell negative 1 end cell row 0 5 2 row 1 cell negative 2 end cell cell negative 1 end cell end table close square brackets space then
find space AB space and space BA. space Is space AB equals BA ? space What space conclusion space do space you space draw

    Solution
    straight A space equals open square brackets table row 2 cell negative 1 end cell 3 row cell negative 3 end cell 2 0 row 5 1 1 end table close square brackets comma space straight B equals open square brackets table row cell negative 3 end cell 2 cell negative 1 end cell row 0 5 2 row 1 cell negative 2 end cell 1 end table close square brackets
AB equals space open square brackets table row 2 cell negative 1 end cell 3 row cell negative 3 end cell 2 0 row 5 1 cell negative 1 end cell end table close square brackets open square brackets table row cell negative 3 end cell 2 cell negative 1 end cell row 0 5 2 row 1 cell negative 2 end cell 1 end table close square brackets
equals open square brackets table row cell left parenthesis 2 right parenthesis left parenthesis negative 3 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis 0 right parenthesis plus left parenthesis 3 right parenthesis left parenthesis 1 right parenthesis end cell cell space left parenthesis 2 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis 5 right parenthesis plus left parenthesis 3 right parenthesis left parenthesis negative 2 right parenthesis end cell cell space space left parenthesis 2 right parenthesis left parenthesis negative 1 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis 3 right parenthesis left parenthesis 1 right parenthesis end cell row cell left parenthesis negative 3 right parenthesis left parenthesis negative 3 right parenthesis plus left parenthesis 2 right parenthesis left parenthesis 0 right parenthesis plus left parenthesis 0 right parenthesis left parenthesis 1 right parenthesis space end cell cell left parenthesis negative 3 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis 2 right parenthesis left parenthesis 5 right parenthesis plus left parenthesis 0 right parenthesis left parenthesis negative 2 right parenthesis end cell cell space space left parenthesis negative 3 right parenthesis left parenthesis negative 1 right parenthesis plus left parenthesis 2 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis 0 right parenthesis left parenthesis 1 right parenthesis end cell row cell left parenthesis 5 right parenthesis left parenthesis negative 3 right parenthesis plus left parenthesis 1 right parenthesis left parenthesis 0 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis 1 right parenthesis end cell cell space left parenthesis 5 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis 1 right parenthesis left parenthesis 5 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis negative 2 right parenthesis space end cell cell space space space left parenthesis 5 right parenthesis left parenthesis negative 1 right parenthesis plus left parenthesis 1 right parenthesis left parenthesis 2 right parenthesis plus left parenthesis negative 1 right parenthesis left parenthesis 1 right parenthesis end cell end table close square brackets
equals open square brackets table row cell negative 6 plus 0 plus 3 end cell cell 4 minus 5 minus 6 end cell cell negative 2 minus 2 plus 3 end cell row cell 9 plus 0 plus 0 end cell cell negative 6 plus 10 plus 0 end cell cell 3 plus 4 plus 0 end cell row cell negative 15 plus 0 minus 1 end cell cell 10 plus 5 plus 2 end cell cell negative 5 plus 2 minus 1 end cell end table close square brackets equals open square brackets table row cell negative 3 end cell cell negative 7 end cell cell negative 1 end cell row 9 4 7 row cell negative 16 end cell 17 cell negative 4 end cell end table close square brackets
also space BA equals open square brackets table row cell negative 3 end cell 2 cell negative 1 end cell row 0 5 2 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row 2 cell negative 1 end cell 3 row cell negative 3 end cell 2 0 row 5 1 cell negative 1 end cell end table close square brackets
equals open square brackets table row cell negative 6 minus 6 minus 5 end cell cell 3 plus 4 minus 1 end cell cell negative 9 plus 0 plus 1 end cell row cell 0 minus 15 plus 10 end cell cell 0 plus 10 plus 2 end cell cell 0 plus 0 minus 2 end cell row cell 2 plus 6 plus 5 end cell cell negative 1 minus 4 plus 1 end cell cell 3 minus 0 minus 1 end cell end table close square brackets equals open square brackets table row cell negative 17 end cell 6 cell negative 8 end cell row cell negative 5 end cell 12 cell negative 2 end cell row 13 cell negative 4 end cell 2 end table close square brackets
therefore space AB space not equal to space BA
    We conclude that multiplication of matrices A and B is not commutative.
    Question 94
    CBSEENMA12034154

    show thatopen square brackets table row 5 cell space minus 1 end cell row 6 cell space space space space 7 end cell end table close square brackets open square brackets table row 2 cell space 1 end cell row 3 cell space 4 end cell end table close square brackets not equal to open square brackets table row 2 cell space 1 end cell row 3 cell space 4 end cell end table close square brackets open square brackets table row cell 5 space space end cell cell negative 1 end cell row 6 cell space space space 7 end cell end table close square brackets

    Solution
    open square brackets table row cell 5 space end cell cell negative 1 end cell row 6 cell space space space 7 end cell end table close square brackets space open square brackets table row 2 cell space space 1 end cell row 3 cell space space 4 end cell end table close square brackets equals open square brackets table row cell 10 minus 3 end cell cell space 5 minus 4 end cell row cell 12 plus 21 end cell cell space space 6 plus 28 end cell end table close square brackets equals open square brackets table row 7 cell space space 1 end cell row 33 cell space 34 end cell end table close square brackets
open square brackets table row 2 cell space space 1 end cell row 3 cell space space 4 end cell end table close square brackets space open square brackets table row 5 cell space space minus 1 end cell row 6 cell space space space space space 7 end cell end table close square brackets equals open square brackets table row cell 10 plus 6 end cell cell space space minus 2 plus 7 end cell row cell 15 plus 24 end cell cell space space space space minus 3 plus 28 end cell end table close square brackets equals open square brackets table row 16 cell space 5 end cell row 39 cell space space 25 end cell end table close square brackets
therefore open square brackets table row 5 cell space space minus 1 end cell row 6 cell space space space space space 7 end cell end table close square brackets space open square brackets table row 2 cell space 1 end cell row 3 cell space 4 end cell end table close square brackets not equal to open square brackets table row 2 cell space space 1 end cell row 3 cell space space 4 end cell end table close square brackets space open square brackets table row 5 cell space space minus 1 end cell row 6 cell space space space space space 7 end cell end table close square brackets
    Question 95
    CBSEENMA12034158

    show that open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets not equal to open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets space open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets

    Solution
    open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets
equals open square brackets table row cell negative 1 plus 0 plus 6 end cell cell 1 minus 2 plus 9 end cell cell 0 plus 2 plus 12 end cell row cell 0 plus 0 plus 0 end cell cell 0 minus 1 plus 0 end cell cell 0 plus 1 plus 0 end cell row cell negative 1 plus 0 plus 0 end cell cell 1 minus 1 plus 0 end cell cell 0 plus 1 plus 0 end cell end table close square brackets equals open square brackets table row 5 8 14 row 0 cell negative 1 end cell 1 row cell negative 1 end cell 0 1 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets space equals space open square brackets table row 5 8 14 row 0 cell negative 1 end cell 1 row cell negative 1 end cell 0 1 end table close square brackets
Also space space space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets space open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets
space space space space space space space space space space space space space space space space space equals open square brackets table row cell negative 1 plus 0 plus 0 end cell cell negative 2 plus 1 plus 0 end cell cell negative 3 plus 0 plus 0 end cell row cell 0 plus 0 plus 1 end cell cell 0 minus 1 plus 1 end cell cell 0 plus 0 plus 0 end cell row cell 2 plus 0 plus 4 end cell cell 4 plus 3 plus 4 end cell cell 6 plus 0 plus 0 end cell end table close square brackets space open square brackets table row cell negative 1 end cell cell negative 1 end cell cell negative 3 end cell row 1 0 0 row 6 11 6 end table close square brackets
therefore space space space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets space open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets space equals open square brackets table row cell negative 1 end cell cell negative 1 end cell 3 row 0 0 0 row 2 11 6 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
From space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space comma space we space get comma
open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets space not equal to space open square brackets table row cell negative 1 end cell 1 0 row 0 cell negative 1 end cell 1 row 2 3 4 end table close square brackets space open square brackets table row 1 2 3 row 0 1 0 row 1 1 0 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Question 96
    CBSEENMA12034159

    If space straight A equals open square brackets table row 1 cell negative 1 end cell 1 row 0 2 1 end table close square brackets comma space straight B space open square brackets table row 1 cell negative 1 end cell 0 row 0 1 cell negative 1 end cell row 1 1 1 end table close square brackets space comma straight C space open square brackets table row 1 0 row 0 1 row 1 1 end table close square brackets space
verify space that space straight A space left parenthesis BC right parenthesis equals left parenthesis AB right parenthesis space straight C.

    Solution
    straight A equals open square brackets table row 1 cell negative 1 end cell 1 row 0 2 1 end table close square brackets comma straight B equals open square brackets table row 1 cell negative 1 end cell 0 row 0 1 cell negative 1 end cell row 1 1 1 end table close square brackets comma space straight C equals open square brackets table row 1 0 row 0 1 row 1 1 end table close square brackets
BC equals open square brackets table row 1 cell negative 1 end cell 0 row 0 1 cell negative 1 end cell row 1 1 1 end table close square brackets space open square brackets table row 1 0 row 0 1 row 1 1 end table close square brackets space equals space open square brackets table row cell 1 plus 0 plus 0 end cell cell 0 minus 1 plus 0 end cell row cell 0 plus 1 minus 1 end cell cell 0 plus 1 minus 1 end cell row cell 0 plus 1 plus 1 end cell cell 0 plus 1 plus 1 end cell end table close square brackets equals open square brackets table row 1 cell negative 1 end cell row cell negative 1 end cell 0 row 2 2 end table close square brackets

space space space space space space space space space space space space space space space space space space space space space space space space AB equals open square brackets table row 1 cell negative 1 end cell 1 row 0 2 1 end table close square brackets space open square brackets table row 1 cell negative 1 end cell 0 row 0 1 cell negative 1 end cell row 1 1 1 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row cell 1 plus 0 plus 1 end cell cell negative 1 minus 1 plus 1 end cell cell 0 plus 1 plus 1 end cell row cell 0 plus 0 plus 1 end cell cell 0 plus 2 plus 1 end cell cell 0 minus 2 plus 1 end cell end table close square brackets equals open square brackets table row 2 cell negative 1 end cell 2 row 1 3 cell negative 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space straight L. straight H. straight S space equals space straight A left parenthesis BC right parenthesis equals open square brackets table row 1 cell negative 1 end cell 1 row 0 2 1 end table close square brackets space space space open square brackets table row 1 cell negative 1 end cell row cell negative 1 end cell 0 row 2 2 end table close square brackets
space space space space space space space space space space space space space space space space space straight R. straight H. straight S space equals space left parenthesis AB right parenthesis straight C
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 2 cell negative 1 end cell 2 row 1 3 cell negative 1 end cell end table close square brackets space space space space space space space open square brackets table row 1 0 row 0 1 row 1 1 end table close square brackets space space equals open square brackets table row cell 2 plus 0 plus 2 end cell cell 0 minus 1 plus 2 end cell row cell 1 plus 0 minus 1 end cell cell 0 plus 3 minus 1 end cell end table close square brackets space equals open square brackets table row 4 1 row 0 2 end table close square brackets
therefore space space space space space space space space straight L. straight H. straight S space equals space space space space straight R. straight H. straight S space space space space space
therefore space space space space space space space space space straight A left parenthesis BC right parenthesis space equals space left parenthesis AB right parenthesis straight C space is space verified. space space space space space
    Question 97
    CBSEENMA12034168
    Question 99
    CBSEENMA12034176

    if space straight A space equals open square brackets table row 1 cell negative 1 end cell row 2 3 end table close square brackets comma space straight B space open square brackets table row 2 cell space 1 end cell row 1 cell space 0 end cell end table close square brackets space comma space verify space that space left parenthesis straight A plus straight B right parenthesis squared space not equal to space straight A squared space plus 2 AB plus straight B squared

    Solution
    Here space straight A equals open square brackets table row 1 cell negative 1 end cell row 2 3 end table close square brackets equals open square brackets table row 2 cell space 1 end cell row 1 cell space space 0 end cell end table close square brackets
therefore space straight A plus straight B equals space open square brackets table row cell 1 plus 2 end cell cell negative 1 plus 1 end cell row cell 2 plus 1 end cell cell 3 plus 0 end cell end table close square brackets equals open square brackets table row 3 cell space 0 end cell row 3 cell space 3 end cell end table close square brackets space
left parenthesis straight A plus straight B right parenthesis squared space space equals space open square brackets table row 3 cell space 0 end cell row 3 cell space 3 end cell end table close square brackets space open square brackets table row 3 cell space 0 end cell row 3 cell space 3 end cell end table close square brackets equals open square brackets table row cell 9 plus 0 end cell cell space 0 plus 0 end cell row cell 9 plus 9 end cell cell space 0 plus 9 end cell end table close square brackets equals open square brackets table row 9 cell space 0 end cell row 18 cell space 9 end cell end table close square brackets space... left parenthesis 1 right parenthesis
left parenthesis straight A right parenthesis squared space space space space equals space open square brackets table row 1 cell space minus 1 end cell row 2 cell space 3 end cell end table close square brackets space open square brackets table row 1 cell space minus 1 end cell row 2 cell space space space space 3 end cell end table close square brackets space space space equals open square brackets table row cell 1 minus 2 end cell cell space minus 1 minus 3 end cell row cell 2 plus 6 end cell cell space minus 2 plus 9 end cell end table close square brackets space space space equals open square brackets table row cell negative 1 end cell cell space minus 4 end cell row 8 cell space space space space 7 end cell end table close square brackets
2 AB equals 2 open square brackets table row 2 cell space space minus 1 end cell row 2 cell space 3 end cell end table close square brackets space open square brackets table row 2 cell space 1 end cell row 1 cell space space 0 end cell end table close square brackets equals 2 open square brackets table row cell 4 minus 1 end cell cell space space 2 plus 0 end cell row cell 4 plus 3 end cell cell space space 2 plus 0 end cell end table close square brackets equals 2 open square brackets table row 3 cell space space 2 end cell row cell 7 space end cell 2 end table close square brackets equals open square brackets table row 6 cell space 4 end cell row 14 cell space 4 end cell end table close square brackets
space straight B squared equals open square brackets table row 2 cell space 1 end cell row 1 cell space 0 end cell end table close square brackets space open square brackets table row 2 cell space 1 end cell row 1 cell space space 0 end cell end table close square brackets equals open square brackets table row cell 4 plus 1 end cell cell space space 2 plus 0 end cell row cell 2 plus 0 end cell cell space 1 plus 0 end cell end table close square brackets equals open square brackets table row cell 5 space end cell 2 row 2 cell space 1 end cell end table close square brackets
space straight A squared plus 2 AB plus straight B squared equals open square brackets table row cell negative 1 end cell cell space minus 4 end cell row 8 7 end table close square brackets plus open square brackets table row 6 cell space 4 end cell row 14 cell space space 4 end cell end table close square brackets plus open square brackets table row 5 cell space 2 end cell row 2 cell space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row cell negative 1 plus 6 plus 5 end cell cell negative 4 plus 4 plus 2 end cell row cell 8 plus 14 plus 2 end cell cell 7 plus 4 plus 2 end cell end table close square brackets equals open square brackets table row 10 cell space 2 end cell row 24 12 end table close square brackets space space space... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis and space left parenthesis 2 right parenthesis comma left parenthesis straight A plus straight B right parenthesis not equal to space straight A squared space plus 2 AB plus straight B squared
    Question 101
    CBSEENMA12034178
    Question 102
    CBSEENMA12034180
    Question 103
    CBSEENMA12034181

    IF space matrix space straight A equals open square brackets table row 0 cell space 0 end cell row 4 cell space 0 end cell end table close square brackets ,find A16

    Solution
    Here space straight A equals open square brackets table row 0 cell space 0 end cell row 4 cell space 0 end cell end table close square brackets
therefore space straight A squared equals open square brackets table row 0 cell space space 0 end cell row 4 cell space space 0 end cell end table close square brackets space open square brackets table row 0 cell space space 0 end cell row 4 cell space space 0 end cell end table close square brackets equals space open square brackets table row 0 cell space 0 end cell row 0 cell space 0 end cell end table close square brackets equals 0
therefore space straight A to the power of 16 equals left parenthesis straight A squared right parenthesis to the power of 8 space equals left parenthesis 0 right parenthesis to the power of 8 space space equals 0
    Question 104
    CBSEENMA12034184

    if space open square brackets table row 1 0 row 0 1 end table close square brackets comma space straight A equals open square brackets table row 0 1 row 0 0 end table close square brackets comma space then space show space that

left parenthesis straight a space straight I space plus straight b space straight A right parenthesis cubed equals straight a cubed straight I plus 3 space straight a squared space bA.

    Solution
    Here space straight I space equals space open square brackets table row 1 0 row 0 1 end table close square brackets space space space space space space straight A equals space open square brackets table row 0 1 row 0 0 end table close square brackets

therefore space straight a space straight I equals space open square brackets table row straight a 0 row 0 straight a end table close square brackets space comma space bA space equals space open square brackets table row 0 straight b row 0 straight a end table close square brackets

therefore space straight a space straight I space plus straight b space straight A space equals space open square brackets table row straight a straight b row 0 straight a end table close square brackets

therefore space left parenthesis straight a space straight I space plus space straight b space straight A right parenthesis squared equals space open square brackets table row straight a straight b row 0 straight a end table close square brackets space space open square brackets table row straight a straight b row 0 straight a end table close square brackets space equals space open square brackets table row cell straight a squared end cell cell 2 ab end cell row 0 cell straight a squared end cell end table close square brackets

space space space space space space space left parenthesis straight a space straight I space plus space straight b space straight A right parenthesis cubed equals space open square brackets table row cell straight a squared end cell cell 2 ab end cell row 0 cell straight a squared end cell end table close square brackets space open square brackets table row straight a straight b row 0 straight a end table close square brackets space equals space open square brackets table row cell straight a cubed end cell cell 3 straight a squared straight b end cell row 0 cell straight a cubed end cell end table close square brackets

therefore space space space left parenthesis straight a space straight I space plus space straight b space straight A right parenthesis cubed equals space space space open square brackets table row cell straight a cubed end cell cell 3 straight a squared straight b end cell row 0 cell straight a cubed end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

Also space space space space space straight a to the power of 3 space space end exponent straight I space plus 3 straight a squared space straight b space straight A space equals space straight a cubed space open square brackets table row 1 0 row 0 1 end table close square brackets plus 3 straight a squared space straight b space open square brackets table row 0 1 row 0 0 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row cell straight a cubed end cell cell 3 straight a to the power of 2 space end exponent straight b end cell row 0 cell straight a cubed end cell end table close square brackets space plus open square brackets table row 0 cell 3 straight a squared straight b end cell row 0 cell straight a cubed end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space

therefore space space space space space space space space straight a to the power of 3 space end exponent space straight I equals 3 straight a to the power of 2 space end exponent straight b space straight A equals space open square brackets table row cell straight a cubed end cell cell 3 straight a to the power of 2 space end exponent straight b end cell row 0 cell straight a cubed end cell end table close square brackets space space space space space space space space space

From space left parenthesis 1 right parenthesis space space and space left parenthesis 2 right parenthesis. space we space get comma
left parenthesis straight a space straight I space plus straight b space straight A space right parenthesis cubed space space space space space space space equals straight a cubed space space space straight I space plus 3 straight a squared space space bA.
    Question 105
    CBSEENMA12034187

    Solve for x and y, given thatopen square brackets table row 3 cell space space minus 4 end cell row 1 cell space space space space space 2 end cell end table close square brackets space open square brackets table row x row y end table close square brackets equals open square brackets table row cell space 3 end cell row 11 end table close square brackets

    Solution
    open square brackets table row 3 cell space space minus 4 end cell row 1 cell space space space space space space 2 end cell end table close square brackets space open square brackets table row cell space straight x end cell row cell space straight y end cell end table close square brackets equals open square brackets table row cell space 3 end cell row 11 end table close square brackets
rightwards double arrow open square brackets table row cell 3 straight x space minus space 4 straight y end cell row cell straight x space space space plus space space 2 straight y end cell end table close square brackets equals space open square brackets table row cell space 3 end cell row 11 end table close square brackets
By space definition space of space equality space of space matrices.
3 x minus 4 straight y equals 3 space... left parenthesis 1 right parenthesis
straight x plus 2 straight y space equals 11... left parenthesis 2 right parenthesis
Multiplying space left parenthesis 1 right parenthesis space by space 1 space and left parenthesis 2 right parenthesis space by space 2 comma space we space get.
3 straight x minus 4 straight y equals 3 space... left parenthesis 3 right parenthesis
2 straight x plus 4 straight y space equals 22 space... left parenthesis 4 right parenthesis
Adding space left parenthesis 3 right parenthesis space and space left parenthesis 4 right parenthesis comma space we space get comma
5 straight x equals 25 space or space straight x equals 5
therefore space from left parenthesis 1 right parenthesis. space 15 minus 4 straight y equals 3 space or space 4 straight y equals 12 rightwards double arrow space straight y equals 3
therefore space we space have space straight x space equals 5 comma space straight y equals 3
    Question 106
    CBSEENMA12034189
    Question 107
    CBSEENMA12034190

    Solve space for space straight x space andy comma space given space that
open square brackets table row 2 cell negative 3 end cell row 1 1 end table close square brackets space open square brackets table row straight x row straight y end table close square brackets equals open square brackets table row 1 row 3 end table close square brackets

    Solution
    
open square brackets table row 2 cell negative 3 end cell row 1 1 end table close square brackets space open square brackets table row straight x row straight y end table close square brackets equals open square brackets table row 1 row 3 end table close square brackets
rightwards double arrow open square brackets table row cell 2 straight x space minus space 3 straight y end cell row cell straight x plus space space straight y end cell end table close square brackets equals open square brackets table row 1 row 3 end table close square brackets
By space definition space of space equality space of space matrices comma
space space 2 straight x space – space 3 space straight y space equals space 1 space space space space... left parenthesis 1 right parenthesis
space space straight x space plus space straight y space equals space 3 space space space space... left parenthesis 2 right parenthesis
space space Multiplying space left parenthesis 1 right parenthesis space by space 1 space and space left parenthesis 2 right parenthesis space by space 3 comma space we space get comma space
space 2 space space space space. straight x space – space 3 space straight y space equals space 1 space
space 3 space space space space. straight x space plus space 3 space straight y space equals space 9 space
space Adding comma space 5 straight x space equals space 10 space rightwards double arrow space straight x space equals space 2 space
space therefore space from space left parenthesis 2 right parenthesis comma space 2 space plus straight y space equals space 3 space rightwards double arrow space straight y space equals space 1 space. space space
therefore space we space have space straight x space equals space 2 comma space straight y space equals space 1.
    Question 108
    CBSEENMA12034192

    Find space the space values space of space straight a space and space straight b space for space which space the space following space holds space colon
open square brackets table row straight a straight b row cell negative straight a end cell cell 2 straight b end cell end table close square brackets space open square brackets table row 2 row cell negative 1 end cell end table close square brackets equals open square brackets table row 5 row 4 end table close square brackets

    Solution
    open square brackets table row straight a straight b row cell negative straight a end cell cell 2 straight b end cell end table close square brackets space open square brackets table row 2 row cell negative 1 end cell end table close square brackets equals open square brackets table row 5 row 4 end table close square brackets
rightwards double arrow space space space open square brackets table row cell 4 straight a plus 2 straight b end cell row cell 3 straight a minus straight b end cell end table close square brackets equals space open square brackets table row cell negative 4 end cell row 2 end table close square brackets
By space definition space of space equality space of space matrices comma space
space 4 straight a space plus space 2 straight b space equals space – space 4 space space space space... left parenthesis 1 right parenthesis space space
3 straight a space – space straight b space equals space 2 space space space space.... left parenthesis 2 right parenthesis space space
Multiplying space left parenthesis 1 right parenthesis space by space 1 space and space left parenthesis 2 right parenthesis space by space 2 comma space we space get comma space space
4 straight a space plus space 2 straight b space equals space – space 4 space space space space... left parenthesis 3 right parenthesis space
space 6 straight a space – space 2 straight b space equals space 4 space space space space... left parenthesis 4 right parenthesis space
space Adding space left parenthesis 3 right parenthesis space and space left parenthesis 4 right parenthesis comma space we space get comma space
space 1 Oa space equals space 0 space rightwards double arrow space straight a space equals space 0 space
space therefore space from left parenthesis straight l right parenthesis comma space 0 space plus space 2 straight b space equals space – space 4 space rightwards double arrow space 2 straight b space equals space – space 4 space rightwards double arrow space straight b space equals space — space 2 space
space therefore space we space have space straight a space equals space 0 comma space straight b space equals space — space 2.
    Question 109
    CBSEENMA12034194

    Find space the space values space of space straight a space and space straight b space for space which space the space following space holds space colon
open square brackets table row 4 2 row 3 cell negative 1 end cell end table close square brackets space open square brackets table row straight a row straight b end table close square brackets equals space open square brackets table row cell negative 4 end cell row 2 end table close square brackets

    Solution
    open square brackets table row 4 2 row 3 cell negative 1 end cell end table close square brackets space open square brackets table row straight a row straight b end table close square brackets equals space open square brackets table row cell negative 4 end cell row 2 end table close square brackets
rightwards double arrow space open square brackets table row cell 4 straight a plus 2 straight b end cell row cell 3 straight a minus space straight b end cell end table close square brackets equals space open square brackets table row cell negative 4 end cell row 2 end table close square brackets
By space definition space of space equality space of space matrices comma space
space 4 straight a space plus space 2 straight b space equals space – space 4 space space space space... left parenthesis 1 right parenthesis
space space 3 straight a space – space straight b space equals space 2 space space space space.... left parenthesis 2 right parenthesis space
space Multiplying space left parenthesis 1 right parenthesis space by space 1 space and space left parenthesis 2 right parenthesis space by space 2 comma space we space get comma
space space 4 straight a space plus space 2 straight b space equals space – space 4 space space space space... left parenthesis 3 right parenthesis space
space 6 straight a space – space 2 straight b space equals space 4 space space space space... left parenthesis 4 right parenthesis space
space Adding space left parenthesis 3 right parenthesis space and space left parenthesis 4 right parenthesis comma space we space get comma
space space 1 Oa space equals space 0 space rightwards double arrow space straight a space equals space 0 space space
therefore space from left parenthesis straight l right parenthesis comma space 0 space plus space 2 straight b space equals space – space 4 space rightwards double arrow space 2 straight b space equals space – space 4 space rightwards double arrow space straight b space equals space — space 2
space space therefore space we space have space straight a space equals space 0 comma space straight b space equals space — space 2.
    Question 110
    CBSEENMA12034196

    Let space straight A equals open square brackets table row 2 cell negative 1 end cell row 3 4 end table close square brackets straight B equals space open square brackets table row 5 2 row 7 4 end table close square brackets comma space straight C equals space open square brackets table row 2 5 row 3 8 end table close square brackets space Find space straight a space matrix space straight D space such space that space CD minus AB equals 0

    Solution
    space straight A equals open square brackets table row 2 cell negative 1 end cell row 3 4 end table close square brackets comma straight B equals open square brackets table row 5 2 row 7 4 end table close square brackets comma straight C equals open square brackets table row 2 5 row 3 8 end table close square brackets
Let

straight D equals open square brackets table row straight x straight y row straight z straight t end table close square brackets

Now space CD minus AB equals 0 rightwards double arrow CD equals AB
rightwards double arrow space space open square brackets table row 2 5 row 3 8 end table close square brackets space open square brackets table row straight x straight y row straight z straight t end table close square brackets space equals space open square brackets table row 2 cell negative 1 end cell row 3 4 end table close square brackets space open square brackets table row 5 2 row 7 4 end table close square brackets
rightwards double arrow open square brackets table row cell 2 straight x plus 5 yz end cell cell 2 straight y plus 5 straight t end cell row cell 3 straight x plus 8 end cell cell 3 straight y plus 8 straight t end cell end table close square brackets equals open square brackets table row cell 10 minus 7 end cell cell 4 minus 4 end cell row cell negative 15 plus 28 end cell cell 6 plus 16 end cell end table close square brackets
rightwards double arrow open square brackets table row cell 2 straight x plus 5 yz end cell cell 2 straight y plus 5 straight t end cell row cell 3 straight x plus 8 end cell cell 3 straight y plus 8 straight t end cell end table close square brackets equals space open square brackets table row 3 0 row 43 22 end table close square brackets
By space definition space of space equality space of space matrices comma space
space 2 straight x space plus space 5 space straight z space equals space 3 space space space space space space space space.. left parenthesis 1 right parenthesis space
space 3 straight x space plus space 8 space straight z space equals space 43 space space space space.. left parenthesis 2 right parenthesis space
space 2 straight y space plus space 5 space straight t space equals space 0 space... left parenthesis 3 right parenthesis space space
3 straight y space plus space 8 space straight t equals 22 space... left parenthesis 4 right parenthesis
space space Multiplying space left parenthesis 1 right parenthesis space by space 8 space and space left parenthesis 2 right parenthesis space by space 5 comma space we space get comma space
space 16 space straight x space plus space 40 space straight z space equals space 24 space space space space.. left parenthesis 5 right parenthesis space
space 15 semicolon straight x space plus space 40 straight z space equals space 215 space space space space... left parenthesis 6 right parenthesis
space space Subtracting space left parenthesis 6 right parenthesis space from space left parenthesis 5 right parenthesis comma space we space get comma space
space straight x space equals space – space 191 space
space therefore space from left parenthesis 1 right parenthesis comma space – space 382 space plus space 5 space straight z space equals space 3 space equals greater than space 5 straight z space equals space 385 space rightwards double arrow space straight z space equals space 77
space space Multiplying space left parenthesis 3 right parenthesis space by space 8 space and space left parenthesis 4 right parenthesis space by space 5 comma space we space get comma space space
16 straight y space plus space 40 space straight t space space equals space 0 space space space space... left parenthesis 7 right parenthesis
15 straight y space plus space 40 space straight t space equals space 110 space space space space... left parenthesis 8 right parenthesis space
space Subtracting space left parenthesis 8 right parenthesis space from space left parenthesis 7 right parenthesis comma space we space get comma space straight y space equals space – space 110 space space
therefore space from space left parenthesis 3 right parenthesis comma space – 220 space plus space 5 space straight t space equals space 0 space rightwards double arrow space 5 straight t space equals space 220 space rightwards double arrow straight t space equals space 44 space space therefore we space have
straight x space equals space – space 191 comma space straight y space equals space – space 110 comma space straight z space equals space 77 comma space straight t space equals space 44
therefore space straight D equals space open square brackets table row cell negative 191 end cell cell negative 110 end cell row 77 44 end table close square brackets
    Question 111
    CBSEENMA12034199

    If space straight A equals space open square brackets table row 3 cell negative 4 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets space find space straight a space matrix space straight B space such space that space AB space equals space straight I.

    Solution
    Here space straight A equals space open square brackets table row 3 cell negative 4 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets
Let space space space straight B equals space open square brackets table row straight x cell space space straight y end cell row straight y cell space space space straight u end cell end table close square brackets
NOW
AB equals straight I space space space rightwards double arrow space space space space open square brackets table row 3 cell negative 4 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets space open square brackets table row straight x cell space space straight y end cell row straight y cell space space space straight u end cell end table close square brackets equals space open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
    rightwards double arrow space space space space space open square brackets table row cell 3 x minus 4 z end cell cell space space 3 y minus 4 u end cell row cell negative x plus 2 z end cell cell space minus y plus 2 u end cell end table close square brackets equals open square brackets table row cell 1 space end cell cell space space 0 end cell row 0 cell space 1 end cell end table close square brackets

    By definition of equality of matrices, we get,
    3 x – 4z = 1    ...(1)
    x + 2 z = 0    ...(2)
    3 y – 4 u= 0        ...(3)
    – y + 2u = l    ...(4)
    Multiplying (1) by 1 and (2) by 2, we get,
    3 x – 4 z = 1    ...(5)
    – 2x + 4z = 0    ...(6)
    Adding (5) and (6), we get,
    x = 1Putting x = 1 in (5), we get,
    3 minus 4 straight z equals 1 space or space 4 straight z equals 2 space rightwards double arrow space straight z equals 1 half 
    Multiplying (3) by 1 and (4) by 2, we get,
    3y – 4 u = 0    ...(7)
    –2y + 4 u = 2    ..(8)
    Adding (7) and (8), we get,
    y = 2
    Putting y = 2 in (3), we get,
    6 minus 4 straight u equals 0 space space space space space space rightwards double arrow space 4 straight u equals 6 space space space space rightwards double arrow space straight u equals 3 over 2
    therefore space space space space space space space space space space space space space space straight B equals open square brackets table row 1 2 row cell 1 half end cell cell 3 over 2 end cell end table close square brackets

    Question 112
    CBSEENMA12034202

    Find a 2 X 2 matrix B such thatopen square brackets table row 2 5 row cell negative 3 end cell 7 end table close square brackets space space straight B equals open square brackets table row 17 cell negative 1 end cell row 47 cell negative 13 end cell end table close square brackets

    Solution
    Let space straight B equals space open square brackets table row straight x straight y row straight z straight t end table close square brackets
therefore space space space open square brackets table row 2 5 row cell negative 3 end cell 7 end table close square brackets space straight B equals space minus open square brackets table row 2 5 row cell negative 3 end cell 7 end table close square brackets space space open square brackets table row straight X straight y row straight Z straight t end table close square brackets equals open square brackets table row 17 cell negative 1 end cell row 47 cell negative 13 end cell end table close square brackets
rightwards double arrow open square brackets table row cell 2 straight x plus 5 straight z end cell cell 2 straight y plus 5 straight t end cell row cell negative 3 straight x plus 7 straight z end cell cell negative 3 straight y plus 7 straight t end cell end table close square brackets equals space open square brackets table row 17 cell negative 1 end cell row 47 13 end table close square brackets
    By definition of equality of matrices, we get
    2x + 5 z = 17    ...(1)
    –3 x + 7 z =47    ...(2)
    2y + 5 t =–1    ...(3)
    –3y + 7 t = – 13    ...(4)
    Multiplying (1) by 3 and (2) by 2, we get,
    6 x + 15z = 51    ...(5)
    –6x + 14 z = 94    ...(6)
    Adding (5) and (6), we get,
    29 z = 145 or z = 5
    ∴ from (1 )2 x + 25 = 17 or 2.x = – 8 ⇒ x = – 4
    Multiplying (3) by 3 and (4) by 2, we get,
    6.y + 15t =.– 3    ...(7)
    – 6 y+ 14 t = – 26    ...(8)
    Adding (7) and (8), we get,
    29 t = – 29 or t = –1
    ∴ from (3) 2y – 5 = – 1 or 2 y = 4 ⇒ y = 2
    we have
    x = – 4, y = 2, z = 5, t = – 1
    therefore space straight B equals space open square brackets table row cell negative 4 end cell 2 row 5 cell negative 1 end cell end table close square brackets
    Question 113
    CBSEENMA12034205

    Without using'the concept of inverse of a matrix, find the matrixopen square brackets table row straight x straight y row straight z straight u end table close square brackets such that open square brackets table row 5 cell negative 7 end cell row cell negative 2 end cell 3 end table close square brackets space open square brackets table row x y row z u end table close square brackets equals space open square brackets table row cell negative 16 end cell cell negative 6 end cell row 7 2 end table close square brackets

    Solution
    we space have space open square brackets table row 5 cell negative 7 end cell row cell negative 2 end cell 3 end table close square brackets space open square brackets table row straight x straight y row straight z straight u end table close square brackets equals open square brackets table row cell negative 16 end cell cell negative 6 end cell row 7 2 end table close square brackets
or space open square brackets table row cell 5 straight x minus 7 straight z end cell cell 5 straight y minus 7 straight u end cell row cell negative 2 straight x plus 3 straight z end cell cell negative 2 straight y plus 3 straight u end cell end table close square brackets equals space open square brackets table row cell negative 16 end cell cell negative 6 end cell row 7 2 end table close square brackets

    by definition of equality of matrices,    
    5 x – 7 z = – 16        ...(1)
    –2x + 3z = 7    ...(2)
    5y–7u = -6    .... ..(3)
    –2y’ + 3u = 2    ...(4)
    Equations (1) and (2) can be written as
    5 x – 7 z + 16 = 0
    –2x – 3z + 7 = 0    therefore fraction numerator straight x over denominator negative 49 plus 48 end fraction equals fraction numerator straight u over denominator 12 minus 10 end fraction equals fraction numerator 1 over denominator negative 15 plus 14 end fraction space space space space rightwards double arrow space space space space space space straight y over 4 equals straight u over 2 equals fraction numerator 1 over denominator negative 1 end fraction
therefore space space straight x equals 1 comma straight z equals 3
Equations space left parenthesis 5 right parenthesis space and space left parenthesis 4 right parenthesis space can space be space written space as
space space 5 y – space 7 u space plus space 6 space equals space 0 comma space 2 y space – space 3 space u space plus space 2 space equals space 0
therefore fraction numerator straight x over denominator negative 49 plus 48 end fraction equals fraction numerator straight u over denominator 12 minus 10 end fraction equals fraction numerator 1 over denominator negative 15 plus 14 end fraction space space space space rightwards double arrow space space space space space space straight y over 4 equals straight u over 2 equals fraction numerator 1 over denominator negative 1 end fraction
therefore space space space space space space space straight y equals negative 4 comma space straight u equals negative 2
therefore space open square brackets table row straight x straight y row straight z straight u end table close square brackets equals open square brackets table row 1 cell negative 4 end cell row 3 cell negative 2 end cell end table close square brackets

    Question 114
    CBSEENMA12034210

    Find space the space matrix space x space so space that space x space space open square brackets table row 1 2 3 row 4 5 6 end table close square brackets equals space open square brackets table row cell negative 7 end cell cell negative 8 end cell cell negative 9 end cell row 2 4 6 end table close square brackets

    Solution

    space We space are space given space that
x space open square brackets table row 1 2 3 row 4 5 6 end table close square brackets equals open square brackets table row cell negative 7 end cell cell negative 8 end cell cell negative 9 end cell row 2 4 6 end table close square brackets
Where space x space is space straight a space matrix.
    Let x be of m X n type.
    Since number of columns of x = number of rows of 
    open square brackets table row 1 2 3 row 4 5 6 end table close square brackets
therefore space straight n equals 2
open square brackets table row 1 2 3 row 4 5 6 end table close square brackets space is space space of space 2 space straight x space 3 space type
x space open square brackets table row 1 2 3 row 4 5 6 end table close square brackets space space must space be space of space type space straight m space straight X space 3.
therefore space straight m equals 2
therefore space straight X space is space straight a space square space matrix space of space type space 2 straight x 2.
Let space space space space space space space space space straight X equals open square brackets table row straight a straight b row straight c straight d end table close square brackets
Now space straight X space open square brackets table row 1 2 3 row 4 5 6 end table close square brackets equals open square brackets table row cell negative 7 end cell cell negative 8 end cell cell negative 9 end cell row cell negative 2 end cell 4 6 end table close square brackets
rightwards double arrow open square brackets table row straight a straight b row straight c straight d end table close square brackets space open square brackets table row 1 2 3 row 4 5 6 end table close square brackets equals open square brackets table row cell negative 7 end cell cell negative 8 end cell cell negative 9 end cell row cell negative 2 end cell 4 6 end table close square brackets
rightwards double arrow open square brackets table row cell straight a plus 4 straight b end cell cell 2 straight a plus 5 straight b end cell cell 3 straight a plus 6 straight b end cell row cell straight c plus 4 straight d end cell cell 2 straight c plus 5 straight d end cell cell 3 straight c plus 6 straight d end cell end table close square brackets equals open square brackets table row cell negative 7 end cell cell negative 8 end cell cell negative 9 end cell row cell negative 2 end cell 4 6 end table close square brackets

    By the definition of equality of matrices,
    a + 4b = –7    ...(1)
    2a + 5 b =–8    ..(2)
    3a + 6 b = –9    –(3)
    c + 4 d = 2 ......(4)
    2c + 5 d = 4        (5)
    3 c + 6 d = 6    ....(6)
    Multiplying (1) by 2 and (2) by 1, we get,
    2a + 8 b = –14    ...(7)
    2a + 5 b = –8     .(8)
    Subtracting (8) from (7), we get,
    3b = –6 or b = – 2
    ∴ from (1), a - 8 = – 7 or a = 1
    Now a = 1, b = -2 also satisfy (3)
    ∴ we have a= 1, b = – 2
    Multiplying (4) by 2 and (5) by 1, we get
    2 c + 8 d = 4    (9)
    2;c + 5 d = 4    ...(10)
    Subtracting (10) from (9), we get
    3d = 0 or d = 0
    ∴from (4), c + 0 = 2 or c = 2
    Now c = 2, d = 0 satisfy (6)

    ∴ we have c = 2, d = 0

    therefore space straight X equals open square brackets table row 1 cell negative 2 end cell row 2 0 end table close square brackets


    Question 115
    CBSEENMA12034213

    If space straight A equals open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets , find K such that straight A squared minus 8 straight A space plus space straight K space straight I space equals 0

    Solution
    straight A equals open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets
straight A to the power of 2 space equals end exponent open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets equals open square brackets table row cell 1 plus 0 end cell cell 0 plus 0 end cell row cell negative 1 minus 7 end cell cell 0 plus 49 end cell end table close square brackets equals open square brackets table row 1 0 row cell negative 8 end cell 49 end table close square brackets
Now space straight A squared minus 8 straight A plus straight K space straight I space equals 0
rightwards double arrow space space open square brackets table row 1 0 row cell negative 8 end cell 49 end table close square brackets plus open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets plus straight k open square brackets table row 1 0 row 0 1 end table close square brackets equals open square brackets table row 0 0 row 0 0 end table close square brackets
rightwards double arrow open square brackets table row 1 0 row cell negative 8 end cell 49 end table close square brackets plus open square brackets table row cell negative 8 end cell 0 row 8 cell negative 56 end cell end table close square brackets plus open square brackets table row straight k 0 row 0 straight k end table close square brackets equals open square brackets table row 0 0 row 0 0 end table close square brackets
rightwards double arrow open square brackets table row cell 1 minus 8 plus straight k end cell cell 0 plus 0 plus 0 end cell row cell negative 8 plus 8 plus 0 end cell cell 49 minus 56 plus straight k end cell end table close square brackets equals open square brackets table row 0 0 row 0 0 end table close square brackets
rightwards double arrow space straight k minus 7 equals 0 space space space space space space rightwards double arrow straight k equals 7.
    Question 116
    CBSEENMA12034217

    If space straight A equals open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets space and space straight I equals open square brackets table row 1 0 row 0 1 end table close square brackets comma 2 = 8 A + k I.

    Solution
    Here space straight A equals space open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets space and space straight I equals open square brackets table row 1 0 row 0 1 end table close square brackets
Now space space straight A squared minus 8 space straight A plus straight K space straight I
rightwards double arrow space space open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets space open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets space equals 8 space open square brackets table row 1 0 row cell negative 1 end cell 7 end table close square brackets plus straight k space open square brackets table row 1 0 row 0 cell 1 space end cell end table close square brackets
rightwards double arrow open square brackets table row cell 1 plus 0 end cell cell 0 plus 0 end cell row cell negative 1 minus 7 end cell cell 0 plus 49 end cell end table close square brackets equals space open square brackets table row 8 0 row cell negative 8 end cell 56 end table close square brackets space plus open square brackets table row straight k 0 row 0 straight k end table close square brackets
rightwards double arrow open square brackets table row 1 0 row cell negative 8 end cell 49 end table close square brackets equals open square brackets table row cell straight k plus 8 end cell 0 row cell negative 8 end cell cell straight k plus 56 end cell end table close square brackets
rightwards double arrow straight k plus 8 equals 1 comma space space straight k plus 56 equals 49 space space space space space space space space rightwards double arrow space straight k equals 7
    Question 117
    CBSEENMA12034220
    Question 118
    CBSEENMA12034222

    Solve open parentheses 2 space space 3 close parentheses space space space space open parentheses table row 1 2 row cell negative 3 end cell 0 end table close parentheses open parentheses table row straight x row 3 end table close parentheses equals 0

    Solution
    The space given space equation space is
open parentheses 2 space space 3 close parentheses space space space space open parentheses table row 1 2 row cell negative 3 end cell 0 end table close parentheses open parentheses table row straight x row 3 end table close parentheses equals 0
or space space space space space space space space open parentheses 2 space space 3 close parentheses open parentheses table row cell straight x plus 6 end cell row cell negative 3 straight x plus 0 end cell end table close parentheses equals 0
or space space space space space space space space left parenthesis 2 straight x plus 12 minus 9 straight x right parenthesis equals left parenthesis 0 right parenthesis
space space space space space space space space space space space space space space 2 straight x plus 12 minus 9 straight x equals straight o space space space rightwards double arrow space 7 straight x equals negative 12
space space space space space space space space space space space space space space space space space straight x equals 12 over 7
    Question 119
    CBSEENMA12034224

    If space open square brackets 2 straight x space space space space 3 close square brackets space open square brackets table row 1 2 row cell negative 3 end cell 0 end table close square brackets space open square brackets table row straight x row 3 end table close square brackets equals 0 space comma space find space straight x.

    Solution
    open square brackets 2 straight x space space space space 3 close square brackets space open square brackets table row 1 2 row cell negative 3 end cell 0 end table close square brackets space open square brackets table row straight x row 3 end table close square brackets equals 0
rightwards double arrow open square brackets 2 straight x minus 9 space space space 4 straight x plus 0 close square brackets space equals 0
rightwards double arrow open square brackets 2 straight x squared minus 9 space space space 9 straight x plus 12 straight x close square brackets equals 0
rightwards double arrow open square brackets 2 straight x squared minus 3 straight x close square brackets equals open square brackets 0 close square brackets space space space space space space rightwards double arrow space 2 straight x squared plus 3 straight x equals 0
rightwards double arrow straight x space left parenthesis 2 straight x plus 3 right parenthesis equals 0 space space space space space space space space space space space rightwards double arrow space straight x equals 0 comma negative 3 over 2

    Sponsor Area

    Question 120
    CBSEENMA12034226

    Find space straight y space if space open square brackets table row straight x 1 end table close square brackets space space open square brackets table row 1 0 row cell negative 2 end cell 3 end table close square brackets space space open square brackets table row straight x row 3 end table close square brackets equals 0

    Solution
    space open square brackets table row straight x 1 end table close square brackets space space open square brackets table row 1 0 row cell negative 2 end cell 3 end table close square brackets space space open square brackets table row straight x row 3 end table close square brackets equals 0
rightwards double arrow open square brackets table row cell straight x minus 2 end cell cell 0 minus 3 end cell end table close square brackets space space open square brackets table row straight x row 3 end table close square brackets equals 0 space space space space space space space space space rightwards double arrow space open square brackets table row cell straight x minus 2 end cell cell negative 3 end cell end table close square brackets space space open square brackets table row straight x row 3 end table close square brackets equals 0
space rightwards double arrow open square brackets table row cell straight x squared minus 2 end cell cell straight x minus 9 end cell end table close square brackets equals space left square bracket 0 right square bracket space space space space space space space space space space space space space space space rightwards double arrow space space straight x squared minus 2 straight x minus 9 equals 0
therefore space space space space space space space straight x equals fraction numerator 2 plus-or-minus square root of 4 plus 36 end root over denominator 2 end fraction equals fraction numerator 2 plus-or-minus square root of 40 over denominator 2 end fraction equals space fraction numerator 2 plus-or-minus 2 square root of 10 over denominator 2 end fraction equals 1 plus-or-minus square root of 10
    Question 121
    CBSEENMA12034227

    Solve space the space matrix space equation space open square brackets table row straight x 1 end table close square brackets space open square brackets table row 1 0 row cell negative 2 end cell cell negative 3 end cell end table close square brackets space open parentheses table row straight x row 5 end table close parentheses equals 0

    Solution

    The given equation is
    open square brackets table row cell straight x space space end cell 1 end table close square brackets space space open square brackets table row 1 0 row cell negative 2 end cell cell negative 3 end cell end table close square brackets space open square brackets table row x row 5 end table close square brackets equals 0
or space space space space open square brackets table row cell straight x space space end cell 1 end table close square brackets space space open square brackets table row cell x plus end cell 0 row cell negative 2 x end cell cell negative 15 end cell end table close square brackets equals 0
or. space space space space space space space space space space open square brackets table row cell x squared minus end cell cell 2 x minus end cell 15 end table close square brackets equals open square brackets table row 0 end table close square brackets
therefore space space x squared space minus 2 x minus 15 equals 0
therefore space space left parenthesis x plus 3 right parenthesis space left parenthesis x minus 5 right parenthesis equals 0
rightwards double arrow space space x equals negative 3 comma 5

    Question 123
    CBSEENMA12034236

    Find space straight x space such space that
open square brackets table row 1 2 1 end table close square brackets space space open square brackets table row 1 2 0 row 2 0 1 row 1 0 2 end table close square brackets space space open square brackets table row 0 row 2 row straight x end table close square brackets equals 0

    Solution
    open square brackets table row 1 2 1 end table close square brackets space space open square brackets table row 1 2 0 row 2 0 1 row 1 0 2 end table close square brackets space space open square brackets table row 0 row 2 row straight x end table close square brackets equals 0
rightwards double arrow space open square brackets table row cell 1 plus 4 plus 1 end cell cell 2 plus 0 plus 0 end cell cell 0 plus 2 plus 2 end cell end table close square brackets space open square brackets table row 0 row 2 row straight x end table close square brackets equals 0 space space space rightwards double arrow open square brackets table row 6 2 4 end table close square brackets space open square brackets table row 0 row 2 row straight x end table close square brackets equals 0
rightwards double arrow open square brackets table row cell 0 plus end cell cell 4 plus end cell cell 4 straight x end cell end table close square brackets equals open square brackets 0 close square brackets space space space space rightwards double arrow space 4 plus 4 straight x equals 0 space space space space rightwards double arrow space straight x equals negative 1
rightwards double arrow open square brackets table row cell 1 plus 4 plus 1 end cell cell 2 plus 0 plus 0 end cell cell 0 plus 2 plus 2 end cell end table close square brackets space space open square brackets table row 2 row straight x end table close square brackets equals 0 space space rightwards double arrow space space open square brackets table row 6 2 4 end table close square brackets space equals 0
rightwards double arrow open square brackets table row cell 0 plus end cell cell 4 plus end cell cell 4 straight x end cell end table close square brackets equals open square brackets 0 close square brackets space space space space rightwards double arrow space space 4 plus 4 straight x equals 0 space space space space space straight x equals negative 1
therefore space space space space space straight x equals negative 1
    Question 124
    CBSEENMA12034239

    Find space straight x space such space that space open square brackets table row cell 1 space space space straight x end cell 1 end table close square brackets space space open square brackets table row 1 3 2 row 2 5 1 row 15 3 2 end table close square brackets space space open square brackets table row 1 row 2 row straight x end table close square brackets space equals 0

    Solution
    
open square brackets table row cell 1 space space space straight x end cell 1 end table close square brackets space space open square brackets table row 1 3 2 row 2 5 1 row 15 3 2 end table close square brackets space space open square brackets table row 1 row 2 row straight x end table close square brackets space equals 0
rightwards double arrow space open square brackets table row cell 1 plus 2 straight x plus 15 end cell cell 3 plus 5 straight x plus 3 end cell cell 2 plus straight x plus 2 end cell end table close square brackets space space open square brackets table row 1 row 2 row straight x end table close square brackets space equals 0
rightwards double arrow space open square brackets table row cell 2 straight x plus 16 end cell cell 5 straight x plus 6 end cell cell straight x plus 4 end cell end table close square brackets space space space open square brackets table row 1 row 2 row straight x end table close square brackets space equals 0
rightwards double arrow space open square brackets table row cell 2 straight x plus 16 plus 10 straight x plus 12 plus straight x squared plus 4 straight x end cell end table close square brackets equals space open square brackets table row 0 end table close square brackets space space space space space space space space space space space space rightwards double arrow space space open square brackets table row cell straight x to the power of 2 space end exponent plus 16 straight x plus 28 end cell end table close square brackets equals open square brackets table row 0 end table close square brackets space space
rightwards double arrow space straight x squared space plus 16 straight x space plus 28 equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space left parenthesis straight x plus 2 right parenthesis space left parenthesis straight x plus 14 right parenthesis equals 0
rightwards double arrow space straight x equals negative 2 comma space minus 14 space space space space space space space space space space space space space space space space space space space space space space space space space space
    Question 125
    CBSEENMA12034240

    Find space straight x space such space that space space space open square brackets table row cell 1 space space straight x space space 1 end cell end table close square brackets space open square brackets table row 1 2 3 row 4 5 6 row 3 2 5 end table close square brackets space open square brackets table row 1 row cell negative 2 end cell row 3 end table close square brackets space equals 0

    Solution
    open square brackets table row cell 1 space space straight x space space 1 end cell end table close square brackets space open square brackets table row 1 2 3 row 4 5 6 row 3 2 5 end table close square brackets space open square brackets table row 1 row cell negative 2 end cell row 3 end table close square brackets space equals 0
rightwards double arrow space space open square brackets table row 1 straight x cell 1 space end cell end table close square brackets space space space open square brackets table row cell 1 minus 4 plus 9 end cell row cell 4 minus 10 plus 18 end cell row cell 3 minus 4 plus 15 end cell end table close square brackets space equals 0
rightwards double arrow space space open square brackets table row 1 straight x cell 1 space end cell end table close square brackets space open square brackets table row 6 row 12 row 14 end table close square brackets equals 0 space space rightwards double arrow space open square brackets table row cell 16 plus 12 straight x plus 14 end cell end table close square brackets equals open square brackets table row 0 end table close square brackets
rightwards double arrow space space space 12 straight x plus 20 equals 0 space space space straight x equals negative begin inline style 5 over 3 end style
    Question 126
    CBSEENMA12034242

    Find space straight x space such space that space space open square brackets table row 1 cell space 1 end cell cell space straight x end cell end table close square brackets space space space open square brackets table row 1 0 2 row 0 2 1 row 2 1 0 end table close square brackets space space open square brackets table row 1 row 1 row 1 end table close square brackets space equals 0

    Solution
    open square brackets table row 1 1 straight x end table close square brackets space space space open square brackets table row 1 0 2 row 0 2 1 row 2 1 0 end table close square brackets space space open square brackets table row 1 row 1 row 1 end table close square brackets space equals 0
rightwards double arrow space open square brackets table row 1 1 straight x end table close square brackets space space space open square brackets table row cell 1 plus end cell cell 0 plus end cell 2 row cell 0 plus end cell cell 2 plus end cell 1 row cell 2 plus end cell cell 1 plus end cell 0 end table close square brackets equals 0 space space space space space space rightwards double arrow space space open square brackets table row 1 1 straight x end table close square brackets space open square brackets table row 3 row 3 row 3 end table close square brackets equals 0
rightwards double arrow space space space open square brackets table row cell 3 plus 3 plus 3 straight x end cell end table close square brackets space space equals space open square brackets table row 0 end table close square brackets space space space space space space space space space space rightwards double arrow space open square brackets 3 straight x plus 6 close square brackets equals open square brackets table row 0 end table close square brackets
rightwards double arrow space space space 3 straight x plus 6 equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space 3 straight x minus 6
rightwards double arrow space straight x equals negative 2
    Question 127
    CBSEENMA12034245

    Find space straight x space such space that space space space open square brackets table row cell x minus 5 minus 1 end cell end table close square brackets space space open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets space space open square brackets table row x row 4 row 1 end table close square brackets equals 0
space

    Solution
    open square brackets table row cell straight x minus 5 minus 1 end cell end table close square brackets space space open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets space space open square brackets table row straight x row 4 row 1 end table close square brackets equals 0
rightwards double arrow space space open square brackets table row cell straight x minus 0 minus 2 end cell cell 0 minus 10 minus 0 end cell cell 2 straight x minus 5 minus 3 end cell end table close square brackets space open square brackets table row straight x row 4 row 1 end table close square brackets equals 0
rightwards double arrow space space space open square brackets table row cell straight x minus 2 end cell cell space space minus 10 minus 0 end cell cell space space space space 2 straight x minus 8 end cell end table close square brackets space space equals open square brackets table row straight x row 4 row 1 end table close square brackets space space equals 0
rightwards double arrow space space space open square brackets table row cell straight x minus 2 end cell cell 0 minus 40 plus end cell cell 2 straight x minus 8 end cell end table close square brackets equals open square brackets table row 0 end table close square brackets
rightwards double arrow space space space open square brackets table row cell straight x squared minus 48 end cell end table close square brackets equals open square brackets table row 0 end table close square brackets space space space space space space space space space space rightwards double arrow space space table row cell straight x squared minus 48 end cell end table equals 0
rightwards double arrow space space space table row cell straight x squared minus 48 end cell end table space space space space space space space space space space space space rightwards double arrow space space space table row cell straight x squared equals plus-or-minus square root of 48 end cell end table space space space space space space space space space space space space rightwards double arrow space space space table row cell straight x squared equals plus-or-minus square root of 16 cross times 3 end root end cell end table
rightwards double arrow space space space space space space space space space space straight x equals space plus-or-minus space 4 space square root of 3
    Question 128
    CBSEENMA12034247

    Give example to show that  AB space equals space straight O space even space if space straight A space not equal to space straight O comma space straight B space not equal to space straight O

    Solution
    Let space straight A space equals space open square brackets table row 1 0 row 0 0 end table close square brackets space comma space space straight B equals space open square brackets table row 0 0 row 0 2 end table close square brackets
therefore space space space AB equals open square brackets table row 1 0 row 0 0 end table close square brackets space open square brackets table row 0 0 row 0 2 end table close square brackets space equals space open square brackets table row cell 0 plus 0 end cell cell 0 plus 0 end cell row cell 0 plus 0 end cell cell 0 plus 0 end cell end table close square brackets space equals space open square brackets table row 0 0 row 0 0 end table close square brackets equals 0
therefore space space space AB equals space space 0 space even space if space straight A space not equal to space 0 comma space straight B space not equal to space 0
    Question 129
    CBSEENMA12034249
    Question 130
    CBSEENMA12034251
    Question 132
    CBSEENMA12034254
    Question 134
    CBSEENMA12034257

    If space straight A equals open square brackets table row 1 2 row 2 1 end table close square brackets comma space then space show space that space space space straight A squared space – space 3 space straight I space equals space 2 straight A.

    Solution
    straight A equals open parentheses table row 1 2 row 2 1 end table close parentheses
straight A squared equals space open parentheses table row 1 2 row 2 1 end table close parentheses space equals open parentheses table row cell 1 plus 4 end cell cell space 2 plus 2 end cell row cell 2 plus 2 end cell cell space 4 plus 1 end cell end table close parentheses equals open parentheses table row 5 4 row 4 5 end table close parentheses
straight L. straight H. straight S space space space space space space space space space straight A squared minus 3 straight I space equals open parentheses table row 5 4 row 4 5 end table close parentheses minus 3 space open parentheses table row 1 0 row 0 1 end table close parentheses equals open parentheses table row 5 4 row 4 5 end table close parentheses plus open parentheses table row cell negative 3 end cell 0 row 0 3 end table close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open parentheses table row cell 5 minus 3 end cell cell 4 plus 0 end cell row cell 4 plus 0 end cell cell 5 minus 3 end cell end table close parentheses space equals space open parentheses table row 2 4 row 4 2 end table close parentheses space space space equals 2 space open parentheses table row 1 2 row 2 1 end table close parentheses equals 2 straight A
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals straight R. straight H. straight S
    Question 135
    CBSEENMA12034258

    If space space straight A equals open square brackets table row 2 3 row 1 cell 2 space end cell end table close square brackets comma space prove space that space straight A to the power of 1 space — space 4 straight A squared space plus space straight A space equals space straight O.

    Solution
    space straight A equals open square brackets table row 2 3 row 1 cell 2 space end cell end table close square brackets
therefore space space straight A squared equals space space open square brackets table row 2 3 row 1 cell 2 space end cell end table close square brackets space open square brackets table row 2 3 row 1 cell 2 space end cell end table close square brackets space equals space open square brackets table row cell 4 plus 3 end cell cell 6 plus 6 end cell row cell 2 plus 2 end cell cell 3 plus 4 end cell end table close square brackets equals open square brackets table row 7 12 row 4 7 end table close square brackets
space space space space space straight A cubed space equals space straight A squared space straight A space equals space open square brackets table row 7 12 row 4 7 end table close square brackets space space equals space open square brackets table row cell 14 plus 12 end cell cell 21 plus 24 end cell row cell 8 plus 7 end cell cell 12 plus 24 end cell end table close square brackets equals space open square brackets table row 26 45 row 15 26 end table close square brackets
space straight L. straight H. straight S. space space space equals space straight A cubed space minus 4 straight A squared space plus straight A
space space space space space space space space space space space space space space space space equals space open square brackets table row 26 45 row 15 26 end table close square brackets minus 4 space open square brackets table row 7 12 row 4 7 end table close square brackets space plus space open square brackets table row 2 3 row 1 2 end table close square brackets
space space space space space space space space space space space space space space space space equals space open square brackets table row 26 45 row 15 26 end table close square brackets plus space open square brackets table row cell negative 28 end cell cell negative 48 end cell row cell negative 16 end cell cell negative 28 end cell end table close square brackets plus space space open square brackets table row 2 3 row 1 2 end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 26 minus 28 plus 2 end cell cell 45 minus 48 plus 3 end cell row cell 15 minus 16 plus 1 end cell cell 26 minus 28 plus 2 end cell end table close square brackets space space space equals space open square brackets table row 0 0 row 0 0 end table close square brackets equals 0
space space space space space space space space space space space space space space space space space space space equals space straight R. straight H. straight S
therefore space space space straight A cubed minus 4 straight A squared space plus straight A space equals 0
    Question 136
    CBSEENMA12034271
    Question 137
    CBSEENMA12034274

    If space straight A equals space open square brackets table row 3 cell negative 5 end cell row cell negative 4 end cell 2 end table close square brackets space comma Show that straight A squared minus 5 straight A minus 141 equals 0

    Solution
    Here space space straight A equals space open square brackets table row 3 cell negative 5 end cell row cell negative 4 end cell 2 end table close square brackets
straight A squared equals straight A. straight A equals space space open square brackets table row 3 cell negative 5 end cell row cell negative 4 end cell 2 end table close square brackets space open square brackets table row 3 cell negative 5 end cell row cell negative 4 end cell 2 end table close square brackets space
space space space space space space space space space space space space space space space space equals space open square brackets table row cell 9 plus 20 end cell cell negative 15 minus 10 end cell row cell negative 12 minus 8 end cell cell 20 plus 4 end cell end table close square brackets equals space open square brackets table row 29 cell negative 25 end cell row cell negative 20 end cell 24 end table close square brackets
space space space space space space straight L. straight H. straight S space equals space straight A squared space minus 5 straight A minus 141
space space space space space space space space space space space space space space space space space equals space open square brackets table row 29 cell negative 25 end cell row cell negative 20 end cell 24 end table close square brackets space minus 5 space open square brackets table row 3 cell negative 5 end cell row cell negative 4 end cell 2 end table close square brackets minus 14 space open square brackets table row 1 0 row 0 1 end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row 29 cell negative 25 end cell row cell negative 20 end cell 24 end table close square brackets space plus space open square brackets table row cell negative 15 end cell 25 row 20 cell negative 10 end cell end table close square brackets space plus space open square brackets table row cell negative 14 end cell 0 row 0 cell negative 14 end cell end table close square brackets space
space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 29 minus 15 minus 14 end cell cell negative 25 plus 25 plus 0 end cell row cell negative 20 plus 20 plus 0 end cell cell 24 minus 10 minus 14 end cell end table close square brackets space equals space straight O
space space space space space space space space space space space space space space space space space space equals space space space space space space straight R. straight H. straight S space space space space
space space space space space space space space space space space
    Question 138
    CBSEENMA12034276

    If space straight A equals space space open square brackets table row 3 cell space space space 2 end cell cell space space 0 end cell row 1 cell space space 4 end cell cell space space 0 end cell row 0 cell space space space 0 space end cell 5 end table close square brackets space comma space show space that space straight A squared space minus 7 straight A space plus space 10 space straight I subscript 3 space end subscript equals space 0

    Solution
    Here space straight A equals space space open square brackets table row 3 cell space space space 2 end cell cell space space 0 end cell row 1 cell space space 4 end cell cell space space 0 end cell row 0 cell space space space 0 space end cell 5 end table close square brackets
therefore space space space space straight A squared equals space open square brackets table row 3 cell space space space 2 end cell cell space space 0 end cell row 1 cell space space 4 end cell cell space space 0 end cell row 0 cell space space space 0 space end cell 5 end table close square brackets space open square brackets table row 3 cell space space space 2 end cell cell space space 0 end cell row 1 cell space space 4 end cell cell space space 0 end cell row 0 cell space space space 0 space end cell 5 end table close square brackets
space space space space space space space space space space space space equals space open square brackets table row cell 9 plus 2 plus 0 end cell cell 6 plus 8 plus 0 end cell cell 0 plus 0 plus 0 end cell row cell 3 plus 4 plus 0 space space space end cell cell 2 plus 16 plus 0 end cell cell 0 plus 0 plus 0 end cell row cell 0 plus 0 plus 0 end cell cell 0 plus 0 plus 0 end cell cell space space 0 plus 0 plus 25 end cell end table close square brackets space equals space open square brackets table row 11 cell space space 14 end cell cell space space 0 end cell row 7 cell space space space 18 end cell cell space 0 end cell row 0 cell space space 0 end cell cell space 25 end cell end table close square brackets
therefore space space space space space straight A squared space minus 7 straight A space plus 10 space straight I subscript 3 equals space open square brackets table row 14 14 0 row 7 8 0 row 0 0 25 end table close square brackets space space minus 7 space space open square brackets table row 3 cell space 2 end cell cell space 0 end cell row 1 cell space 4 end cell cell space 0 end cell row 0 cell space 0 space end cell 5 end table close square brackets space plus 10 space open square brackets table row 1 cell space space space space space 0 end cell cell space space space space 0 end cell row 0 cell space space space space 1 end cell cell space space space 0 end cell row 0 cell space space space space 0 end cell cell space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 11 minus 21 plus 10 end cell cell 14 minus 14 plus 0 end cell cell 0 plus 0 plus 0 end cell row cell 7 minus 7 plus 0 end cell cell 18 minus 28 plus 10 end cell cell 0 plus 0 plus 0 end cell row cell 0 plus 0 plus 0 end cell cell 0 plus 0 plus 0 end cell cell 25 minus 35 plus 10 end cell end table close square brackets space equals space open square brackets table row 0 cell space space space space 0 end cell cell space space space 0 end cell row 0 cell space space space space 0 end cell cell space space space 0 end cell row 0 cell space space space space 0 end cell cell space space space 0 end cell end table close square brackets
therefore space space space space straight A squared minus 7 straight A plus 10 space straight I subscript 3 space equals straight O
    Question 139
    CBSEENMA12034279

    Find space straight A squared space minus 5 straight A plus 6 space straight I space If space straight A space equals space open square brackets table row 2 0 1 row 2 1 3 row 1 cell negative 1 end cell 0 end table close square brackets

    Solution
    Here space space straight A space equals space open square brackets table row 2 0 1 row 2 1 3 row 1 cell negative 1 end cell 0 end table close square brackets
straight A squared space equals space open square brackets table row 2 0 1 row 2 1 3 row 1 cell negative 1 end cell 0 end table close square brackets space space open square brackets table row 2 0 1 row 2 1 3 row 1 cell negative 1 end cell 0 end table close square brackets space space equals space open square brackets table row cell 4 plus 0 plus 1 end cell cell 0 plus 0 minus 1 end cell cell 2 plus 0 plus 0 end cell row cell 4 plus 2 plus 3 end cell cell space space space 0 plus 1 minus 3 space space space end cell cell 2 plus 3 plus 0 end cell row cell 2 minus 2 plus 0 end cell cell 0 minus 1 minus 0 end cell cell 1 minus 3 plus 0 end cell end table close square brackets space equals space open square brackets table row 5 cell space space minus 1 end cell cell space space space 2 end cell row 9 cell space space minus 2 end cell cell space space space 5 end cell row 0 cell space minus 1 end cell cell space minus 2 end cell end table close square brackets
therefore space straight A squared space minus 5 straight A plus 61 space equals space open square brackets table row 5 cell space space minus 1 end cell cell space space space 2 end cell row 9 cell space space minus 2 end cell cell space space space 5 end cell row 0 cell space minus 1 end cell cell space minus 2 end cell end table close square brackets space minus 5 space space space open square brackets table row 2 0 1 row 2 1 3 row 1 cell negative 1 end cell 0 end table close square brackets space space plus 6 space open square brackets table row 1 cell space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 5 cell space space minus 1 end cell cell space space space 2 end cell row 9 cell space space minus 2 end cell cell space space space 5 end cell row 0 cell space minus 1 end cell cell space minus 2 end cell end table close square brackets space space plus space open square brackets table row cell negative 10 end cell cell space space space space 0 end cell cell space space minus 5 end cell row cell negative 10 end cell cell space space minus 5 space space end cell cell negative 15 end cell row cell negative 5 end cell cell space space space 5 end cell cell space space space 0 end cell end table close square brackets space space plus space open square brackets table row 6 cell space space space 0 end cell cell space space 0 end cell row 0 cell space space space 6 space end cell cell space space 0 end cell row 0 cell space space space 0 end cell cell space space 6 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space space open square brackets table row cell 5 minus 10 plus 6 end cell cell space space space minus 1 plus 0 plus 0 end cell cell space space space space space space space 2 minus 5 plus 0 end cell row cell 9 minus 10 plus 0 space space end cell cell space space space minus 2 minus 5 plus 6 end cell cell space space space space space space space 5 minus 15 plus 0 end cell row cell 0 minus 5 plus 0 end cell cell space space space space minus 1 plus 5 plus 0 end cell cell space space space space space minus 2 plus 0 plus 6 end cell end table close square brackets space equals space open square brackets table row 1 cell negative 1 end cell cell negative 3 end cell row cell negative 1 end cell cell negative 1 end cell cell negative 10 end cell row cell negative 5 end cell 4 4 end table close square brackets
    Question 140
    CBSEENMA12034282

    If space straight A equals space open square brackets table row 1 2 row 2 1 end table close square brackets space comma space straight f space left parenthesis straight x right parenthesis space equals straight x to the power of 2 space end exponent minus 2 straight x minus 3 space show space that space straight f left parenthesis straight A right parenthesis equals straight O

    Solution
    Here space straight f space left parenthesis straight x right parenthesis space equals straight x to the power of 2 space end exponent minus 2 straight x minus 3 space show space that space straight f left parenthesis straight A right parenthesis equals straight O
therefore space space space space space space straight f space left parenthesis straight A right parenthesis space equals space straight A to the power of 2 space end exponent space minus 2 straight A minus 3 space straight I
space space space space space space space space space space space space space straight A space equals space open square brackets table row 1 cell space space 2 end cell row 2 cell space space 1 end cell end table close square brackets space
space space space space space space space space space straight A to the power of 2 space end exponent space space equals space open square brackets table row 1 cell space space 2 end cell row 2 cell space space 1 end cell end table close square brackets space space space space open square brackets table row 1 cell space space 2 end cell row 2 cell space space 1 end cell end table close square brackets space space equals space open square brackets table row cell 1 plus 4 end cell cell space space space space 2 plus 2 end cell row cell 2 plus 2 end cell cell space space space 4 plus 1 end cell end table close square brackets space equals space open square brackets table row 5 cell space 4 end cell row cell 4 space end cell cell space 5 end cell end table close square brackets space space space space
space space space space space space space space straight f space left parenthesis straight A right parenthesis space equals space space space straight A to the power of 2 space end exponent minus 2 straight A minus 3 space straight I
space space space space space space space space space space space space space space space space space equals space open square brackets table row 5 cell space space 4 end cell row 4 cell space space 5 end cell end table close square brackets space minus 2 space space open square brackets table row cell 1 space space end cell cell space 2 end cell row 2 cell space 1 end cell end table close square brackets space space minus 3 space space open square brackets table row 1 cell space space 1 end cell row 0 cell space space space 0 end cell end table close square brackets space space space space
space space space space space space space space space space space space space space space space space equals space open square brackets table row 5 cell space space 4 end cell row 4 cell space space 5 end cell end table close square brackets space space space plus space open square brackets table row cell negative 2 end cell cell negative 4 end cell row cell negative 4 end cell cell negative 2 end cell end table close square brackets space plus space open square brackets table row cell negative 3 end cell 0 row 0 cell negative 3 end cell end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 5 minus 2 minus 3 end cell cell space space space space 4 minus 4 plus 0 end cell row cell 4 plus 4 minus 0 end cell cell space space space 5 minus 2 minus 3 end cell end table close square brackets space space equals space open square brackets table row 0 cell space space space 0 end cell row 0 cell space space space 0 end cell end table close square brackets space equals space straight O space space space space space
    Question 141
    CBSEENMA12034283

    You are given the net-work of air routes between the airports of three countries X, Y and Z.

    Find the net-work matrices connecting the countries:
    (i) X to Y (ii) Y to Z
      

    Solution
    We describe the number of air routes from X to Y as follows:

    The above table can be written in the matrix form as
    open square brackets table row 0 cell space space space 0 end cell cell space space 1 end cell row 0 cell space space space 1 end cell cell space space 1 end cell end table close square brackets 
    Question 142
    CBSEENMA12034284

    If space straight f left parenthesis straight x right parenthesis space equals space straight x squared minus 5 straight x plus 7 space. space Find space straight f left parenthesis straight A right parenthesis space where space straight A equals space open square brackets table row 3 1 row cell negative 1 end cell 2 end table close square brackets

    Solution
    Here space straight f left parenthesis straight x right parenthesis space equals straight x squared minus 5 straight x plus 7
therefore space space space space space straight f left parenthesis straight A right parenthesis space equals space straight A squared minus 5 straight A plus space 7 straight I
Now space space space space space straight A equals space open square brackets table row 3 cell space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets
therefore space space space space space space space space straight A squared space equals space space space open square brackets table row 3 cell space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets space space open square brackets table row 3 cell space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets space equals space open square brackets table row cell 9 minus 1 end cell cell space space 3 plus 2 end cell row cell negative 3 minus 2 end cell cell space space minus 1 plus 4 end cell end table close square brackets equals space open square brackets table row 8 cell space space space 5 end cell row cell negative 5 end cell cell space space 3 end cell end table close square brackets
therefore space space space space space space space space straight A squared minus 5 straight A plus 7 space straight I space equals space space open square brackets table row 8 cell space space 5 end cell row cell negative 5 end cell cell space space 3 end cell end table close square brackets minus 5 space space open square brackets table row 3 cell space space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets plus 7 space open square brackets table row 1 cell space space 0 end cell row 0 cell space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space space open square brackets table row 8 cell space space 5 end cell row cell negative 5 end cell cell space space 3 end cell end table close square brackets plus space open square brackets table row cell negative 15 end cell cell space space minus 5 end cell row 5 cell space space minus 10 end cell end table close square brackets space plus space open square brackets table row 7 cell space space 0 end cell row 0 cell space 7 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space space space space open square brackets table row cell 8 minus 15 plus 7 end cell cell 5 minus 5 plus 0 end cell row cell negative 5 plus 5 plus 0 end cell cell 3 minus 10 plus 7 end cell end table close square brackets space equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets space
therefore space space space space space space space space space space space space space space space space space space space space space space straight f space left parenthesis straight A right parenthesis space equals straight O
space space space space space space space space space space space
    Question 143
    CBSEENMA12034285

    Find space straight f left parenthesis straight A right parenthesis space comma space given space straight f left parenthesis straight X right parenthesis space equals space straight x squared minus 7 straight x minus 2 space and space straight A equals space open square brackets table row cell 2 space space end cell 3 row 4 5 end table close square brackets

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals straight x squared minus 7 straight x minus 2
therefore space space space space space straight f left parenthesis straight A right parenthesis space equals straight A squared space space minus 7 straight A minus 2 space straight I
space space space space space space space space space space space straight A space equals space open square brackets table row 2 cell space space 3 end cell row 4 cell space space 5 end cell end table close square brackets space
space space space space space space space space space space space straight A squared space equals space open square brackets table row 2 cell space space 3 end cell row 4 cell space space 5 end cell end table close square brackets space space open square brackets table row 2 cell space space 3 end cell row 4 cell space space 5 end cell end table close square brackets space equals space open square brackets table row cell 4 plus 12 end cell cell space space 6 plus 15 end cell row cell 8 plus 20 end cell cell space space 12 plus 25 end cell end table close square brackets space space space equals space open square brackets table row 16 cell space 21 end cell row 28 cell space 37 end cell end table close square brackets
space space space space space space space space straight f left parenthesis straight A right parenthesis space equals straight A squared space space minus 7 straight A minus 2 space straight I
space space space space space space space space space space space space space space space space equals space open square brackets table row 16 cell space space 21 end cell row 28 cell space space 37 end cell end table close square brackets space minus 7 space open square brackets table row bold 2 cell bold space bold space bold 3 end cell row bold 4 cell bold space bold space bold 5 end cell end table close square brackets minus 2 space open square brackets table row bold 1 cell bold space bold 0 end cell row bold 0 cell bold space bold space bold 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space equals space open square brackets table row 16 cell space space 21 end cell row 28 cell space space 37 end cell end table close square brackets plus open square brackets table row cell negative 14 end cell cell negative 21 end cell row cell negative 28 end cell cell negative 35 end cell end table close square brackets plus space open square brackets table row cell negative 2 end cell cell bold space bold 0 end cell row bold 0 cell bold space bold space bold minus bold 2 end cell end table close square brackets
space space space space space space space space space space space space space space space equals space open square brackets table row cell 16 minus 14 minus 2 end cell cell space space 21 minus 21 plus 0 end cell row cell 28 minus 28 plus 0 space end cell cell space space 37 minus 35 minus 2 end cell end table close square brackets equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets
therefore space space space space space space space space space space space straight f left parenthesis straight A right parenthesis equals straight O
    Question 144
    CBSEENMA12034286

    Let space straight A equals space open square brackets table row 2 cell space 3 end cell row cell negative 1 end cell cell space 2 end cell end table close square brackets space and space straight f space left parenthesis straight x right parenthesis space equals space straight x squared minus 4 straight x plus 7 space show space that space straight f left parenthesis straight A right parenthesis space equals space straight O. space use space this space result space to space find space straight A to the power of 5

    Solution
    we space have space comma space straight f left parenthesis straight x right parenthesis equals straight x squared minus 4 straight x plus 7
therefore space space straight f space left parenthesis straight A right parenthesis equals space straight A squared space minus 4 straight A space plus space 7 space straight I subscript 2 space
Now space space space straight A equals space open square brackets table row 2 cell space space 3 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets
space space space space space space space space space space space straight A squared space space equals space open square brackets table row 2 cell space space 3 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets space space open square brackets table row 2 cell space space 3 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets space space space space space equals space space open square brackets table row cell 4 minus 3 end cell cell space space space space space space space 6 plus 6 end cell row cell negative 2 minus 2 end cell cell space space minus 3 plus 4 end cell end table close square brackets equals space open square brackets table row 1 cell space space 12 end cell row cell negative 4 end cell cell space space 1 end cell end table close square brackets
space space space space space space space space minus 4 straight A space equals space open square brackets table row cell negative 8 end cell cell space space minus 12 end cell row 4 cell space minus 8 end cell end table close square brackets space and space 7 space straight I subscript 2 space equals space open square brackets table row 7 cell space space 0 end cell row 0 cell space space 7 end cell end table close square brackets
therefore space space space space straight f space left parenthesis straight A right parenthesis space equals space straight A squared minus 4 straight A plus 7 space straight I subscript 2
rightwards double arrow space space space space straight f space left parenthesis straight A right parenthesis space equals space open square brackets table row 1 cell space space 12 end cell row cell negative 4 end cell cell space 1 end cell end table close square brackets plus space open square brackets table row cell negative 8 end cell cell space space minus 12 end cell row 4 cell space minus 8 end cell end table close square brackets space plus space open square brackets table row 7 cell space space 0 end cell row 0 cell space space 7 end cell end table close square brackets
rightwards double arrow space space space space straight f space left parenthesis straight A right parenthesis space equals space open square brackets table row cell 1 minus 8 plus 7 end cell cell 12 minus 12 plus 0 end cell row cell negative 4 plus 4 plus 0 end cell cell 1 minus 8 plus 7 end cell end table close square brackets equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets equals straight O
Now comma space space space space space space space straight f space left parenthesis straight A right parenthesis space equals straight O
rightwards double arrow space space space straight A squared space minus 4 straight A plus 7 straight I subscript 2 space equals 0 space space space... left parenthesis 1 right parenthesis
rightwards double arrow space space space straight A squared space minus 4 straight A plus 7 straight I subscript 2
rightwards double arrow space space space straight A cubed minus 4 straight A squared plus 7 straight I subscript 2 space straight A
rightwards double arrow space space space straight A cubed minus 4 left parenthesis 4 straight A plus 7 straight I subscript 2 space right parenthesis minus 7 straight A space space space space space space open square brackets table row cell because space of end cell cell left parenthesis 1 right parenthesis end cell end table close square brackets
rightwards double arrow space space space straight A cubed minus 9 straight A plus 282 straight I subscript 2 space
rightwards double arrow space space space straight A cubed minus 9 straight A squared minus 28 straight A space equals space 9 space left parenthesis 4 straight A minus space 7 space straight I subscript 2 space right parenthesis space minus 28 straight A space space open square brackets table row cell because space of end cell cell left parenthesis 1 right parenthesis end cell end table close square brackets
rightwards double arrow space space space straight A cubed minus 36 straight A minus 63 straight I subscript 2 space minus space 28 space straight A equals space 8 straight A minus 63 space straight I subscript 2
rightwards double arrow space space space straight A cubed minus 8 straight A squared minus 63 straight A
rightwards double arrow space space space straight A to the power of 5 equals 8 left parenthesis 4 straight A minus 7 straight I subscript 2 right parenthesis minus 63 straight A equals space minus 31 straight A minus 56 space straight I subscript 2
rightwards double arrow space space space straight A to the power of 5 minus 31 space open square brackets table row 2 3 row 1 2 end table close square brackets minus 56 space open square brackets table row 1 cell space 0 end cell row 0 cell space space 1 end cell end table close square brackets
rightwards double arrow space space space straight A to the power of 5 space equals space open square brackets table row cell negative 62 end cell cell negative 93 end cell row 31 cell negative 62 end cell end table close square brackets plus space open square brackets table row cell negative 56 end cell cell space space 0 end cell row 0 cell space space minus 56 end cell end table close square brackets space space space rightwards double arrow space space space straight A to the power of 5 space equals open square brackets table row cell negative 118 end cell cell space minus 93 end cell row 31 cell space space minus 118 end cell end table close square brackets











space
    Question 145
    CBSEENMA12034287

    If space straight A equals space open square brackets table row cell 1 space space end cell cell space space space 0 end cell cell space space space 2 end cell row 0 cell space space 2 end cell cell space space space 1 end cell row 2 cell space 0 end cell cell space 3 end cell end table close square brackets space then space show space that space straight A cubed space minus 6 straight A squared space plus 7 straight A space plus space 2 space straight I equals space straight O

    Solution
    H e r e space space straight A equals space open square brackets table row cell 1 space end cell 0 cell space space 2 end cell row cell 0 space space end cell 2 cell space 1 end cell row 2 cell space 0 end cell cell space 3 end cell end table close square brackets
straight A squared space equals open square brackets table row cell 1 space end cell 0 cell space space 2 end cell row cell 0 space space end cell 2 cell space 1 end cell row 2 cell space 0 end cell cell space 3 end cell end table close square brackets space space open square brackets table row cell 1 space end cell 0 cell space space 2 end cell row cell 0 space space end cell 2 cell space 1 end cell row 2 cell space 0 end cell cell space 3 end cell end table close square brackets space
space space space space space equals space space open square brackets table row cell 1 plus 0 plus 4 space space space end cell cell space space 0 plus 0 plus 0 end cell cell space space space 2 plus 0 plus 6 end cell row cell 0 plus 0 plus 2 end cell cell space space 0 plus 4 plus 0 end cell cell space space space 0 plus 2 plus 3 end cell row cell 2 plus 0 plus 6 end cell cell space space 0 plus 0 plus 0 end cell cell space space 4 plus 0 plus 9 end cell end table close square brackets space space equals space open square brackets table row 5 cell space space space space 0 end cell cell space space 8 end cell row 2 cell space space space 4 end cell cell space space 5 end cell row 8 cell space space space 0 end cell cell space space 13 end cell end table close square brackets
straight A cubed space equals space space open square brackets table row cell 5 space space space end cell cell space space space 0 end cell cell space space space 8 end cell row 2 cell space space 4 end cell cell space space 5 end cell row 8 cell space space 0 end cell cell space space space 13 end cell end table close square brackets space space open square brackets table row 1 cell space space space space 0 end cell cell space space space 2 end cell row 0 cell space space space space 2 end cell cell space space 1 end cell row 2 cell space space space 0 end cell cell space space 3 end cell end table close square brackets
space space space space space equals space space open square brackets table row cell 5 plus 0 plus 16 end cell cell space space space space 0 plus 0 plus 0 end cell cell space space space 10 plus 0 plus 24 end cell row cell 2 plus 0 plus 16 end cell cell space space space space 0 plus 8 plus 0 end cell cell space space 4 plus 4 plus 15 end cell row cell 8 plus 0 plus 26 end cell cell space space space space 0 plus 0 plus 0 end cell cell space space 16 plus 0 plus 39 end cell end table close square brackets space equals space open square brackets table row cell 21 space space end cell 0 cell space space 34 end cell row cell 12 space space end cell 8 cell space space 23 end cell row 34 0 cell space space 55 end cell end table close square brackets
C o n s i d e r space straight A cubed space minus 6 straight A plus 7 straight A plus 21
space space space space space equals space open square brackets table row cell 21 space space end cell 0 cell space space 34 end cell row cell 12 space space end cell 8 cell space space 23 end cell row 34 0 cell space space 55 end cell end table close square brackets minus 6 space space open square brackets table row 5 cell space space space space 0 end cell cell space space space 8 end cell row 2 cell space space space space 4 end cell cell space space space 5 end cell row 8 cell space space space space 0 end cell cell space space space 13 end cell end table close square brackets plus 7 space open square brackets table row 1 cell space space space space space 0 end cell cell space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space 1 end cell row 2 cell space space space space 0 end cell cell space space 3 end cell end table close square brackets plus 2 space open square brackets table row 1 cell space space space space 0 end cell cell space space space 0 end cell row 0 cell space space space 1 end cell cell space space space 0 end cell row 0 cell space space space 0 end cell cell space space space 1 end cell end table close square brackets
space space space space equals space space open square brackets table row cell 21 space space end cell 0 cell space space 34 end cell row cell 12 space space end cell 8 cell space space 23 end cell row 34 0 cell space space 55 end cell end table close square brackets space plus space open square brackets table row cell negative 30 end cell cell space space space 0 end cell cell space space minus 48 end cell row cell negative 12 space space space end cell cell negative 24 end cell cell space space minus 30 end cell row cell negative 48 end cell cell space space 0 end cell cell space minus 78 end cell end table close square brackets plus space open square brackets table row 7 cell space space space 0 end cell cell space space space 14 end cell row 0 cell space space space 14 end cell cell space space space 7 end cell row 14 cell space space space 0 end cell cell space space space 21 end cell end table close square brackets plus space open square brackets table row 2 cell space space space 0 end cell cell space space space 0 end cell row 0 cell space space space 2 end cell cell space space 0 end cell row cell 0 space end cell cell space space space 0 end cell cell space space 2 end cell end table close square brackets
space space space equals space space open square brackets table row cell 21 minus 30 plus 7 plus 2 end cell cell space space space space space space space space space space space space space space space space 0 plus 0 plus 0 plus 0 end cell cell space space space space space space space space space 34 minus 48 plus 14 plus 0 end cell row cell 12 minus 12 plus 0 plus 0 end cell cell space space space space space space space space space space 8 minus 24 plus 14 plus 2 end cell cell space space space space space space space space space space space 23 minus 30 plus 7 plus 0 end cell row cell 34 minus 48 plus 14 plus 0 end cell cell space space space space space space space space space space space space space space space space space space space space space 0 plus 0 plus 0 plus 0 end cell cell space space space space space space space space space space space 55 minus 78 plus 21 plus 2 end cell end table close square brackets space
space space space equals space space open square brackets table row 0 cell space space space 0 end cell cell space space space 0 end cell row 0 cell space space space 0 end cell cell space space space space 0 end cell row 0 cell space space space 0 end cell cell space space space 0 end cell end table close square brackets equals space straight O
therefore space space straight A cubed space minus 6 straight A squared plus 7 straight A plus 2 space straight I space equals space straight O
    Question 146
    CBSEENMA12034288

    If space straight A equals space open square brackets table row 1 2 3 row 3 cell negative 2 end cell 1 row 4 2 1 end table close square brackets space comma space then space straight A cubed space minus 23 space straight A space 40 space straight I space equals straight O

    Solution
    Here space space straight A equals space open square brackets table row 1 2 3 row 3 cell negative 2 end cell 1 row 4 2 1 end table close square brackets
therefore space space space space space space straight A to the power of italic 2 space equals open square brackets table row 1 2 3 row 3 cell negative 2 end cell 1 row 4 2 1 end table close square brackets space open square brackets table row 1 2 3 row 3 cell negative 2 end cell 1 row 4 2 1 end table close square brackets space
space space space space space space space space space space space space space space space space equals space space open square brackets table row cell 1 plus 6 minus 12 space space end cell cell space 2 minus 4 plus 6 end cell cell space space 3 plus 2 plus 3 end cell row cell 3 minus 6 plus 4 space end cell cell space 6 plus 4 plus 2 end cell cell space space 9 minus 2 plus 1 end cell row cell 4 plus 6 plus 4 end cell cell space 8 minus 4 plus 2 end cell cell space space 12 plus 2 plus 1 end cell end table close square brackets space equals open square brackets table row 19 4 8 row 1 12 8 row 14 6 15 end table close square brackets
space space space space space space space space space space space space straight A cubed space equals space space open square brackets table row 19 4 8 row 1 12 8 row 14 6 15 end table close square brackets space space open square brackets table row 1 2 3 row 3 cell negative 2 end cell 1 row 4 2 1 end table close square brackets
space space space space space space space space space space space space space space space space equals space space space open square brackets table row cell 19 plus 12 plus 32 end cell cell space space space 38 minus 8 plus 16 end cell cell space space space 57 plus 4 plus 8 end cell row cell 1 plus 36 plus 32 end cell cell space space space 2 minus 24 plus 16 end cell cell space space space 3 plus 12 plus 8 end cell row cell 14 plus 18 plus 60 end cell cell space space space 28 minus 12 plus 30 end cell cell space space space 42 plus 6 plus 15 end cell end table close square brackets equals space open square brackets table row 63 cell space space 46 end cell cell space space space 69 end cell row 69 cell space space space minus 6 end cell cell space space space 23 end cell row 92 cell space space 46 end cell cell space space space 63 end cell end table close square brackets
straight L. straight H. straight S space space minus straight A cubed space minus 23 straight A minus 40 space straight I
space space space space space space space space space space space space space space space space space equals space space open square brackets table row 63 cell space space space 46 end cell cell space space space 69 end cell row 69 cell space space minus 6 end cell cell space space space 23 end cell row cell 92 space space end cell cell space space 46 end cell cell space space space 63 end cell end table close square brackets minus 23 space open square brackets table row 1 cell space space 2 end cell cell space space 3 end cell row 3 cell space space minus 2 end cell cell space space 1 end cell row 4 cell space space 2 end cell cell space space 1 end cell end table close square brackets minus 40 space open square brackets table row 1 cell space space 0 end cell cell space space space 0 end cell row 0 cell space space 1 end cell cell space space space 0 end cell row 0 cell space space space space 0 end cell cell space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space equals space open square brackets table row 63 cell space space space 46 end cell cell space space space 69 end cell row 69 cell space space minus 6 end cell cell space space space 23 end cell row cell 92 space space end cell cell space space 46 end cell cell space space space 63 end cell end table close square brackets plus open square brackets table row cell negative 23 end cell cell space space space minus 46 end cell cell space space space minus 69 end cell row cell negative 69 end cell cell space space space space space space space space 46 end cell cell space space minus 23 end cell row cell negative 92 end cell cell space space minus 46 end cell cell space space space minus 23 end cell end table close square brackets plus space open square brackets table row cell negative 40 end cell 0 0 row 0 cell negative 40 end cell 0 row 0 0 cell negative 40 end cell end table close square brackets
space space space space space space space space space space space space space space space space equals space space space open square brackets table row cell 63 minus 23 minus 64 end cell cell space space space space space space 46 minus 46 plus 0 end cell cell space space space space space space space 69 minus 69 plus 0 end cell row cell 69 minus 69 plus 0 end cell cell negative 6 plus 46 minus 40 end cell cell space space space space space space space 23 minus 23 plus 0 end cell row cell 92 minus 92 plus 0 end cell cell space space space space space 46 minus 46 plus 0 end cell cell space space space space space space space space 63 minus 23 minus 40 end cell end table close square brackets space space space space equals open square brackets table row 0 cell space space space space 0 space space space space space end cell 0 row 0 0 0 row 0 0 0 end table close square brackets space space space equals straight O
straight R. straight H. straight S

space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Question 147
    CBSEENMA12034289

    A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say that XY and YX are of the same type. Are they equal ?

    Solution

    Matrix X has a + b rows and a + 2 columns
    Matrix Y has b + 1 rows and a + 3 columns.
    Since XY is defined
    ∴ number of columns of X = number of rows of Y
    ∴ a + 2 = b + 1
    ∴ a – b + 1 = 0    ...(1)
    Again YX is defined
    ∴number of columns of Y = number of rows of X
    ∴a + 3 = a + b ⇒ b = 3
    Putting b = 3 in (1), we get,
    a –3 + l = 0 ⇒ a = 2
    ∴ we have a = 2, b = 3
    ∴ X is of type 5 x 4 and Y is of type 4 x 5.
    ∴ XY is of type 5 x 5 and YX is of type 4 x 4.
    So XY and YX are not of the same type and so XY ≠ YX,

    Question 148
    CBSEENMA12034290

    Given space straight A equals space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row cell 1 space space end cell cell space space space space minus 2 space space end cell cell negative 2 end cell row 2 cell space space space space space 1 end cell cell space space 3 end cell end table close square brackets space comma space straight B equals space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space space 4 end cell row cell negative 7 end cell cell space space space 1 end cell cell space space space space 3 end cell row 5 cell space space space space space minus 3 space space space space end cell cell negative 1 end cell end table close square brackets space find space AB space and space use space this space result space in space solving space the space following space system space of space equations space colon space
space straight x space – space straight y space plus space straight z space equals space 4 space „ straight y space – space 2 straight y space – space 2 straight z space equals space 9 comma space 2 straight X space plus space straight Y space plus space 3 straight z space equals space 1. space

    Solution
    Question 149
    CBSEENMA12034291

    use space product space space open square brackets table row 1 cell negative 1 end cell cell space space space 2 end cell row 0 cell space space space 2 end cell cell space space minus 3 end cell row 3 cell negative 2 end cell cell space space space space 4 end cell end table close square brackets space space open square brackets table row cell negative 2 end cell cell space space space 0 end cell cell space space 1 end cell row 9 cell space space space 2 end cell cell space space space minus 3 end cell row 6 cell space space space 1 end cell cell space space space minus 2 end cell end table close square brackets space to space solve space the space system space of space equations

    Solution
    Let space straight A equals space open square brackets table row 1 cell negative 1 end cell 2 row 0 cell space space space 2 end cell cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space space comma space straight B equals space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets
therefore space space space space AB equals space open square brackets table row 1 cell negative 1 end cell 2 row 0 cell space space space 2 end cell cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets
space space space space space space space space space space space space space space equals open square brackets table row cell negative 2 minus 9 plus 12 end cell cell 0 minus 2 plus 2 end cell cell 1 plus 3 minus 4 end cell row cell 0 plus 18 minus 18 end cell cell space space space space 0 plus 4 minus 3 space space space end cell cell 0 minus 6 plus 6 end cell row cell negative 6 minus 18 plus 24 end cell cell 0 minus 4 plus 4 end cell cell 3 plus 6 minus 8 end cell end table close square brackets space space equals space open square brackets table row 1 cell space space 0 end cell 0 row 0 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space space 0 end cell 1 end table close square brackets
therefore space space AB equals space straight I
again space BA equals space space space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets space space space open square brackets table row 1 cell negative 1 end cell 2 row 0 cell space space space 2 end cell cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets
space space space space space space space space space space space space space space space space space equals space space open square brackets table row cell negative 2 plus 0 plus 3 end cell cell space space 2 plus 0 minus 2 end cell cell negative 4 plus 0 plus 4 end cell row cell 9 plus 0 minus 9 end cell cell space space space minus 9 plus 4 plus 6 end cell cell space space space space 18 minus 6 minus 12 end cell row cell 6 plus 0 minus 6 end cell cell space space minus 6 plus 2 plus 4 end cell cell 12 minus 13 minus 8 end cell end table close square brackets space space equals space open square brackets table row 1 cell space space 0 end cell 0 row 0 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space space 0 end cell 1 end table close square brackets
therefore space space BA equals space straight I
therefore space space AB equals BA equals space straight I
Consider space the space equations space
space straight x space – space straight y space plus space 2 space straight z space equals space 1
space space 2 straight y space – space 3 space straight z space equals 1
space space 3 space straight x space – space 2 space straight y space plus space 4 space straight z space equals space 2 space space
These space equations space can space be space written space as
open square brackets table row 1 cell negative 1 end cell 2 row 0 cell space space space 2 end cell cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 1 row 2 end table close square brackets
Pre space multiplying space both space sides space by space space space space open square brackets table row cell negative 2 end cell cell space space space space space space space 0 end cell cell space space space space space space 1 end cell row 9 cell space space space space space space 2 end cell cell space space space minus 3 end cell row 6 cell space space space space space 1 end cell cell space space space minus 2 end cell end table close square brackets space comma space we space get
open square brackets table row cell negative 2 end cell cell space space space space space space space 0 end cell cell space space space space space space 1 end cell row 9 cell space space space space space space 2 end cell cell space space space minus 3 end cell row 6 cell space space space space space 1 end cell cell space space space minus 2 end cell end table close square brackets space space space open square brackets table row 1 cell negative 1 end cell 2 row 0 cell space space space 2 end cell cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 2 end cell cell space space space space space space space 0 end cell cell space space space space space space 1 end cell row 9 cell space space space space space space 2 end cell cell space space space minus 3 end cell row 6 cell space space space space space 1 end cell cell space space space minus 2 end cell end table close square brackets space space open square brackets table row 1 row 1 row 2 end table close square brackets
or space space open square brackets table row 1 cell space space 0 end cell 0 row 0 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space space 0 end cell 1 end table close square brackets space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 2 plus 0 plus 2 end cell row cell 9 plus 2 minus 6 end cell row cell 6 plus 1 minus 4 end cell end table close square brackets
or space open square brackets table row straight x row straight y row straight z end table close square brackets space equals open square brackets table row 0 row 5 row 3 end table close square brackets
therefore space straight x space equals space 0 comma space straight y space equals space 5 comma space straight z space equals space 3 space is space required space solution.
    Question 150
    CBSEENMA12034292

    Syntax error from line 1 column 1300 to line 1 column 1307.

    Solution
    Syntax error from line 1 column 8593 to line 1 column 8600.
    Question 151
    CBSEENMA12034293

    Syntax error from line 1 column 1352 to line 1 column 1359.

    Solution
    Syntax error from line 1 column 11080 to line 1 column 11087.
    Question 152
    CBSEENMA12034294

    Given space that space straight A equals space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space 4 end cell row cell negative 7 end cell cell space space 1 end cell cell space space space 3 end cell row 5 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets space space and space space straight B space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space 1 end cell cell space space space space 3 end cell end table close square brackets space Find space AB. space Use space this space to space solve space the space following space system space of space linear space equations space colon space space
straight x space – space straight y space plus space straight z space equals space 4 comma straight x space – space 2 straight y space – space 2 straight z space equals space 9 comma space 2 space straight x space plus space straight y space plus space 3 space straight z space equals space 1.

    Solution
    space straight A equals space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space 4 end cell row cell negative 7 end cell cell space space 1 end cell cell space space space 3 end cell row 5 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets space space comma space straight B space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space 1 end cell cell space space space space 3 end cell end table close square brackets
AB equals space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space 4 end cell row cell negative 7 end cell cell space space 1 end cell cell space space space 3 end cell row 5 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets space space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space 1 end cell cell space space space space 3 end cell end table close square brackets
space space space space space space equals open square brackets table row cell negative 4 plus 4 plus 8 end cell cell space space space space space 4 minus 8 plus 4 end cell cell space space minus 4 minus 8 plus 12 end cell row cell negative 7 plus 1 plus 6 end cell cell space space space space 7 minus 2 plus 3 end cell cell space space space space minus 7 minus 2 plus 9 end cell row cell 5 minus 3 minus 2 end cell cell space space minus 5 plus 6 minus 1 end cell cell space space space space 5 plus 6 minus 3 end cell end table close square brackets
therefore space AB equals space open square brackets table row 8 cell space space 0 end cell cell space 0 end cell row 0 cell space space 8 end cell cell space 0 end cell row 0 cell space space 0 end cell cell space 8 end cell end table close square brackets
Consider space the space equations space space
straight x space – space straight y space plus space straight z space equals space 4 space
space straight x space – space 2 straight y space – space 2 straight z space equals 9 space space
2 straight x space plus space straight y space plus space 3 straight z space equals space straight l space
These space equations space can space be space written space as space space open square brackets table row 1 cell space minus 1 end cell 1 row 1 cell space space minus 2 end cell cell space space minus 2 end cell row 2 cell space space space 1 end cell 3 end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets equals space open square brackets table row 4 row 9 row 1 end table close square brackets
Premultiplying space both space sides space by space space space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space 4 end cell row cell negative 7 end cell cell space space 1 end cell cell space space space 3 end cell row 5 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets space space space we space get comma
space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space 4 end cell row cell negative 7 end cell cell space space 1 end cell cell space space space 3 end cell row 5 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets space space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space 1 end cell cell space space space space 3 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space 4 end cell row cell negative 7 end cell cell space space 1 end cell cell space space space 3 end cell row 5 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets space space open square brackets table row 4 row 9 row 1 end table close square brackets
or space space space space space open square brackets table row 8 cell space space 0 end cell cell space 0 end cell row 0 cell space space 8 end cell cell space 0 end cell row 0 cell space space 0 end cell cell space 8 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row cell negative 16 plus 36 plus 4 end cell row cell negative 28 plus 9 plus 3 end cell row cell 20 minus 27 minus 1 end cell end table close square brackets
therefore space space open square brackets table row cell 8 straight x end cell row cell 8 straight y end cell row cell 8 straight z end cell end table close square brackets space equals space open square brackets table row 24 row cell negative 16 end cell row cell negative 8 end cell end table close square brackets
therefore space space 8 straight x equals 24 space comma space 8 straight y equals negative 16. space 8 straight z equals negative 8
therefore space space straight x equals 3 straight y equals negative 2 space straight z equals negative 1
    Question 153
    CBSEENMA12034295

    Given space that space straight A equals space open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space and space straight B equals space open square brackets table row 2 cell space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets space Find space AB space space Use space to space solve space the space following space system space of space equations space
straight x space minus space straight y space equals space 3 comma space 2 straight x space plus space 3 straight y space plus space 4 straight z space equals space 17 comma space straight y space plus space 2 straight z space equals space straight l.

    Solution
    straight A equals space open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space and space straight B equals space open square brackets table row 2 cell space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets
AB equals space open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space open square brackets table row 2 cell space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets
space space space space space equals space open square brackets table row cell 2 plus 4 plus 0 end cell cell space space space 2 minus 2 plus 0 end cell cell negative 4 plus 4 plus 0 end cell row cell 4 minus 12 plus 8 end cell cell space space space 4 plus 6 minus 4 end cell cell space space space minus 8 minus 12 plus 20 end cell row cell 0 minus 4 plus 4 end cell cell space space 0 plus 2 minus 2 end cell cell 0 minus 4 plus 10 end cell end table close square brackets space space equals space open square brackets table row cell 6 space end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space 6 end cell cell space space space 0 end cell row 0 cell space space 0 end cell cell space space 6 end cell end table close square brackets
therefore space space AB equals space open square brackets table row cell 6 space end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space 6 end cell cell space space space 0 end cell row 0 cell space space 0 end cell cell space space 6 end cell end table close square brackets space space space space space space space space space.... left parenthesis 1 right parenthesis
Again space space BA equals space open square brackets table row 2 cell space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets space space open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space
space space space space space space space space space space space space space space space space space space equals space space space open square brackets table row cell 2 plus 4 plus 0 end cell cell space space space minus 2 plus 6 minus 4 end cell cell space space space 0 plus 8 minus 8 end cell row cell negative 4 plus 4 plus 0 end cell cell space space 4 plus 6 minus 4 end cell cell space space 0 plus 8 minus 8 end cell row cell 2 minus 2 plus 0 end cell cell space space space minus 2 minus 3 plus 5 space space end cell cell space space space space space 0 minus 4 plus 10 end cell end table close square brackets
therefore space space space space BA equals space open square brackets table row cell 6 space end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space 6 end cell cell space space space 0 end cell row 0 cell space space 0 end cell cell space space 6 end cell end table close square brackets space space space space space... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space AB equals BA space space space space space space space space space space space space space space.... left parenthesis 3 right parenthesis
Consider space the space equations space space
straight x space – space straight y space equals 3 space
space 2 straight x space plus space 3 straight y space plus space 4 straight z space equals space 17 space
space straight y space plus space 2 space straight z space equals 7 space space
These space equations space can space be space written space as
open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 17 row 7 end table close square brackets space
Premutiplying space both space sides space by space open square brackets table row 2 cell space space space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets space space space we space get comma
open square brackets table row 2 cell space space space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets space space open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 cell space space space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets space space open square brackets table row 3 row 17 row 7 end table close square brackets
or
space space open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row cell 2 space end cell cell space space space 3 end cell cell space space space 4 end cell row 0 cell space space 1 end cell cell space space 2 end cell end table close square brackets space space open square brackets table row 2 cell space space space space space 2 end cell cell negative 4 end cell row cell negative 4 end cell cell space space space 2 end cell cell space space minus 4 end cell row 2 cell negative 1 end cell 5 end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space space open square brackets table row cell 6 plus 34 minus 28 end cell row cell negative 12 plus 34 minus 28 end cell row cell 6 minus 17 plus 35 end cell end table close square brackets
therefore space space open square brackets table row 6 0 0 row 0 cell space space space space space 6 space space space space end cell 0 row 0 0 6 end table close square brackets space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row 12 row cell negative 26 end cell row 24 end table close square brackets
therefore space space space open square brackets table row cell 6 straight x end cell row cell 6 straight y end cell row cell 6 straight z end cell end table close square brackets space equals space open square brackets table row 12 row cell negative 26 end cell row 24 end table close square brackets
therefore space space 6 straight x equals 12 comma space 6 straight y equals negative 6 comma space 6 z equals 24
therefore space straight x equals 2 space comma space straight y equals negative 1.2 equals 4 space is space the space required space solution.


space
    Question 154
    CBSEENMA12034296

    Syntax error from line 1 column 1298 to line 1 column 1305.

    Solution
    Syntax error from line 1 column 15582 to line 1 column 15589.
    Question 155
    CBSEENMA12034297

    Syntax error from line 1 column 2075 to line 1 column 2082.

    Solution
    Syntax error from line 1 column 14650 to line 1 column 14657.
    Question 156
    CBSEENMA12034298

    If space straight A equals space open square brackets table row cell cos space straight theta end cell cell space space space straight i space sin space straight theta end cell row cell straight i space sin space straight theta end cell cell space space cos space straight theta end cell end table close square brackets comma space then space prove space by space principle space of space mathematical space induction space that
straight A to the power of straight n space equals open square brackets table row cell cos space straight theta end cell cell space space space straight i space sin space straight theta end cell row cell straight i space sin space straight theta end cell cell space space cos space straight theta end cell end table close square brackets space where space straight n space element of space straight N.

    Solution
    Syntax error from line 1 column 13285 to line 1 column 13292.
    Question 157
    CBSEENMA12034299

    If space straight A subscript straight alpha space end subscript equals space open square brackets table row cell cosα space end cell cell space space sin space straight alpha space end cell row cell negative sin space straight alpha space end cell cell space space cos space straight alpha space end cell end table close square brackets comma space then space show space that
straight A subscript straight alpha space end subscript. space straight A subscript straight beta space end subscript equals straight A subscript straight alpha space end subscript plus space straight A subscript straight beta space end subscript space and space left parenthesis straight A subscript straight alpha space end subscript right parenthesis to the power of straight n space space equals straight A subscript n space alpha end subscript space where space straight n space element of space straight N.

    Solution
    Here space space straight A subscript straight alpha space end subscript equals space open square brackets table row cell cos space straight alpha space end cell cell space space sin space straight alpha space end cell row cell negative sin space straight alpha space end cell cell space space cos space straight alpha space end cell end table close square brackets space comma space straight A subscript straight beta space space end subscript equals space space open square brackets table row cell cos space straight beta space space end cell cell space space sin space straight beta space space end cell row cell negative sin space straight beta space end cell cell space space cos space straight beta space end cell end table close square brackets
therefore space space straight A subscript straight alpha space end subscript. space straight A subscript straight beta space space end subscript equals space space open square brackets table row cell cos space straight alpha space end cell cell space space sin space straight alpha space end cell row cell negative sin space straight alpha space end cell cell space space cos space straight alpha space end cell end table close square brackets space space open square brackets table row cell cos space straight beta space space end cell cell space space sin space straight beta space space end cell row cell negative sin space straight beta space end cell cell space space cos space straight beta space end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell cos space straight alpha space cos space space straight beta minus space sin space straight alpha space sin space straight beta end cell cell space space cos space straight alpha space sin space straight beta space space plus sin space straight alpha space cos space space straight beta space space end cell row cell negative sin space straight alpha space cos space space straight beta space minus cos space straight alpha space sin space straight beta space end cell cell negative sin space straight alpha space sin space straight beta space plus cos space straight alpha space space cos space space straight beta space space space end cell end table close square brackets space
space space space space space space space space space space space space space space space space space space space space space equals space space open square brackets table row cell cos space left parenthesis straight alpha plus space straight beta space right parenthesis space end cell cell space space space sin space straight beta space left parenthesis straight alpha plus space straight beta space right parenthesis space end cell row cell negative sin space straight beta space left parenthesis straight alpha plus space straight beta space right parenthesis end cell cell space space cos space straight beta space left parenthesis straight alpha plus space straight beta space right parenthesis end cell end table close square brackets space equals space straight A subscript straight alpha plus straight beta end subscript
therefore straight A subscript alpha. straight A subscript beta space end subscript equals straight A subscript alpha plus space straight beta space
Similarly space straight A subscript alpha. space straight A subscript beta. space Aγ space equals straight A subscript alpha plus space subscript straight beta plus subscript straight gamma space end subscript space
Proceeding space in space this space way comma space we space get comma space
straight A semicolon subscript straight alpha space. space straight A space subscript straight beta space end subscript. straight A subscript gamma space end subscript... space to space straight n space factors space equals straight A subscript alpha space plus space subscript straight beta space end subscript plus subscript space straight gamma end subscript space plus space... space plus space to space straight n space terms space
Put space straight alpha space equals space straight beta space equals space straight gamma space equals... space
therefore space straight A space subscript straight alpha space straight A subscript space straight alpha end subscript space straight A space subscript straight alpha space end subscript comma..... to space factors space equals straight A subscript alpha space end subscript plus subscript space straight alpha space end subscript plus space subscript straight alpha space end subscript plus space plus space to space straight n space terms space space
or space left parenthesis straight A subscript alpha right parenthesis straight n space equals space straight A subscript n space alpha end subscript where space straight n space element of space straight I.
    Question 158
    CBSEENMA12034300

    . space If space straight A comma space straight B space are space square space matrices space of space the space same space order space such space that space AB space equals space BA comma space then space prove space
by space induction space that space AB to the power of straight n equals space straight B space to the power of straight n space straight A. space Further comma space prove space that space left parenthesis AB to the power of right parenthesis straight n end exponent space equals space A to the power of n space B to the power of n space for space all space straight n space element of space straight N.

    Solution
    Here space AB space equals space BA space
space We space have space to space prove space that
space AB space to the power of straight n equals space straight B space to the power of straight n straight A space space space space space space space space.. left parenthesis 1 right parenthesis space
space For space straight n space equals space 1 comma space
space straight L. straight H. straight S. space equals space AB space space
straight R. straight H. straight S. space equals space BA space space
But space AB space equals space BA space left parenthesis given right parenthesis
space therefore straight L. straight H. straight S. space equals space straight R. straight H. straight S. space
therefore result space left parenthesis 1 right parenthesis space is space true space for space straight n space equals space 1.
space Assume space that space the space result space left parenthesis 1 right parenthesis space is space true space for space straight n space equals space straight m. space
space therefore left parenthesis AB right parenthesis to the power of straight m space equals space straight A to the power of straight m space straight B to the power of straight m space
space Now space AB to the power of straight m plus 1 end exponent space equals space left parenthesis AB right parenthesis to the power of straight m space left parenthesis AB right parenthesis space equals space left parenthesis straight A to the power of straight m space straight B to the power of straight m right parenthesis space left parenthesis AB right parenthesis space space
equals space straight A to the power of straight m left parenthesis straight B space to the power of straight m straight A right parenthesis space straight B space equals space straight A to the power of straight m left parenthesis straight A space straight B to the power of straight m right parenthesis space straight B space space space space space space space space space space space space left square bracket because space of left parenthesis 1 right parenthesis right square bracket space
space equals space left parenthesis A to the power of m A right parenthesis space left parenthesis B to the power of m space straight B right parenthesis space equals straight A space straight m plus space 1 space straight B space straight m space plus space 1 space space
therefore space result space left parenthesis 1 right parenthesis space is space true space for space straight n space equals space straight m space plus space 1 space
therefore if space the space result space left parenthesis 1 right parenthesis space is space true space for space straight n space equals space straight m comma space then space it space is space also space true space for space straight n space equals space straight m space plus space 1.
space But space the space result space left parenthesis 1 right parenthesis space is space true space for space straight n space equals space 1. space
space therefore space by space method space of space induction comma space result space left parenthesis 1 right parenthesis space is space true space for space all space straight n space element of space straight N. space
space Hence space the space result.
    Question 159
    CBSEENMA12034301

    Syntax error from line 1 column 1632 to line 1 column 1639.

    Solution
    Syntax error from line 1 column 4317 to line 1 column 4324.
    Question 160
    CBSEENMA12034302

    if space straight A equals space open square brackets table row 1 cell space space space space space 1 end cell cell space space space space 1 end cell row 1 cell space space space space 1 end cell cell space space space 1 end cell row 1 cell space space space space 1 end cell cell space space 1 end cell end table close square brackets comma space prove space that space space space straight A to the power of straight n equals space open square brackets table row cell 3 to the power of straight n minus 1 end exponent end cell cell space space space 3 to the power of straight n minus 1 end exponent end cell cell space space space space 3 to the power of straight n minus 1 end exponent end cell row cell 3 to the power of straight n minus 1 end exponent end cell cell space space space space 3 to the power of straight n minus 1 end exponent end cell cell space space space space 3 to the power of straight n minus 1 end exponent end cell row cell 3 to the power of straight n minus 1 end exponent end cell cell space space space space 3 to the power of straight n minus 1 end exponent end cell cell space space space space 3 to the power of straight n minus 1 end exponent end cell end table close square brackets comma space straight n space element of space straight N.

    Solution
    Syntax error from line 1 column 16602 to line 1 column 16609.
    Question 162
    CBSEENMA12034304

    In space straight a space legislative space assembly space election comma space straight a space political space group space hired space straight a space public space relations space straight f space straight m.
space to space promote space its space candidate space in space three space ways space colon space telephone comma space house space calls comma space and space letters. space
The space cost space per space contact space left parenthesis in space paise right parenthesis space is space given space in space matrix space straight A space as
cost space per space contact
straight A equals space open square brackets table row 40 row 100 row 50 end table close square brackets space telephone comma space houseecall comma space letter
The space number space of space contacts space of space each space type space made space in space two space cities space straight X space and space straight Y space is space given space by
comma straight B equals space open square brackets table row 1000 500 5000 row 3000 1000 10000 end table close square brackets
Find space the space total space amount space spent space by space the space group space in space the space two space cities space straight X space and space straight Y.

    Solution
    straight A equals space open square brackets table row 40 row 100 row 50 end table close square brackets space comma straight B equals space open square brackets table row 1000 500 5000 row 3000 1000 10000 end table close square brackets
therefore space BA equals space open square brackets table row 1000 500 5000 row 3000 1000 10000 end table close square brackets space space open square brackets table row 40 row 100 row 50 end table close square brackets
equals open square brackets table row cell 40000 plus 50000 plus 250000 end cell row cell 120000 plus 10000 plus 50000 end cell end table close square brackets space equals space open square brackets table row 340000 row 720000 end table close square brackets
therefore space amount space spent space by space the space group space in space city space straight X space equals space paise space 340000 space equals space Rs. space 3400
space space and space amount space spent space by space the space group space in space city space straight Y space equals space paise space 720000 space equals space Rs. space 7200
    Question 163
    CBSEENMA12034305

    . Below is given the network of bus routes connecting the different bus stands of two cities X and Y : 



    (a) Find the network may ices connecting the cities :

    (i) X to Y    (ii) Y to X

    (b)What is the relation between the far network matrices obtained in (a) above ?

     



    Solution

    (a) (i) We describe the number of bus routes from X to Y as below :


    This is written in the matrix form as
    open square brackets table row 1 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets

    (ii) We describe the number of bus routes from Y to X as below

    This is written in the matrix form as
    open square brackets table row 1 cell space 1 end cell cell space 0 end cell row 1 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets
    (b) Matrix for the far net work
    equals space open square brackets table row 1 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets space space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 1 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell end table close square brackets space equals space open square brackets table row cell 1 plus 1 plus 0 space end cell cell space 0 plus 1 plus 0 end cell cell space space 0 plus 0 plus 0 end cell row cell 0 plus 1 plus 0 end cell cell space 0 plus 1 plus 1 end cell cell space space 0 plus 0 plus 1 end cell row cell 0 plus 0 plus 0 end cell cell space 0 plus 0 plus 1 end cell cell space space 0 plus 0 plus 1 end cell end table close square brackets
equals space space open square brackets table row 2 cell space space 1 end cell cell space space 0 end cell row 1 cell space space 2 end cell cell space space 1 end cell row 0 cell space space 1 end cell cell space space 1 end cell end table close square brackets

    Question 168
    CBSEENMA12034310

     Assume Y, Z, W and P are the matrices of order 3 x k x 2 x p, n x 3 and p x k, respectively.
    The restrictions on n, k and p so that PY + WY will be defined are :
    (A) k = 3, p = n    (B) A:is arbitrary,p = 2
    (C) p is arbitrary, k = 3    (D)k = 2, p = 3

    Solution

    Y, Z, W, P are of type 3 x k, 2 x p, n x 3, p x k respectively.
    Since PY is defined
    ∴number of columns of P = number of rows of Y
    ∴ k = 3
    Now PY is of type p x k and WY is of type n x k
    Since PY + WY is defined
    ∴ p = n
    ∴ (A) is correct answer.

    Question 169
    CBSEENMA12034311

    If space straight A space is space square space matrix space such space that space straight A squared equals space straight A comma space then space left parenthesis straight I space plus space straight A right parenthesis cubed space – space 7 straight A space is space equal space to space left parenthesis straight A right parenthesis space straight A space comma space left parenthesis straight B right parenthesis space straight I – space straight A space left parenthesis straight C right parenthesis space 1 space left parenthesis straight D right parenthesis space 3 straight A

    Solution
    We space have space straight A squared space equals straight A space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
therefore space space straight A cubed space equals space space straight A squared space. straight A space equals straight A space. straight A space equals straight A to the power of 2 space end exponent space equals space straight A space space... left parenthesis 2 right parenthesis
now space space left parenthesis space straight I plus straight A right parenthesis space minus 7 straight A space equals space left parenthesis straight I plus 3 straight A plus 3 straight A to the power of 2 space end exponent space plus space space straight A cubed space right parenthesis space minus 7 straight A space space space space open square brackets table row cell because space of space left parenthesis 1 right parenthesis space end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis straight I plus 3 space straight A plus 3 space straight A space plus to the power of space space space straight A space right parenthesis space minus 7 straight A space space space space space open square brackets table row cell because space of space left parenthesis 1 right parenthesis space. space left parenthesis 2 right parenthesis end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight I
therefore space left parenthesis straight C right parenthesis space space is space correct space answer. space space space space space space space space space space space space space space space
    Question 170
    CBSEENMA12034312

     If space straight A equals space open square brackets table row straight alpha cell space space space space space space straight beta end cell row straight gamma cell space space minus straight alpha end cell end table close square brackets space space is space such space that space straight A squared space equals space straight I comma space then
left parenthesis straight A right parenthesis space straight l space plus space straight alpha squared space plus space βγ space equals space 0
space left parenthesis straight B right parenthesis space straight l – straight alpha squared plus space βγ space equals space 0 space space
left parenthesis straight C right parenthesis space 1 space – straight alpha squared space – space βγ space equals space 0 space
left parenthesis straight D right parenthesis space straight l space plus straight alpha squared – space βγ space equals space 0

    Solution
    space straight A equals space open square brackets table row straight alpha cell space space space space space space straight beta end cell row straight gamma cell space space minus straight alpha end cell end table close square brackets
now space straight A squared space equals 1 space rightwards double arrow space open square brackets table row straight alpha cell space space space space space space straight beta end cell row straight gamma cell space space minus straight alpha end cell end table close square brackets space open square brackets table row straight alpha cell space space space space space space straight beta end cell row straight gamma cell space space minus straight alpha end cell end table close square brackets space equals space open square brackets table row 1 cell space space space 1 end cell row 0 cell space space space 0 end cell end table close square brackets
rightwards double arrow space open square brackets table row cell straight alpha to the power of 2 space space end exponent plus space βγ end cell cell γβ minus αβ end cell row cell γα minus γα end cell cell βγ plus straight alpha squared end cell end table close square brackets equals space open square brackets table row 1 cell space space space 1 end cell row 0 cell space space space 0 end cell end table close square brackets
rightwards double arrow open square brackets table row cell straight alpha to the power of 2 space space end exponent plus space βγ end cell 0 row 0 cell straight alpha to the power of 2 space space end exponent plus space βγ end cell end table close square brackets space equals space open square brackets table row 1 cell space space space 1 end cell row 0 cell space space space 0 end cell end table close square brackets
rightwards double arrow space by space definition space of space equality space of space matrices comma
straight alpha to the power of 2 space space end exponent plus space βγ space equals 1 space space or space 1 minus straight alpha to the power of 2 space space end exponent plus space βγ space equals 0
therefore space space left parenthesis straight C right parenthesis space is space correct space answer. space
    Question 171
    CBSEENMA12034313

    Let space straight A equals space open square brackets table row 0 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 0 end cell end table close square brackets space space and space straight I comma space the space identity space matrix space of space order space 2.
show space that space straight I plus straight A equals space left parenthesis straight I plus straight A right parenthesis space open square brackets table row cell cos space straight alpha end cell cell space space minus sin space straight alpha end cell row cell sin space straight alpha end cell cell space space space space cos space straight alpha end cell end table close square brackets

    Solution
    Here space straight A equals space open square brackets table row 0 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 0 end cell end table close square brackets space comma space straight I space equals space open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
straight L. straight H. straight S equals space straight I plus straight A space space space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space space space open square brackets table row 0 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 0 end cell end table close square brackets space equals space space open square brackets table row 1 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 1 end cell end table close square brackets
straight R. straight H. straight S equals space left parenthesis straight I minus straight A right parenthesis space open square brackets table row cell cos space straight alpha end cell cell space space space space minus sin space straight a end cell row cell sin space straight alpha end cell cell space space space space cos space straight a end cell end table close square brackets
space space space space space space space space space space space space equals space open parentheses space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets minus space space open square brackets table row 0 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 0 end cell end table close square brackets space close parentheses space open square brackets table row cell cos space straight alpha end cell cell space space space space minus sin space straight a end cell row cell sin space straight alpha end cell cell space space space space cos space straight a end cell end table close square brackets
space space space space space space space space space space space space equals space space space space open square brackets table row 0 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 0 end cell end table close square brackets space space open square brackets table row cell cos space straight alpha end cell cell space space space space minus sin space straight a end cell row cell sin space straight alpha end cell cell space space space space cos space straight a end cell end table close square brackets
space space space space space space space space space space space space equals space open square brackets table row cell cos space straight alpha space plus sin space straight alpha space tan begin inline style straight a over 2 end style space space space end cell cell negative sin space straight alpha space plus space cos space straight alpha space space tan begin inline style straight a over 2 end style end cell row cell negative cosα space tan begin inline style straight a over 2 space plus space sin space straight alpha end style end cell cell sin space straight alpha space tan straight alpha over 2 plus space cos space straight alpha end cell end table close square brackets
equals space open square brackets table row cell 1 minus 2 space sin squared space begin inline style straight alpha over 2 end style space plus space 2 space sin squared space space begin inline style straight alpha over 2 end style space end cell cell space space space space space space minus tan space begin inline style straight alpha over 2 space open parentheses table row cell 2 cos squared space space space minus straight alpha over 2 end cell end table cosα space close parentheses end style end cell row cell tan space begin inline style straight alpha over 2 end style open parentheses table row cell 2 cos squared space begin inline style straight alpha over 2 end style space space minus end cell end table cosα space close parentheses end cell cell space 1 minus 2 space sin squared space begin inline style straight alpha over 2 end style space plus space 2 space sin squared space space begin inline style straight alpha over 2 end style end cell end table space space space space close square brackets
equals space space open square brackets table row 1 cell space space space space minus tan space begin inline style straight a over 2 end style end cell row cell tan begin inline style straight alpha over 2 end style end cell cell space space 1 end cell end table close square brackets
therefore straight L. straight H. straight S equals straight R. straight H. straight S
    Question 172
    CBSEENMA12035625

    If space straight A space equals space open parentheses table row cell cos space straight alpha end cell cell sin space straight alpha end cell row cell negative sin space straight alpha end cell cell cos space straight alpha end cell end table close parentheses comma space find space straight alpha space satisfying space 0 space less than space straight alpha space less than space straight pi over 2 space when space straight A space plus space straight A to the power of straight T space space equals space square root of 2 straight I subscript 2 semicolon space Where space straight A to the power of straight T space is space
transpose space of space straight A.

    Solution
    straight A space equals space open square brackets table row cell cos space straight alpha end cell cell sin space straight alpha end cell row cell negative sin space straight alpha end cell cell cos space straight alpha end cell end table close square brackets space space 0 space less than space straight alpha space less than space straight pi over 2

straight A space plus space straight A to the power of straight T space equals space square root of 2 straight I subscript 2 space

open square brackets table row cell cos space straight alpha end cell cell sin space straight alpha end cell row cell negative sin space straight alpha end cell cell cos space straight alpha end cell end table close square brackets space plus space open square brackets table row cell cos space straight alpha end cell cell negative sin space straight alpha end cell row cell sin space straight alpha end cell cell cos space straight alpha end cell end table close square brackets space space equals space square root of 2 space end root open square brackets table row 1 0 row 0 1 end table close square brackets

open square brackets table row cell 2 cos space straight alpha end cell 0 row 2 cell 2 cos space straight alpha end cell end table close square brackets space space equals space open square brackets table row cell square root of 2 end cell 0 row 0 cell square root of 2 end cell end table close square brackets

2 space cos space straight alpha space equals space square root of 2

cos space straight alpha space space equals space fraction numerator square root of 2 over denominator 2 end fraction space equals space fraction numerator 1 over denominator square root of 2 end fraction

straight alpha space equals space straight pi over 4
    Question 173
    CBSEENMA12035626

    If A is a 3 x 3 matrix |3A| = k|A|, then write the value of k.

    Solution

    |3A| = k |A|
    |3A| = 27|A|
    k = 27

    Question 174
    CBSEENMA12035633
    Question 175
    CBSEENMA12035644

    Show that the four points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4)
    are coplanar.

    Solution

    Given  four points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4).
    therefore,
    AB with rightwards arrow on top space equals space left parenthesis negative 4 i with hat on top minus 6 j with hat on top minus 2 k with hat on top right parenthesis

AC with rightwards arrow on top space equals space left parenthesis negative i with hat on top plus 4 j with hat on top plus 3 k with hat on top right parenthesis

AD with rightwards arrow on top space equals space left parenthesis negative 8 i with hat on top plus j with hat on top plus 3 k with hat on top right parenthesis

therefore space space vertical line AB with rightwards arrow on top space space AC with rightwards arrow on top space space AD with rightwards arrow on top vertical line space equals space open vertical bar table row cell negative 4 end cell cell negative 6 end cell cell negative 2 end cell row cell negative 1 end cell 4 3 row cell negative 8 end cell 1 3 end table close vertical bar

equals space minus 4 left parenthesis 12 space plus space 3 right parenthesis space plus space 6 left parenthesis negative 3 space plus space 24 right parenthesis space minus space 2 left parenthesis 1 space plus space 32 right parenthesis

equals space minus 60 space plus space 126 space minus space 66

equals 0
Hence comma space Four space points space straight A comma space straight B comma space straight C comma straight D space are space coplanar.

    Question 176
    CBSEENMA12035656

    If space straight A space equals space open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets space and space straight A cubed minus 6 straight A squared plus 7 straight A space plus kI subscript 3 space equals space 0 space find space straight k.

    Solution
    straight A space equals open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets

straight A squared space equals space AA space equals space open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets

equals open square brackets table row 5 0 8 row 2 4 5 row 8 0 13 end table close square brackets

straight A cubed space equals space straight A squared. straight A space equals space open square brackets table row 5 0 8 row 2 4 5 row 8 0 13 end table close square brackets open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets

space equals open square brackets table row 21 0 34 row 12 8 23 row 34 0 55 end table close square brackets

therefore comma space
straight A cubed minus 6 straight A squared plus 7 straight A plus KI subscript 3 space equals space 0

rightwards double arrow space open square brackets table row 21 0 34 row 12 8 23 row 34 0 55 end table close square brackets minus 6 open square brackets table row 5 0 8 row 2 4 5 row 8 0 13 end table close square brackets plus 7 open square brackets table row 1 0 2 row 0 2 1 row 2 0 3 end table close square brackets plus straight k open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets space equals 0

rightwards double arrow space straight k equals 2
    Question 178
    CBSEENMA12035663

    If space straight A space equals space open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets comma space then space show space that space straight A squared minus 4 straight A minus 5 straight I space equals 0 comma space and space hence space find space straight A to the power of negative 1 end exponent
space space space space space space space space space space space space space space space space space space space space space space space space

    Solution
    straight A space equals space open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets
straight A squared equals open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets space open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets
space space space equals space open square brackets table row cell 1 cross times 1 plus 2 cross times 2 plus 2 cross times 2 end cell cell space space 1 cross times 2 plus 2 cross times 1 plus 2 cross times 2 end cell cell space space space space space 1 cross times 2 plus 2 cross times 2 plus 2 cross times 1 end cell row cell 2 cross times 1 plus 1 cross times 2 plus 2 cross times 2 end cell cell space 2 cross times 2 plus 1 cross times 1 plus 2 cross times 2 end cell cell space space space space 2 cross times 2 plus 1 cross times 2 plus 2 cross times 1 end cell row cell 2 cross times 1 plus 2 cross times 2 plus 1 cross times 2 end cell cell space 2 cross times 2 plus 2 cross times 1 plus 1 cross times 2 end cell cell space space space space 2 cross times 2 plus 2 cross times 2 plus 1 cross times 1 end cell end table close square brackets
space equals space open square brackets table row cell 1 plus 4 plus 4 end cell cell space space space 2 plus 2 plus 4 end cell cell space space 2 plus 4 plus 2 end cell row cell 2 plus 2 plus 4 end cell cell space space 4 plus 1 plus 4 end cell cell space space 4 plus 2 plus 2 end cell row cell 2 plus 4 plus 2 end cell cell space 4 plus 2 plus 2 end cell cell space 4 plus 4 plus 1 end cell end table close square brackets
equals space open square brackets table row 9 8 8 row 8 9 8 row 8 8 9 end table close square brackets
    Conisder space straight A squared minus 4 straight A minus 5 straight I

space equals space open square brackets table row 9 8 8 row 8 9 8 row 8 8 9 end table close square brackets space minus space 4 open square brackets table row 1 cell space 2 end cell cell space 2 end cell row 2 1 2 row 2 cell space 2 end cell 1 end table close square brackets space minus space 5 open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets
space equals open square brackets table row 9 cell space 8 end cell cell space 8 end cell row 8 cell space 9 end cell cell space 8 end cell row 8 cell space 8 end cell cell space 9 end cell end table close square brackets space minus space open square brackets table row 4 cell space 8 end cell cell space 8 end cell row 8 cell space 4 end cell cell space 8 end cell row 8 cell space 8 end cell cell space 4 end cell end table close square brackets space minus space open square brackets table row 5 cell space 0 end cell cell space 0 end cell row 0 cell space 5 end cell cell space 0 end cell row 0 0 cell space 5 end cell end table close square brackets
space equals space open square brackets table row cell 9 minus 9 end cell cell space 8 minus 8 end cell cell space space 8 minus 8 end cell row cell 8 minus 8 end cell cell space 9 minus 9 end cell cell space 8 minus 8 end cell row cell 8 minus 8 end cell cell space 8 minus 8 end cell cell space 9 minus 9 end cell end table close square brackets
equals space open square brackets table row 0 0 0 row 0 0 0 row 0 0 0 end table close square brackets

Now
straight A squared minus 4 straight A minus 5 straight I space equals space 0
straight A squared minus 4 straight A space equals space 5 straight I
straight A squared straight A to the power of negative 1 end exponent space minus 4 AA to the power of negative 1 end exponent space equals space 5 IA to the power of negative 1 end exponent left parenthesis Postmultiply space by space straight A to the power of negative 1 end exponent right parenthesis
straight A minus 4 straight I space equals space 5 straight A to the power of negative 1 end exponent
open square brackets table row 1 cell space 2 end cell cell space 2 end cell row 2 1 cell space 2 end cell row 2 cell space 2 end cell cell space 1 end cell end table close square brackets space minus space open square brackets table row 4 cell space 0 end cell cell space 0 end cell row 0 cell space 4 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 4 end cell end table close square brackets space equals space 5 straight A to the power of negative 1 end exponent
open square brackets table row cell negative 3 end cell cell space space space 2 end cell cell space space space 2 end cell row 2 cell negative 3 end cell cell space space space 2 end cell row 2 cell space space 2 end cell cell negative 3 end cell end table close square brackets space equals space 5 straight A to the power of negative 1 end exponent
    straight A to the power of negative 1 end exponent space equals space open square brackets table row cell fraction numerator negative 3 over denominator 5 end fraction end cell cell space 2 over 5 end cell cell space 2 over 5 end cell row cell 2 over 5 end cell cell fraction numerator negative 3 over denominator 5 end fraction end cell cell 2 over 5 end cell row cell 2 over 5 end cell cell 2 over 5 end cell cell fraction numerator negative 3 over denominator 5 end fraction end cell end table close square brackets

    Question 179
    CBSEENMA12035664

    If space straight A space equals space open vertical bar table row 2 cell space space 0 end cell cell negative 1 end cell row 5 cell space 1 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 3 end cell end table close vertical bar comma space then space find thin space straight A to the power of negative 1 end exponent space using space elementary space row space operations.Applying space straight R subscript 3 space rightwards arrow space straight R subscript 3 plus left parenthesis negative 1 right parenthesis straight R subscript 2
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell negative 1 half end cell row 0 cell space 1 end cell cell space 5 over 2 end cell row 0 cell space 1 end cell cell 1 half end cell end table close square brackets space equals space open square brackets table row cell 1 half end cell cell space space 0 end cell cell space 0 end cell row cell negative 5 over 2 end cell 1 cell space 0 end cell row cell 5 over 2 end cell cell negative 1 end cell cell space 1 end cell end table close square brackets
Applying space straight R subscript 3 space rightwards arrow space left parenthesis 2 right parenthesis straight R subscript 3
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell negative 1 half end cell row 0 1 cell space 5 over 2 end cell row 0 cell space 0 end cell 1 end table close square brackets space equals space open square brackets table row cell 1 half end cell 0 cell space space space 0 end cell row cell negative 5 over 2 end cell 1 cell space space 0 end cell row 5 cell negative 2 end cell cell space space 2 end cell end table close square brackets

    Solution
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space 0 end cell cell space minus 1 end cell row 5 cell space space space 1 end cell cell space space space 0 end cell row 0 cell space space space 1 end cell cell space space space 3 end cell end table close vertical bar
space space equals space 2 left parenthesis 3 minus 0 right parenthesis minus 0 left parenthesis 15 minus 0 right parenthesis minus 1 left parenthesis 5 minus 0 right parenthesis
space space equals 6 minus 0 minus 5
space space equals space 1
space space not equal to 0
space
    Hence space straight A to the power of negative 1 end exponent space exists.
straight A to the power of negative 1 end exponent straight A space equals space 1
straight A to the power of negative 1 end exponent open square brackets table row 2 cell space space 0 end cell cell space minus 1 end cell row cell space 5 space end cell cell space 1 end cell cell space space space 0 end cell row 0 cell space 1 end cell cell space space space 3 end cell end table close square brackets space equals space open square brackets table row 1 cell space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets
Applying space straight R subscript 1 space rightwards arrow space open parentheses 1 half close parentheses straight R subscript 1
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell negative 1 half end cell row 5 1 cell space space 0 end cell row 0 1 cell space 3 end cell end table close square brackets space equals space open square brackets table row cell 1 half end cell cell space 0 end cell cell space space space 0 end cell row 0 cell space 1 end cell cell space space space 0 end cell row 0 cell space 0 end cell cell space space space 1 end cell end table close square brackets
Applying space straight R subscript 2 space rightwards arrow space straight R subscript 2 space plus left parenthesis negative 5 right parenthesis straight R subscript 1
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell negative 1 half end cell row 0 1 cell space space 5 over 2 end cell row 0 1 cell space 3 end cell end table close square brackets space equals space open square brackets table row cell 1 half end cell cell space space 0 end cell cell space space space 0 end cell row cell negative 5 over 2 end cell cell space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space space 1 end cell end table close square brackets
    Applying space straight R subscript 3 space rightwards arrow straight R subscript 3 plus left parenthesis negative 1 right parenthesis straight R subscript 2
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space space 0 end cell cell space space minus 1 half end cell row 0 cell space space 1 end cell cell space space space space 5 over 2 end cell row 0 cell space space 0 end cell cell space space space space 1 half end cell end table close square brackets space equals space open square brackets table row cell 1 half end cell cell space 0 end cell cell space 0 end cell row cell negative 5 over 2 end cell 1 cell space 0 end cell row cell 5 over 2 end cell cell negative 1 end cell 1 end table close square brackets
Applying space straight R subscript 3 space rightwards arrow left parenthesis 2 right parenthesis straight R subscript 3
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell space minus 1 half end cell row 0 cell space 1 end cell cell space space 5 over 2 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets space equals open square brackets table row cell 1 half end cell cell space 0 end cell 0 row cell negative 5 over 2 end cell 1 0 row 5 cell negative 2 end cell cell space 2 end cell end table close square brackets
    Applying space straight R subscript 1 space rightwards arrow space straight R subscript 1 space plus space open parentheses 1 half close parentheses straight R subscript 3
space space space space space space space space space space space space straight R subscript 2 space rightwards arrow space straight R subscript 2 space plus space open parentheses negative 5 over 2 close parentheses straight R subscript 3
space space straight A to the power of negative 1 end exponent open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets space equals space open square brackets table row 3 cell space minus 1 end cell cell space space space 1 end cell row cell negative 15 end cell cell space space space 6 end cell cell space minus 5 end cell row 5 cell space minus 2 end cell cell space space space 2 end cell end table close square brackets
straight A to the power of negative 1 end exponent space equals space open square brackets table row 3 cell space minus 1 end cell cell space space space space 1 end cell row cell negative 15 end cell cell space space space 6 end cell cell space minus 5 end cell row 5 cell space minus 2 end cell cell space space 2 end cell end table close square brackets


    Question 180
    CBSEENMA12035689

    If A is a square matrix such that straight A squared equals straight A comma then write the value of 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed comma where I is an identity matrix.

    Solution

    Given that straight A squared equals straight A
    We need to find the value of 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed comma Where I is the identity matrix.
    Thus, 
    7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed space equals space 7 straight A minus open parentheses straight I cubed plus 3 straight I squared straight A plus 3 IA squared plus straight A cubed close parentheses
space space rightwards double arrow space 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed space equals space 7 straight A minus open parentheses straight I cubed plus 3 straight A plus 3 straight A squared plus straight A squared cross times straight A close parentheses space space open square brackets straight I cubed space equals space straight I comma space straight I squared straight A equals straight A comma space IA squared equals straight A squared close square brackets
space space rightwards double arrow space 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed equals 7 straight A minus open parentheses straight I plus 3 straight A plus 3 straight A plus straight A close parentheses space space space open square brackets because straight A squared equals straight A close square brackets
space space rightwards double arrow 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed equals 7 straight A minus straight I minus 3 straight A minus 3 straight A minus straight A
space space space rightwards double arrow 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed equals 7 straight A minus straight I minus 7 straight A
space space space space rightwards double arrow 7 straight A minus left parenthesis straight I plus straight A right parenthesis cubed equals negative straight I

    Question 181
    CBSEENMA12035690

    If space open square brackets table row cell straight x minus straight y end cell cell space straight z end cell row cell 2 straight x minus straight y end cell cell space straight w end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space 4 end cell row 0 cell space 5 end cell end table close square brackets comma space find space the space value space of space straight x plus straight y.

    Solution
    Given space that space open square brackets table row cell straight x minus straight y end cell straight z row cell 2 straight x minus straight y end cell straight w end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space 4 end cell row cell space space 0 end cell cell space 5 end cell end table close square brackets
    We need to find the value of x+y.
    open square brackets table row cell straight x minus straight y end cell straight z row cell 2 straight x minus straight y end cell straight w end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space 4 end cell row cell space space 0 end cell 5 end table close square brackets

    Two matrices A and B are equal to each other, if they have the same dimensions and the same elements
     straight a subscript ij space equals space straight b subscript ij comma space space space for space straight i space equals space 1 comma 2 comma.... comma straight n
and space straight j space equals space 1 comma space 2.... comma space straight m.
rightwards double arrow space space
space straight x minus straight y space equals negative 1 space.... left parenthesis 1 right parenthesis
2 straight x minus straight y equals 0..... left parenthesis 2 right parenthesis
Equation space left parenthesis 2 right parenthesis minus left parenthesis 1 right parenthesis space is space straight x space equals space 1
Substituting space the space value space of space straight x space equals space 1 space in space equation space left parenthesis 1 right parenthesis comma space we space have
1 minus straight y space equals space minus 1
rightwards double arrow straight y space equals space 2
Therefore comma space straight x plus straight y space equals space 1 plus 2 space equals space 3
    Question 183
    CBSEENMA12035726

    Find the value of a if open square brackets table row cell straight a minus straight b end cell cell space space space 2 straight a plus straight c end cell row cell 2 straight a minus straight b end cell cell space 3 straight c plus straight d end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space space space 5 end cell row 0 cell space 13 end cell end table close square brackets

    Solution
    open square brackets table row cell straight a minus straight b end cell cell space space 2 straight a plus straight c end cell row cell 2 straight a minus straight b end cell cell space 3 straight c plus straight d end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space space space 5 end cell row 0 cell space space 13 end cell end table close square brackets
    Equating the corresponding elements, we get, 
    rightwards double arrow straight a minus straight b space equals space minus 1 comma space space 2 straight a plus straight c space equals space 5 comma space space space 2 straight a minus straight b space equals space 0 comma space space space 3 straight c plus straight d space equals space 13
    Now consider the equations, 
    a - b = -1   and 2a - b = 0
    Subtracting first equation from second, we get: a = 1
    Question 184
    CBSEENMA12035728
    Question 185
    CBSEENMA12035750

    A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.

    Solution

    Let the award money given for honesty, regularity and hard work be Rs. x, Rs. y and Rs. z respectively.
    Since total cash award is Rs. 6,000.
    therefore space straight x plus straight y plus straight z space equals space 6 comma 000 space... left parenthesis 1 right parenthesis
    Three times the award money for hard work and honesty amounts to Rs.11,000.
    therefore space space straight x plus 3 straight z space equals space 11 comma 000
rightwards double arrow space space straight x plus 0 cross times straight y plus 3 straight z space equals space 11 comma 000 space... left parenthesis 2 right parenthesis
    Award money for honesty and hard work is double that given for regularity. 
    therefore space straight x plus straight z space equals space 2 straight y
rightwards double arrow space space straight x minus 2 straight y plus straight z space equals space 0 space space space... left parenthesis 3 right parenthesis
    The above system of equations can be written in matrix form AX = B as:
    open square brackets table row 1 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 0 end cell cell space space space 3 end cell row 1 cell space minus 2 end cell cell space space space 1 end cell end table close square brackets space open square brackets table row x row y row z end table close square brackets space equals space open square brackets table row 6000 row 11000 row 0 end table close square brackets
    Here, 
    straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 1 end cell row 1 cell space space space 0 end cell cell space space 3 end cell row 1 cell space minus 2 end cell cell space space 1 end cell end table close square brackets comma space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets space space and space straight B space equals space open square brackets table row 6000 row 11000 row 0 end table close square brackets
open vertical bar straight A close vertical bar space equals space 1 left parenthesis 0 plus 6 right parenthesis minus 1 left parenthesis 1 minus 3 right parenthesis plus 1 left parenthesis negative 2 minus 0 right parenthesis space equals space 6 not equal to 0
    Thus, A is non-singular. Hence, it is invertible.
    Adj space straight A space equals space open square brackets table row 6 cell space minus 3 end cell cell space space space space space 3 end cell row 2 cell space space space 0 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space 3 end cell cell space minus 1 end cell end table close square brackets
    therefore space space straight A to the power of negative 1 end exponent space equals space fraction numerator 1 over denominator open vertical bar straight A close vertical bar end fraction left parenthesis adj space straight A right parenthesis space equals space 1 over 6 open square brackets table row 6 cell space minus 3 end cell cell space space 3 end cell row 2 cell space space 0 end cell cell negative 2 end cell row cell negative 2 end cell cell space 3 end cell cell negative 1 end cell end table close square brackets
straight X space equals space straight A to the power of negative 1 end exponent straight B space equals space 1 over 6 open square brackets table row 6 cell space space minus 3 end cell cell space space space 3 space end cell row 2 cell space space space 0 end cell cell negative 2 end cell row cell negative 2 end cell cell space space 3 end cell cell negative 1 end cell end table close square brackets open square brackets table row 6000 row 11000 row 0 end table close square brackets equals 1 over 6 open square brackets table row cell 36000 minus 33000 plus 0 end cell row cell 12000 plus 0 minus 0 end cell row cell negative 12000 plus 33000 minus 0 end cell end table close square brackets equals 1 over 6 open square brackets table row 3000 row 12000 row 21000 end table close square brackets
rightwards double arrow open square brackets table row straight x row straight y row straight z end table close square brackets space equals open square brackets table row 500 row 2000 row 35000 end table close square brackets

    Hence, x = 500,  y = 2000,  and z = 3500.
    Thus, award money given for honesty, regularity and hardwork is Rs. 500, Rs.2000 and Rs. 3500 respectively. 
    The school can include awards for obedience. 

    Question 187
    CBSEENMA12035763

    Show that all the diagonal elements of a skew symmetric matrix are zero.

    Solution

    Let A [aij] be a skew symmetric matrix.
    so,
    aij =-aji for all i,j
    ⇒aii -aii for all values of i
    ⇒2aii =0
    ⇒aii =0 for all values of i
    ⇒a11 = a22 = a33 =..... ann =0

    Question 188
    CBSEENMA12035773

    Let straight A space equals space open parentheses table row 2 cell negative 1 end cell row 3 4 end table close parentheses comma space straight B space equals space open parentheses table row 5 2 row 7 4 end table close parentheses comma space straight C equals space open parentheses table row 2 5 row 3 8 end table close parenthesesfind a matrix D such that CD – AB = O.

    Solution
    Let space straight D space equals space open square brackets table row straight p straight q row straight r straight s end table close square brackets
    Then CD-AB = O
    open square brackets table row 2 5 row 3 8 end table close square brackets open square brackets table row straight p straight q row straight r straight s end table close square brackets space minus space open square brackets table row 2 cell negative 1 end cell row 3 cell space space 4 end cell end table close square brackets open square brackets table row 5 2 row 7 4 end table close square brackets space equals straight O

rightwards double arrow space open square brackets table row cell 2 straight p space plus space 5 straight r end cell cell 2 straight q space plus space 5 straight s end cell row cell 3 straight p space plus space 8 straight r end cell cell 3 straight q space plus space 8 straight s end cell end table close square brackets minus open square brackets table row 3 0 row 43 22 end table close square brackets space equals space open square brackets table row 0 0 row 0 0 end table close square brackets

rightwards double arrow space open square brackets table row cell 2 straight p plus space 5 straight r minus 3 end cell cell 2 straight q space plus 5 straight s end cell row cell 3 straight p plus 8 straight r minus 43 end cell cell 3 straight q plus 8 straight s minus 22 end cell end table close square brackets space equals space open square brackets table row 0 0 row 0 0 end table close square brackets

    By equality of matrices we get,
    2p +5r-3 = 0 ....(1)
    3p +8r-43 = 0 ..(2)
    2q +5s = 0 ......(3)
    3q +8s-22 = 0 ..(4)
    By solving (1) and (2) we get p = -191 and r = 77
    Similarly, on solving (3) and (4) we get q = - 110 and s = 44
    Let space straight D space equals space open square brackets table row straight p straight q row straight r straight s end table close square brackets space equals space open square brackets table row cell negative 191 end cell cell negative 110 end cell row 77 44 end table close square brackets

    Question 189
    CBSEENMA12035794

    If the matrix A = 0a-320-1b10 is skew symmertic, find the values of 'a' and 'b'.

    Solution

    Given, A is skew-symmetric,

    ∴ (AT = - A)02ba01-3-100-a3-201-b-10Hence, a12 = -a21  a  = -2and a31 = - a13 b = 3

    Question 190
    CBSEENMA12035798

    Given, A = 2-3-47 compute A-1 and show that 2A- = 9I-A

    Solution

    A  = 2-3-47C11 = (-1)1+1 (7)  = 7,C12 = (-1)1+2 (-4) = 4C21 = (-1)2+1 (-3) = 3C22 = (-1)2+2 2= 2Adj A = 7432'  = 7342|A| = 2 x 7 - (-3) x (-4) = 14 -12  0 A-1 = 1|A| adj A = 127342 = 7/23/221L.H.S = 2A-1 = 2 7/23/221  = 7342R.H.S =  9 I - A  = 9 1001 - 2-3-47 = 9009 - 2-3-47 = 9-2349-7 = 7342 L.H.S = R.H.SHence, verified that 2A-1 = 9I - A

    Question 191
    CBSEENMA12035824

    If A = 2-3532-411-2, find A-1. Use it solve the system of equations.

    2x - 3y + 5z = 11

    3x + 2y - 4z = -5

    x + y- 2z =-3

    Solution

    A = 2-3533-411-2 |A| = 2 (-4 + 4) + 3 (-6 + 4) + 5 (3-2) = 0 - 6 + 5 = -1 0

    Now, A11 0, A12 = 2., A12 =1

    A21 = -1, A22 = -9, A23 = -5

    A31 = 2, A32 = 23, A33 = 13

     A-1 = 1|A|(adj A) = - 0-122-9231-513 = 01-2-29-23-15-13 ... (1)

    Now, the given system of equations can be written in the form of AX = B, where

    A = 2-3532-411-2, X  = xyz and B = 11-5-3The solution of the system of equations is given by X = A-1BX = A-1Bxyz = 01-2-29-23-15-1311-5-3 (using 1) = 0-5 + 6-22-45+39-11-25+39123

    Question 192
    CBSEENMA12035825

    Using elementary row transformations, find the inverse of the matrix A = 123257-2-4-5

    Solution

    A = 123257-2-4-5|A| = 1(-25 + 28) - 2(-10 + 14 + 3(-8 + 10) = 3 -2 (4) + 3(2) = 9 - 8 = 1  0A-1 existsA.A-1 = I

    123257-2-4-5 A-1 = 100010001R2  R2 - 2R1; R3 R3+ 2R1123011001 A-1 = 100-210201R1 R1-2R2101011001 A-1 = 5-20-210201R1 R1- R3; R2 R2 -R3100010001 A-1 = 3-2-1-41-1201I.A-1 = A-1 = 3-2-1-41-1201

    Question 193
    CBSEENMA12035829

    Find the value of x and y if: 2130x  + y012  = 5618

    Solution

      2130x + y012 = 5618  2602x + y012 = 5618  2 + y6 + 00 + 12x + 2 = 5618  2 + y612(x + 1) = 5618

    On comparing the corresponding elements of the matrices on both sides, We get:

    2 + y = 5   y = 3

    2 ( x + 1 ) = 8   x = 3

    Question 194
    CBSEENMA12035839

    Let A= 325413067. Express A as sum of two matrices such that one is symmetric and the other is skew symmetric.

    Solution

      A = 325413067  A'= 340216537 

    Now, A can be written as: 

      A = 12A + A' +  12A = A'  A + A' = 325413067 + 340216537               =  3+32+45+04+21+13+60+56+37+7               =  665629591412 A + A' = 126656295914 = 3352319252927 = P, sayNow,  P' =  3352319252927 Thus,  P = 12 A + A'  is a symmetric matrix.

    Now,  A - A' = 3-32-45-04-21-13-60-56-37-7 = 0-2520-3-53012  A - A' = 0-15210-32-52320 = Q, sayNow,  Q' =   01-52-103252-320 = - 0-1-5210-32-52320 = -QThus, Q = 12  A - A' is a skew symmetric matrix. A = 325413067 = 3352319252-327  +  0-1-5210-32-52320

    Question 195
    CBSEENMA12035840

    If A = 1 2 2212221, verify that A2 – 4A – 5I = 0.

    Solution

    A2 = 1 2 2212221  1 2 2212221      = 1 x 1 + 2 x 2 + 2 x 2    2 x 1 + 2 x 1 + 2 x 2    1 x 2 + 2 x 2 + 2 x 12 x 1 + 1 x 2 + 2 x 2     2 x 2 + 1 x 1 + 2 x 2    2 x 2 + 1 x 2 + 2 x 12 x 1 + 2 x 2 + 1 x 2     2 x 2 + 2 x 1 + 1 x 2    2 x 2 + 2 x 2 + 1 x 1     =  1 + 4 + 4    2 + 2 + 4    2 + 4 + 22 + 2 + 4    4 + 1 + 4    4 + 2 + 22 + 4 + 2    4 + 2 + 2    4 + 4 + 1     =   9  8  8 898889

     

    4A = 4 1222 1 2221 = 1 X 4   2 X 4   2 X 4 2 X 4   1 X 4   2 X 4 2 X 4   2 X 4   1 X 4        =   4  8  8848884

     

    5I = 5 1  0  0010001 =  5  0 0050005

     

    A2 - 4A - 5I = 9 8 88 9 8889 - 4 4 8 8848884 -  5 0 0050005                       = 9 - 4 - 5    8 - 8 - 0    8 - 8 - 08 - 8 - 0    9 - 4 - 5    8 - 8 - 08 - 8 - 0    8 - 8 - 0     9 - 4 - 5                       = 0 0000 0 0  0 0= 0 = R.H.S.  

    Question 196
    CBSEENMA12035866

    If A is an invertible matrix of order 3 and |A| = 5, then find |adj. A|.

    Solution

     adj A  =  A n-1,  where n is order of square matrix

    Given A is an invertible matrix of order 3

     adj A  =  A 3-1 =  A 2Since,   A  = 5  adj A  =  5 2 = 25

    Question 197
    CBSEENMA12035870

    If matrix A = (1, 2, 3), write AA’, where A’ is the transpose of matrix A.

    Solution

    Given: A = [ 1  2  3 ]

     A' = 123AA' = 123 123 = 1 x 1 + 2 x 2 + 3 x 3       = 14

    Question 198
    CBSEENMA12035889

    Using matrices, solve the following system of equations:
    2x – 3y + 5 = 11
    3x + 2y – 4z = -5
    x + y – 2z= -3

    Solution

    2x - 3y + 5z = 11

    3x + 2y - 4z = -5

    x + y - 2z = -3

    System of equations can be written as AX = B

    Where, A = 2  -3      53  2 -41 1-2            X = xyz       B =   11-5-3   A =  2  -3       53  2-41 1-2 A = 2  ( - 4 + 4 ) + 3 ( -6 + 4 ) + 5 ( 3 - 2 )A = - 6 + 5 = - 1  0 A-1 exists and system of equation has unique solutionA-1 =1A adj A 

     

    adj A=  0  -1    22  -9    231  -5   13 A-1 = 1A  0  -1    22  -9    231  -5   13        =     0    1  - 2- 2     9    - 23- 1    5   - 13 X = A-1B =     0    1  - 2- 2     9    - 23- 1    5   - 13   11-5-3 X =  - 5 + 6- 22 - 45 + 69-11 - 25 + 39   =   123 

    So,  x = 1,   y = 2,  z = 3.

    Question 199
    CBSEENMA12035898

    If A =   cosα  - sinαsinα     cosα , then for what value of α is A an identity matrix?

    Solution

    Matrix A is a matrix of order 2.

    Identity matrix of second order is 1  00  1 

    For A to be an identity matrix,

     1  0 0 1 =  cosα  - sinαsinα     cosα  cosα = 1   and   sinα = 0  cosα =  cos 0°   and   sinα = sin 0° α = 0°Thus, for   α = 0°, A is an identity  matrix.

    Question 200
    CBSEENMA12035906

    If  1  23  4    3  12   5   =  7   11k   23 , then write the value of k.

    Solution

    Given   1  23  4  =  3  12  5  =  711k   23  

    Now using matrix multiplication in L.H.S., we get

     1 x 3 + 2 x 2      1 x 1 + 2 x 53 x 3 + 4 x 2      3 x 1 + 4 x 5   =   7  11k   23   3 + 4     1 + 109 + 8     3 + 20   =  7  11k   23   7  1117   23   =   7  11k   23 

    Now on equating the corresponding elements we get the value of k = 17

    Question 201
    CBSEENMA12035913

    Using elementary row operations, find the inverse of the following matrix:

     2 51 3 

    Solution

    Let A =  2  51  3 

    We can write A = IA

    i.e.  2  51  3  =  1   00   1  AApplying  R1  12 R1, we get1 52 1  3  =  12  00  1  AApplying  R2   R2 - R1, gives1 52 0  12  =  12  0- 12  1  AApplying  R1   R1 - 5R2,  we obtain 1  00  12  =  3   -5-12       1  AApplying  R2  2R2,  gives 1 00 1  =    3 -5  -1  2 ATherefore,  A-1 =    3 -5  -1  2

    Question 202
    CBSEENMA12035934

    For a 2 x 2 matrix, A = [ aij ] whose elements are given by  aijij,  write the value of a12 .

    Solution

    It is given that the elements of the matrix A =  aij  are given byaij = ij

    For a12, the value of  i = 1  and  j = 2.

    a12 = 12

    Question 203
    CBSEENMA12035935

    For what value of x, the matrix  5 - x     x + 12     4  is singular?

    Solution

    Let A =  5 - x     x + 12    4 It is given that the martix A is singular, therefore  A  = 0   5 - x    x + 1 2    4   = 0 4 5 - x  - 2  x + 1  = 0 20 - 4 x - 2 x - 2 = 0 - 6 x + 18 = 0 x = - 18-6 = 3

    Thus, when  x = 3,  the given matrix A is singular.

    Question 204
    CBSEENMA12035936

    Write  A-1  for A =  2  51  3 

    Solution

    A = 2  5    1  3 A-1 = 1 A       3   - 5- 1      2         = 1  2 x 3  -  1 x 5         3   - 5- 1      2        = 16 - 5       3   - 5- 1      2 A-1 =      3   - 5- 1      2 

    Question 205
    CBSEENMA12035959

    Using elementary transformations, find the inverse of the matrx

     1 3  - 2- 3      0  - 121      0 

    Solution

    The given matrix is   A =   1 3  - 2- 3     0  - 1 2 1       0  .We have    A A- 1 = IThus,  A = I AOr,    1 3  - 2- 3     0  - 1 2 1       0   =   1   0     0 0   1    0 0    0    1   AApplying  R2   + R2 + 3 R1    and    R3  R3 - 2 R1     1  3  - 2     0   9  - 7    0  - 5           4    = 1   0     0 3   1    0 - 2         0    1   ANow, applying  R2  19 R2      1  3  - 2     0   1  - 79    0  - 5           4    = 1   0     0 13   19    0 - 2         0    1   A

     

    Applying  R1  R1 - 3 R2    and    R3    R3 + 5 R2  1  0     13 0   1  -79 0  0     19  = 0  - 13      0 13    19  0- 13         59  1   AApplying  R3  9 R3  1   0      13   0    1  -790 0      1  = 0  - 13      0 13    19  0- 3         5  9    AApplying  R1  R1 - 13  R3     and      R2  R2 + 79  R3

     

      1   0  00   1  0 0   0  1  =  1- 2    - 3     - 2   47-  3     59  A  I =  1- 2    - 3     - 2   47-  3     59 A A-1 =  1- 2    - 3     - 2   47-  3     59 Hence, inverse of the matrix  A is   1- 2    - 3     - 2   47-  3     59 .

    Question 206
    CBSEENMA12036065

    If P = open square brackets table row 1 straight alpha 3 row 1 3 3 row 2 4 4 end table close square brackets is the adjoint of a 3 x3 matrix A and |A| = 4, then α is equal to 

    • 4

    • 11

    • 5

    • 0

    Solution

    B.

    11

    Given, 
    straight P space equals space open square brackets table row 1 straight alpha 3 row 1 3 3 row 2 4 4 end table close square brackets
    |P| = 1(12-12)-α (4-6) +3(4-6)
     = 2α -6.
    ∵ P =adj(A)
    ∴ |P| = |adj A | = |A|3-1 = |A|2 = 16
    [∵ |adj A| = |A|n-1 order is 3 x3
    ∴ 2α -6 = 16
    2α = 22
    α = 11

    Question 208
    CBSEENMA12036096

    Let A and B be two symmetric matrices of order 3.
    Statement-1: A(BA) and (AB)A are symmetric matrices.
    Statement-2: AB is symmetric matrix if matrix multiplication of A with B is commutative.

    • Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

    • Statement-1 is true, Statement-2 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

    • Statement-1 is true, Statement-2 is false. 

    • Statement-1 is false, Statement-2 is true.

    Solution

    B.

    Statement-1 is true, Statement-2 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

    A' = A , B' = A
    P = A(BA)
    P' = (A(BA))'
    = (BA)' A'
    = (A'B') A'
    = (AB) A
    = A(BA)
    ∴A(BA) is symmetric
    similarly (AB) A is symmetric
    Statement(2) is correct but not correct explanation of statement (1).

    Question 210
    CBSEENMA12036119

    Let f : R → R be defined by
    straight f left parenthesis straight x right parenthesis space equals space open curly brackets table attributes columnalign left end attributes row cell straight k minus 2 straight x comma if space straight x space less or equal than space minus 1 end cell row cell 2 straight x space plus 3 comma space if space straight x greater than negative 1 end cell end table close
    If f has a local minimum at x = - 1 then a possible value of k is

    • 1

    • 0

    • -1/2

    • -1

    Solution

    C.

    -1/2

    k – 2x > 1 k + 2 = 1
    k > 1 + 2x k = -1
    k > 1 + 2(-1)
    k > -1

    Question 211
    CBSEENMA12036122

    If S is the set of distinct values of 'b' for which the following system of linear equations
    x + y + z = 1
    x + ay + z = 1
    ax + by + z = 0
    has no solution, then S is

    • a singleton

    • an empty set

    • an infinite set

    • a finite set containing two or more elements

    Solution

    A.

    a singleton

    straight D space equals space open vertical bar table row 1 1 1 row 1 straight a 1 row straight a straight b 1 end table close vertical bar space equals space 0
rightwards double arrow straight a space equals space 1
and space at space straight a space equals space 1
straight D subscript 1 space equals straight D subscript 2 space equals space straight D subscript 3 space equals space 0

    but at a = 1 and b =1
    First two equations are x +y+ z =1
    and third equations is x + y +z = 0
    ⇒ There is no solution
    therefore, b = {1}
    ⇒ it is a singleton set

    Question 212
    CBSEENMA12036130

    Let  ω be a complex number such that 2ω +1 = z where z = √-3. if

    open vertical bar table row 1 1 1 row 1 cell negative straight omega squared end cell cell straight omega squared end cell row 1 cell straight omega squared end cell cell straight omega to the power of 7 end cell end table close vertical bar space equals space 3 straight k
    then k is equal to 

    • 1

    • -z

    • z

    • -1

    Solution

    B.

    -z

    Here ω is complex cube of unity
    straight R subscript 1 rightwards arrow with space on top straight R subscript 1 space plus straight R subscript 2 space plus space straight R subscript 3
space equals space open vertical bar table row 1 0 0 row 1 cell negative straight omega squared minus 1 end cell cell straight omega squared end cell row 1 cell straight omega squared end cell straight omega end table close vertical bar
space equals space 3 left parenthesis negative 1 minus straight omega minus straight omega right parenthesis space equals space minus space 3 straight z
rightwards double arrow space straight k space equals space minus straight z

    Question 214
    CBSEENMA12036153

    Let A be a 2 × 2 matrix
    Statement 1 : adj (adj A) = A
    Statement 2 : |adj A| = |A|

    • Statement–1 is true, Statement–2 is true, Statement–2 is a correct explanation for statement–1

    • Statement–1 is true, Statement–2 is true; Statement–2 is not a correct explanation for statement–1.

    • Statement–1 is true, statement–2 is false.

    • Statement–1 is false, Statement–2 is true

    Solution

    A.

    Statement–1 is true, Statement–2 is true, Statement–2 is a correct explanation for statement–1

    adj(adjA) = |A|n – 2A,
    where |A| = determinant of A but n = 2
    ⇒ A also |adj A| = |A|n – 1
    ⇒ |A| Statement–1 is true and Statement–2 is also true and Statement–2 is correct explanation of Statement–1.

    Question 216
    CBSEENMA12036211

    If A2 – A + I = 0, then the inverse of A is

    • A + I

    • A

    • A – I

    • I – A

    Solution

    D.

    I – A

    Given A2 – A + I = 0
    A–1A2 – A–1A + A–1 – I = A–1⋅0 (Multiplying A–1 on both sides)
    ⇒ A - I + A-1 = 0 or A–1 = I – A.

    Question 217
    CBSEENMA12036217
    Question 219
    CBSEENMA12036254

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    1