Physics Part Ii Chapter 11 Thermal Properties Of Matter
  • Sponsor Area

    NCERT Solution For Class 11 Physics Physics Part Ii

    Thermal Properties Of Matter Here is the CBSE Physics Chapter 11 for Class 11 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 11 Physics Thermal Properties Of Matter Chapter 11 NCERT Solutions for Class 11 Physics Thermal Properties Of Matter Chapter 11 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 11 Physics.

    Question 9
    CBSEENPH11020494

    A radiation of energy E falls normally on a perfectly reflecting surface. The momentum transferred to the surface is

    • E/c

    • 2E/c

    • Ec
    • E/c2

    Solution

    B.

    2E/c

    Initial momentum of surface
    pi = E/c
    where c = velocity of light (constant)
    Since, the surface is perfectly so, the same momentum will be reflected completely
    Final momentum
    pf= E/c
    therefore
    Change in momentum
    ∆p = pf − pi
    = -E/c - E/c = -2E/c
    Thus, momentum transferred to the surface is
    ∆p' = |∆p| = 2E/c

    Question 11
    CBSEENPH11020496

    A light ray is incident perpendicular to one face of a 90° prism and is totally internally reflected at the glass-air interface. If the angle of reflection is 45°, we conclude that the refractive index n

    • n<2

    • straight n greater than square root of 2
    • straight n space greater than space fraction numerator 1 over denominator square root of 2 end fraction
    • n<1/2

    Solution

    B.

    straight n greater than square root of 2

    Angle of incidence i > C for total internal reflection.
    Here i = 45° inside the medium. ∴ 45° > sin−1 (1/n)
    ⇒ n > √2.

    Question 12
    CBSEENPH11020497

    Time taken by a 836 W heater to heat one litre of water from 10°C to 40°C is

    • 50 s

    • 100 s

    • 150 s

    • 200 s

    Solution

    C.

    150 s

    Let time taken in boiling the water by the heater is t sec. Then
    Q = ms ∆ T
    fraction numerator 836 space over denominator 4.2 end fraction straight t space equals space 1 space straight x space 1000 space left parenthesis 40 to the power of 0 minus 10 to the power of 0 right parenthesis
fraction numerator 836 over denominator 4.2 end fraction space straight t space equals space 1000 space straight x space 30
space straight t space equals space fraction numerator 1000 space space straight x space 30 space straight x space 4.2 over denominator 836 end fraction space equals space 150 space straight s

    Question 16
    CBSEENPH11020844

    The power radiated by a black body is P and it radiates maximum energy at wavelength, λ0. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength 34λ0, the power radiated by it becomes nP. The value of n is

    • 3/4

    • 4/3

    • 81/256

    • 256/81

    Solution

    D.

    256/81

    Apply Wien's law

    λmax T = constanti.e., λmax1 T1 =  λmax2 T2 λ0T = 3λ04T'T' = 43TPower radiated P T4So, P2P1 = n = T'T4 = 434 = 25681

    Question 17
    CBSEENPH11020845

    At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?

    (Given: Mass of oxygen molecule (m) = 2.76 x 10-26 kg
    Boltzmann's constant kB = 1.38 x 10-23 JK-1)

    • 2.508 × 104 K

    • 8.360 × 104 K

    • 1.254 × 104 K

    • 5.016 × 104 K

    Solution

    B.

    8.360 × 104 K

    Let at temperature T rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere

    Vescape = 11200 m/s

    Also, Vrms = Vescape3kBTmO2 = 11200 m/s

    Putting value of KB and mO2 we get,

    T = 8.360 x 104 K

    Sponsor Area

    Question 18
    CBSEENPH11020878

    A piece of blue glass heated to a high temperature and a piece of red glass at room temperature are taken inside a dimly-lit room. Then,

    • The blue piece will look blue and the red piece will look red as usual.

    • the red piece will look brighter red and the blue piece will look ordinary blue.

    • the blue will look brighter as compared to the red piece.

    • Both the pieces will look equal red.

    Solution

    C.

    the blue will look brighter as compared to the red piece.

    When the blue glass is heated at a high temperature. It absorbs all the radiation of higher wavelength except blue. If it is taken inside a dimly -lit room, it emits all the radiation of higher wavelength, hence it looks brighter as compared to the red piece.

    Question 19
    CBSEENPH11026122

    A steel scale measures the length of a copper wire as 80.0 cm, when both are at 20C, the calibration temperature for the scale. What would the scale read for the length of the rod when both are at 40°C?

    Given α for steel = 11 × 10-6 per oC and 

    α for Cu = 11×10-6 per oC

    • 80.0096 cm

    • 80.0272 cm

    • 1 cm

    • 25.2 cm

    Solution

    A.

    80.0096 cm

    Using the relation 

    lt =lo' 1 + αt    =1×1 + 11 × 10-6 × 40o-20o    =1.00022 cmNow length of copper rod at 40oCRt' =lo' 1+α' t  =80 1 + 17 × 10-6 × 40o-20o  =80.02727 cm Now  number of cms observed on the scale=80.02721.00022=80.0096

    Question 20
    CBSEENPH11026127

    The temperature of the black body increases from T to 2T. The factor by which the rate of emission will increase, is?

    • 4

    • 2

    • 16

    • 8

    Solution

    C.

    16

    The total electromagnetic energy radiated by a body at absolute temperature T is proportional to its size, its ability to radiate (called emissivity) and most importantly to its temperature.

    For a body, which is a perfect radiator, the energy emitted per unit time (H) is given by,

    H = A σ T4

    And this relation first obtained experimentally but Stefan and later proved theoretically by Boltzmann law and later known as  Stefan- Boltzmann law  

    According to Stefan's law for radiated energy

    E ∝ T4

    E1E2=T14T24       =T2T4        =116E2 =16 E1

    Question 21
    CBSEENPH11026142

    Two rods of same material have same length and area. The heat ΔQ flows through them for 12 minutes when they are joint side by side. If now both the rods are joined in parallel, then the same amount of heat ΔQ will flow in :

    • 24 min

    • 3 min

    • 12 min

    • 6 min

    Solution

    B.

    3 min

    When rods are joined in series then heat flow 

    Q = A T1 - T2 t1l1K1  + l1K2          = A T1 + T2 t11K1 + 1K2Q    = A T1 -T2 t1l1 K2

    When rods are joined in parallel

    Q2 =K1 A - K2 AT1 - T2 t2lQ2 = 2 K A T1 - T2 t2l Q1= Q2                 given 

    t2 = t14 = 124 = 3 min

    Question 22
    CBSEENPH11026156

    Which of the following circular rods, (given radius r and length l) each made of the same material and whose ends are maintained at the same temperature will conduct most heat?

    • r = 2ro, l = 2lo

    • r = 2ro, l = lo

    • r = ro, l = lo

    • r = ro, l = lo

    Solution

    B.

    r = 2ro, l = lo

    Heat conduction through a rod is rate of change of heat Qt

    H = Qt         = KA T1 - T2l

    The rate of heat H is proportional to the temperature difference (T1 - T2) and the area of cross section A and inversely proportional to length L. Here K is called thermal conductivity of the material.

    H  r 2la When   r = 2ro, l = 2 lo          H 2ro2lo  H  2 ro2Io

    (b) When  r = 2ro, l = lo          H  2ro22lo H   4 ro2lo(c) When   r = ro, l = lo             H  ro2lod  When  r = ro, l = 2lo                  H  ro22lo

    it is obvious that heat conduction will be more in case (b).

    Question 23
    CBSEENPH11026160

    The temperature of inversion of a thermocouple is 620°C and the neutral temperature is 300oC, what is the temperature of cold junction?

    • 20o C

    • 320o C

    • -20o C

    • 40o C

    Solution

    C.

    -20o C

    The temperature of inversion is higher than the neutral temperature by the same amount as the neutral temperature is higher than the temperature of cold junction.

    As per the above statement

    tn - t0 = ti - tn

    ⇒ t0 = 2tn - ti

    Given, ti = 620o C, tn =300o C

    Hence,  

    to = temperature of cold junction

       = 2 × 300 - 620

    to = -20o C

    Neutral temperature does not change for a metal whether the temperature of cold junction and inversion temperature change by any value.

    Question 25
    CBSEENPH11026195

    Which of the following circular rods, (given radius r and length l) each made of the same material and whose ends are maintained at the same temperature will conduct most heat?

    • r = 2ro ; l = 2 lo

    • r = 2ro ; l = lo

    • r = ro ; l = lo

    • r = ro ; l = lo

    Solution

    B.

    r = 2ro ; l = lo

    Heat conduction through a rod is given by

         H = Qt        =KA  T1 - T2l  H  r2l

    (a) When r = 2ro ; l = 2lo

             H  2 ro22lo        H  2ro2lo

    (b) When r = 2ro; l = lo

                H  2ro2lo      H  4ro2lo

    (c) When r = ro ; l = lo

                    H  ro2lo

    (d) When r = ro ; l = 2lo

                  H  ro22lo

    It is obvious that heat conduction will be more in case (b).

    Question 26
    CBSEENPH11026225

    Consider a compound slab consisting of two different materials having equal lengths, thicknesses and thermal conductivities K and 2K respectively. The equivalent thermal conductivity of the slab is

    • 2 K

    • 3 K

    • 43 K

    • 23K

    Solution

    C.

    43 K

    Thermal conductivity equatio is given by 

             H = KA T1- T2L

    Where, ( T1 - T2 ) is the temperature difference two points, A is the area of cross-section and L is the length. As in question different materials having equal thickness and at constant temperature A, L and temperature difference remains constant.

    Equivalent thermal conductivity of the compound slab,

            Keql1 + l2l1K1 + l2K2

             Keql + llK + l2k

                    = 2 l3 l2 K

            Keq43 K

    Question 27
    CBSEENPH11026226

    A black body has a wavelength of A at temperature 2000 K. Its corresponding wavelength at temperature 3000 K will be

    • 2λ3

    • 3λ2

    • 4λ9

    • 9λ4

    Solution

    A.

    2λ3

    Below figure gives the experimental curves for radiation energy per unit area per unit wavelength emitted by blackbody versus wavelength for different temperatures.

        

    The wavelength λm for which energy is maximum decreases with increasing temperature. The relation between λm and T is given by Wein's Displacement Law

    According to Wein's displacement law,

                 λm T = Constant

     ⇒           λ2λ1 = 20003000

                    λ2λ = 23

                     λ2 = 23 λ

    Question 28
    CBSEENPH11026245

    The temperature of the sun can be found out by using

    • Wien's displacement law

    • Kepler's law of motion

    • Stefan's Boltzmann law

    • Planck's law

    Solution

    C.

    Stefan's Boltzmann law

    (a) Wein's law is useful for estimating the surface temperatures of celestial bodies like the moon, sun and other stars.

    (b)Kepeler's law described the orbits of planets around the sun or stars around the galaxy in classical mechanics.

    (c) The temperature of the surface of the sun was found out to be 5761 k approx by using Stefan's law i.e

          E =  σ T4 

    Where E = amount of heat energy radiated / sec area

    σ = Stefan's Boltzmann constant

    (d)Planck's law is to explain the spectral -energy distribution of radiation emitted by black body absorbs all radiant energy falling upon it, reaches some equilibrium temperature, and then reemits.

    So Stefan's Boltzmann law is used to find the temperature of the sun.

    Question 29
    CBSEENPH11026260

    The thermo emf of a hypothetical thermocouple varies with the temperature θ of hot junction as  E = a θ + b θ2 in volts, where the ratio ab is 700o C. If the cold junction is kept at 0o C, then the neutral temperature is

    • 700o

    • 1400o C

    • 390o C

    • no neutral temperature is possible for this thermocouple

    Solution

    D.

    no neutral temperature is possible for this thermocouple

    When two wires composed of dissimilar metals are joined at both ends and one of the ends is heated, there is a continuous current which flows in the thermoelectric circuit.

    The emf set in the thermocouple, when its two junctions are kept at different temperatures is called thermo e.m.f

    Given:-

    E = aθ + bθ2

      P = dEdt

         = d  + 2

      P = a + 2 bθ

    At θ = Tn  ,P = 0

    ⇒    0 = a + 2 b T

    ⇒   Tn- a2 b

    ⇒ Tn = -700o2

     Tn  = - 350o C

    The temperature of the hot junction of a thermocouple at which the elctromotive force on the thermocouple attains its maximum value, when the cold junction is maintained at constant temperature of 0o C , called neutral temperature.

    But  neutral temperature can never be negative ( less than zero) 

    Question 30
    CBSEENPH11026264

    A current of 1.6 A is passed through a solution of CuSO4. How many Cu++ ions are liberated in one minute? (Electronic charge= 1.6 x 19-19 C)

    • 3 × 1020

    • 3 × 1010 

    • 6 × 1020

    • 6 × 1010

    Solution

    A.

    3 × 1020

    Given:- Current - 1.6 A

         t = 1 × 60s = 60 s

    Charge flowing in one minute

         q = I × t 

             = 1.6 × 60

    Charge required to liberate one copper ion 2C

    Number of Cu2+ liberated 

                =1.6 × 602 × 1.6 × 10-19

                = 3 × 1020

    Question 31
    CBSEENPH11026267

    The surface temperature of the sun which has maximum energy emission at 500 nm is 6000 K. The temperature of a star which has maximum energy emission at 400 nm will be

    • 8500 K

    • 4500 K

    • 7500 k

    • 6500 K

    Solution

    C.

    7500 k

    Wein's displacement law:- Relationship between the temperature of a black body ( an ideal substance that emits and absorbs all frequencies of light) and the wavelength at which it emits the most light.

                λm T = Constant

    By using Wein's Displacement law,

             λm 1 T1 = λm 2 T2

    ⇒     500 × 6000 = 400 × T2

    ⇒     T2500 × 6000400

    ⇒      T2 = 7500 K 

    Question 32
    CBSEENPH11026269

    0.1 m2 of water at 80°C is mixed with 0.3 m3 of water at 60°C. The final temperature of the mixture is

    • 65o C

    • 70o C

    • 60o C

    • 75o C

    Solution

    A.

    65o C

    Let the final temperature of mixture be t.

    According to Newton's law of cooling

    Heat lost by water at 80°C

                   = m s Δt

    Where m is the mass of body and s is the specific heat capacity

                    = 0.1 × 103 ×  swater ×  ( 80o - t )

                         (since m = v ×  d = 0.1 ×  103 kg )

    Heat gained by water at 60o C

                   = 0.3 ×  103 ×  swater ×  ( t - 60o )

    According to principle of calorimetry

                Heat lost = Heat gained

    ∴  0.1 × 103 × swater × (80o - t) = 0.3 × 103 ×swater × ( t - 60o )

    ⇒           ( 80o - t) = 3 × ( t - 60o )

    ⇒             4t = 260o

    ⇒               t = 65o C

    Question 33
    CBSEENPH11026295

    A black body has a wavelength of ) λ at temperature 2000 K. Its corresponding wavelength at temperature 3000 K will be

    • 2 λ3

    • 3 λ2

    • 4 λ9

    • 9 λ4

    Solution

    A.

    2 λ3

    According to Wien's displacement law wavelength λfor which energy is the maximum decrease with increasing temperature.

    This relation between λand T is given by 

                λm T = constant

     ⇒           λ2λ1 = T1T2

    ⇒          λ2λ = 20003000

    ⇒           λ2λ = 23

    ⇒            λ223 λ 

    Question 34
    CBSEENPH11026310

    50 g ice at 0°C in insulator vessel, 50 g water of 100oC is mixed in it, then final temperature of the mixture is (neglect the heat loss)

    • 10oC

    • 0o << Tm < 20oC

    • 20oC

    • above 20oC

    Solution

    A.

    10oC

    D.

    above 20oC

    According to Newton's law of cooling,

       Heat lost = Heat gained

    ⇒   m1 s1 ( 100 - t ) = mL + m2 s2 ( t - 0)

    ⇒    50 × 1( 100 - t) = 50 × 80 + 50 × 1 (t - 0)

    ⇒                        t = 10oC

    Question 35
    CBSEENPH11026328

    The earth receives solar radiation at a rate of 8.2 J cm-2 min-1. If the sun radiates as the black bodies, the temperature at the surface of the sun will be (the angle subtended by sun on the earth in suppose 0.53° and Stefan constant is σ = 5.67x 10-6 Wm3 K4

    • 5800 K

    • 6700 K

    • 8000 K

    • 7800 K

    Solution

    A.

    5800 K

    Let diameter of the sun is d while radius of the earth is r then

              D2  0.53 × π180

                   = 0.00925

      ⇒     D2  =   9.25 × 10-3

    The radiation emitted per unit area of the sun is

       4π d22σT4  = πD2σ T4

    The radiation received at the earth's surface per unit time per unit area is

          πσd T44πr2 = σ T44dR2

    ⇒       σT44 DR2 = 8.2 Jcm-2 min-1

    ⇒    14 × 5.67 × 10-8 × T4 × 9.25 × 10-3 2 = 8.210-4 × 60Wm-2

    ⇒                           T = 5794 K

                                  T ≅ 5800 K

    Question 36
    CBSEENPH11026353

    A slab consists of portions of different materials of same thickness and having the conductivities K1 and K2. The equivalent thermal conductivity of the slab is

    • K1 + K2

    • K1 + K2

    • 2 K1 K2K1 + K2

    • K1 K2K1+ K2

    Solution

    C.

    2 K1 K2K1 + K2

    As both slabs are of same thickness made of different materials i.e d1 = d2 = d

    As two portions of the slab are connected in series, 

    ∴    K = Σ  xiΣ xi  Ki

          K = d + ddK1 + dK2

             = 2 dd 1K1+ 1K2

         K = 2 K1 K2K1+ K2

    Question 37
    CBSEENPH11026362

    A metal rod at a temperature of 145°C, radiates energy at a rate of 17W. If its temperature is increased to 273°C, then it will radiate at the rate of

    • 49.6 W

    • 17.5 W

    • 50.3 W

    • 67.5 W

    Solution

    A.

    49.6 W

    Given, initial temperature of metal rod (T)= 145° C = 418 K

    Rate of radiated energy (E1) = 17W

    Final temperature ( T2) = 273o C

                                       = 273 + 273

                                       = 546 k

    We know, from the Stefan's law,

                 E ∝ T4

                E1E2 = T1T24

                      = 4185464

               E1E2 = 0.343

    Therefore, final radiated energy

          E2E10.343

               = 170.343

           E2 = 49.6 W

    Question 38
    CBSEENPH11026370

    A system consist of a cylinder surrounded by a cylindrical shell. A cylinder is a radius R and is made of material of thermal conductivity K, whereas a cylindrical shell has inner radius R and outer radius ZR and is made of material of thermal conductivity twice as that of cylinder. Assuming the system in steady state and negligible heat loss across the cylindrical surface, find the effective thermal conductivity of the system, if the two ends of the combined system are maintained at two different temperatures.

    • 3 K

    • 23K

    • 74K

    • 5K4

    Solution

    C.

    74K

               

    ∴              R1 LK1 . πR2      

       and         R2LK2  4πR2 - πR2 

                           = LKeq. 4πR2

    R1 and R2 are in parallel.

    ∴                  1Req = 1R1 + 1R2

    ⇒         4 πR2 KeqL = πR2 K1L + 3πR2 K2L

    ⇒               4Keq = K1 + 3K2

    On putting values of K1 and K2, we get

                      4Keq = K1 + 3 ( 2K)                 [  K1 = K, K2 = 2K ]

                      KeqK + 6K4

                      Keq7 K4

    Question 39
    CBSEENPH11026383

    A body initially at 80°C cools to 64°C in 5 min and to 52°C in 10 min. The temperature of the surrounding is

    • 26oC

    • 16oC

    • 36oC

    • 40oC

    Solution

    B.

    16oC

    According to Newton's law of cooling

              θ1 - θ2t = K θ1 + θ22 - θ0

    In the first case,

                80 - 645 = K 80 + 642 - θ0

    ⇒        3.2 = K [ 72 - θ0 ]                  ....(i)

    In the second case,

              64 - 525 = K 64 + 522 - θ0

    ⇒        2.4 = K [ 58 - θ0 ]                 ......(ii)

    Dividing (i) by (ii),

           3.22.4 = 72 - θ058 - θ0

    ⇒     185.6 - 3.2 θ0 = 172.8 - 2.4 θ0

    ⇒      185.6 - 172.8 = ( 3.2 - 2.4 ) θ0

    ⇒                   θ185.6 - 172.83.2 - 2.4

    ⇒                        θ0 = 160C

    Sponsor Area

    Question 40
    CBSEENPH11026390

    Two chambers containing m1 g and m2 g of a gas at pressures P1 and P2 respectively are put in communication with each other, temperature remaining constant. The common pressure reached will be

    • P1P2  m1 + m2  P2 m1 + P1 m2 

    • P1 P2 m1P2m1 + P1 m2

    • m1 m2 P1 + P2P2 m1 + P1m2

    • m1 m2P2P2 m1 + P1m2 

    Solution

    A.

    P1P2  m1 + m2  P2 m1 + P1 m2 

    According to Boyle's law, PV== k (a constant )

              pmρ = k

             ρ = P mk                            V = mρ

           ρ1 = P1K 

    and V1m1ρ1

              = m1P1K

          V1K m1P1

    Simillarly

          V2K m2P1

    ∴ Total volume = V1 + V2

                           = K  m1P1 + m2P2 

    Let P be the common pressure and ρ be the common density of mixture. Then 

                 ρ = m1 + m2V1 + V2

                     = m1 + m2K m1P1 + m2P2

    ∴        P = K ρ

                  = m1+ m2m1P1 + m2P2

    ⇒      P = P1 P2 m1 + m2m1 P2 + m2 P2

    Question 42
    CBSEENPH11026416

    The temperature of a body is increased from -73o C to 327o C. Then the ratio of emissive power is

    • 1/9

    • 1/27

    • 27

    • 81

    Solution

    D.

    81

    Emissive power is the energy of thermal radiation emitted in all directions per unit time per area of a surface given temperature.

    Radiation from a body = R

              R = e σ T4 × time × area

    where e = emissive power

    ∴        eT4 = constant

               e  =  constantT4 

    ⇒       e1e2 = T2T14

    ⇒       e1e2 = 273 + 327273 - 734

    ⇒        e1e2 = 341

    ⇒              = 811

    ⇒        e1e2 = 811

    Question 43
    CBSEENPH11026443

    When a current is passed in a conductor, 5°C rise in temperature is observed. If the strength of current is made thrice, rise in temperature will be

    • 5 oC

    • 20 oC

    • 45 oC

    • 15 oC

    Solution

    C.

    45 oC

    Joule heating in a wire

              H = I2 Rt

    For given R and t

              H ∝ t2

     ∴        H1H2I = I1  2I2  2                   ....(i)

    Also   H = m s Δ

    For given m and s 

    ∴        H1H2 = T1T2                   ....(ii)

    From equation (i) and (ii)

             I1  2I2  2 = T1T2    

    Here    I1 = I 

              ΔT1 = 5 oC

              I2 = 3I

               ΔT2 = ?

    ∴       I3I2 = 5T2

    ⇒     ΔT2 = 45 oC

    Question 44
    CBSEENPH11026450

    If 10goficeis added to 40 g of water at 15°C, then the temperature of the mixture is(specific heat of water = 4.2 x 103 J kg-1K-1, Latent heat of fusion of ice = 3.36 x 105 J kg-1 )

    • 15 oC

    • 12 oC

    • 10 oC

    • 0 oC

    Solution

    D.

    0 oC

    Heat lost by water to come from 15 oC to 0 oC is

              H1 = m s ΔT

               H1401000 × (4.2 × 103 ) × ( 15 - 0 )

               H1   = 2520 J

    Heat required to convert 10 g ice into 10 g water at 0°C is

               H2 = mL

                     = 101000 × ( 3.36 × 105 )

               H2 = 3360 J

    Since H2 > H1, so the whole ice will not be converted into water, whereas the temperature of the whole water will be 0oC.

    Therefore the temperature of the mixture is 0oC.

    Question 45
    CBSEENPH11026452

    A copper ball 2 cm in radius is heated in a furnace to 327 °C. If its emissivity is 0.3, at what rate does it radiate energy?

    • 1.72 W

    • 2.73 W

    • 11.0 W

    • 2.15 W

    Solution

    C.

    11.0 W

    The surface area of the ball 

                   A = 4 π r 2

                        = (4 π) ( 0.02 m)2

                   A = 0.05 m2

    and its absolute temperature is

                   T = 327 + 273

                    T = 600 K

           P = e σ AT4

               = [ 0.3 × 5.67 × 10-8 × 0.05 × (600)4 ]  

           P = 11.0 W

    Question 46
    CBSEENPH11026454

    • higher than 0°C

    • higher than 0 K

    • higher than that of its surroundings

    • high enough for it to glow

    Solution

    B.

    higher than 0 K

    All objects with a temperature greater than absolute 0 emit electromagnetic radiation, which is commonly called the object's thermal emission. The temperature of the radiating body determines the intensity and characteristics of the radiation it emits.

    Question 47
    CBSEENPH11026461

    Assertion:  A hollow metallic closed container with small opening maintained at a high temperature can act as a source of black body radiation.

    Reason:  All metals act as black body radiator.

    • If both assertion and reason are true and reason is the correct explanation of assertion.

    • If both assertion and reason are true but reason is not the correct explanation of assertion.

    • If assertion is true but reason is false.

    • If both assertion and reason are false.

    Solution

    C.

    If assertion is true but reason is false.

     A black body is an idealized object which absorbs and emits all frequencies. Blackbody radiation as a function of frequency for a fixed temperature.

    The hollow metallic closed container maintained at a uniform temperature can act as a source of the black body. It is also well known that all metals cannot ac as a black body because if we take highly metallic polished surface. It will not behave as a perfect black body.

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation