Chemistry Part Ii Chapter 8 Redox Reactions
  • Sponsor Area

    NCERT Solution For Class 11 Chemistry Chemistry Part Ii

    Redox Reactions Here is the CBSE Chemistry Chapter 8 for Class 11 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 11 Chemistry Redox Reactions Chapter 8 NCERT Solutions for Class 11 Chemistry Redox Reactions Chapter 8 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 11 Chemistry.

    Question 1
    CBSEENCH11006636

    What is oxidation (electronic concept)?

    Solution
    It is a process in which an atom or anion loses one or more electrons. Oxidation is also called de-electronation.
    Question 2
    CBSEENCH11006637

    What is reduction (electronic concept)?

    Solution
    It is a process in which an atom or an ion gains one or more electrons. Reduction is also called electronation.
    Question 3
    CBSEENCH11006638

    What is reducing agent (electronic concept)?

    Solution
    A substance (atom, ion or molecule) which can readily lose electrons to other substances is called a reducing agent or a reductant.
    Question 4
    CBSEENCH11006639

    What is an oxidising agent (electronic concept)?

    Solution
    A substance (atom, ion or molecule) which can readily accept electrons from other substances is called an oxidising agent or an oxidant.
    Question 5
    CBSEENCH11006640

    Write the following redox reaction using half equation:
    Zn left parenthesis straight s right parenthesis space plus space PbCl subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space space space Pb left parenthesis straight s right parenthesis space plus space ZnCl subscript 2 left parenthesis aq right parenthesis
    Mention:
    (i) Which reactant is oxidised? To what?
    (ii) Which reactant is the oxidiser?
    (iii) Which reactant is reduced? To what?
    (iv) Which reactant is the reducer?

    Solution
    Oxidation half-reaction:
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    Reduction half-reaction:
    Pb to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space Pb left parenthesis straight s right parenthesis
    Here Zn is oxidised to Zn
    i) Zn is oxidised to Zn2+,
    ii)Pb2+ is reduced to Pb.
    iii) Pb2+ is the oxidiser and
    iv) Zn is the reducer.
    Question 6
    CBSEENCH11006641

    In the reduction,
    MnO subscript 2 space plus space 4 HCl space space rightwards arrow space space space MnCl subscript 2 space plus space Cl subscript 2 space plus space 2 straight H subscript 2 straight O
    which species is oxidised?

    Solution
    HCl is oxidised to Cl2.
    Question 7
    CBSEENCH11006642

    Can oxidation occur without reduction?

    Solution
    No, it is not possible.
    Question 8
    CBSEENCH11006643

    What are redox reactions?

    Solution
    An Oxidation-reduction reactions are called redox reactions. It is a type of chemical reaction that involves a transfer of electrons between two species. 
    Question 9
    CBSEENCH11006644

    What are direct redox reactions? Give one example.

    Solution
    Redox reactions in which oxidation and reduction take place in the same vessel are called direct redox reactions. For example, displacement of copper from CuSO4 solution when zinc rod is placed in it.
    Question 10
    CBSEENCH11006645

    What are indirect redox reactions?

    Solution
    Redox reactions in which oxidation and reduction take place in different vessels are called indirect reactions.
    Question 11
    CBSEENCH11006646
    Question 12
    CBSEENCH11006647

    What are electrolytes?

    Solution
    The melts or solutions which conduct electricity by the flow of ion are called electrolytes. For example acids, bases and fused ionic salts.
    Question 13
    CBSEENCH11006648

    What are cations and anions?

    Solution
    Ions carrying positive charge are cations, while ions carrying negative charge are anions. In other words, the species moving towards cathode are nations and those moving towards anode are anions during electrolysis.
    Question 14
    CBSEENCH11006649

    What is electrolysis?

    Solution
    The chemical decomposition of an electrolyte by the passage of electricity through it is called electrolysis.
    Question 15
    CBSEENCH11006650

    Mention two uses of electrolysis.

    Solution

    (i) Extraction of metals from ores.
    (ii) Electroplating of articles.

    Question 16
    CBSEENCH11006651

    In the reaction:
    SO subscript 2 space plus space 2 straight H subscript 2 straight S space space rightwards arrow space space space space 3 straight S space plus space 2 straight H subscript 2 straight O
    name the substance oxidised?

    Solution
    H2S is oxidised in this reaction.
    Question 17
    CBSEENCH11006652

    In the reaction:

    space space space space space space 3 Cl subscript 2 space plus space 6 NaOH space space rightwards arrow space space space space NaClO subscript 3 space plus space 5 NaCl space plus space 3 straight H subscript 2 straight O
    mention the element which losses as well as gains electrons.

    Solution

    Chlorine loses as well as gain electrons in the given reaction.

    Sponsor Area

    Question 18
    CBSEENCH11006653

    Define oxidation number of an element.

    Solution

    Oxidation number denotes the oxidation state of an element in a compound ascertained according to a set of rules formulated on the basis that electron pair in a covalent bond belongs entirely to the more electronegative element.

    .

    Question 19
    CBSEENCH11006654

    Differentiate between an ion and an atom.

    Solution
    An atom is electrically neutral while an ion is charged species. 
    Question 20
    CBSEENCH11006655

    Is the valency of an element same as its oxidant number?

    Solution
    The valency of an element not same as its oxidant number.
    Question 21
    CBSEENCH11006656

    Suggest a list of the substances where nitrogen can exhibit oxidation states from -3 to +5?

    Solution

    Variable oxidation states of nitrogen:
    NH3 = (-3)
    NH2NH2 =(-2)
    NH2OH =(-1)
    N2 = 0
    N2O =(+1)
    NO =(+2)
    N2O3 =(+3)
    NO2 =(+4)
    N2O5 =(+5)

    Question 22
    CBSEENCH11006657

    What is the oxidation number of C in C6H6?

    Solution
    The oxidation state of C in benzene is -1.
    Question 23
    CBSEENCH11006658
    Question 24
    CBSEENCH11006659

    Calculate the oxidation number of P in Ba(H2PO2)2.

    Solution
    Let x be the oxidation number of P.
    Oxidation number of Ba =+2
    Oxidation state of O2 =-2
    Thus, oxidation number of P in Ba(H2PO2)2         
     
            +2 + 4(1) + 2x + 4(-2) = 0
      or    2x - 2 = 0    or  x = + 1
    Question 25
    CBSEENCH11006660

    What is the Oxidation Number of Cr in Cr(CO)6?

    Solution

    Oxidation number of CO =0
    Therefore,
    The oxidation Number of Cr in Cr(CO)6 .
    Cr(CO)6
    x + 6(0) = 0
    or  
    x = 0

    Question 26
    CBSEENCH11006661

    What is the oxidation state of nitrogen in N3H?

    Solution
    Let x be the oxidation state of nitrogen
      x+1 
     NH
    3x + 1 = 0
            space space or space space space space space straight x space equals space minus 1 third
    space space therefore space space space space space straight O. straight N. space of space nitrogen space equals space minus 1 third
    Question 27
    CBSEENCH11006662

    What is the oxidation state of osmium (Os) in OsO4?

    Solution

    Let the oxidation state of Os= x
    Oxidation state of O = -2
    Therefore,
    The oxidation state of osmium (Os) in OsO4.

    x +(-2) x4 =0
    x-8=0
    x=8

    Question 28
    CBSEENCH11006663

    What is the oxidation number of cobalt in K|Co(CO)4| ?

    Solution
    Let x be the oxidation number of Co.
    Oxidation number of K = 1
    Oxidation number of CO=0
    Therefore,
    The oxidation state of cobalt in K|Co(CO)4| is,
    1 +x + 4(0) =0
     
     x = -1
    Question 29
    CBSEENCH11006664

    Define oxidation and reduction in terms of oxidation number.

    Solution
    Oxidation is defined as the chemical change in which there occurs an increase in the oxidation number of an atom or atoms while reduction may be defined as a chemical change in which there occurs a decrease in the oxidation number of an atom or atoms.
    Question 30
    CBSEENCH11006665

    Define redox reaction in terms of oxidation number.

    Solution
    A redox reaction is defined as a reaction in which the oxidation of atoms undergoes a change.
    Question 31
    CBSEENCH11006666

    Define fractional oxidation state(paradox of fractional oxidation state) ?

    Solution
    Fractional oxidation state is only the average oxidation state of an element when two or more of its atoms are present in different oxidation states in a given compound.
    Question 32
    CBSEENCH11006667

    Define oxidising agent and reducing agent in terms of oxidation number ?

    Solution
    An oxidising agent or oxidant may be defined as a substance, the oxidation number of whose atom (or atoms) decreases while reducing agent or reductant may be defined as a substance the oxidation number of whose atom (or atoms) increases.
    Question 33
    CBSEENCH11006668

    What is meant by disproportionate? Give one example.

    Solution
    It is a process in which the same element undergoes increase as well as a decrease in oxidation number. For example, H2O2 shows a disproportionate reaction.
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    Question 34
    CBSEENCH11006669

    Give one example of the substance which can act as oxidising agent as well as reducing agent.

    Solution
    Hydrogen peroxide act both as an oxidising and reducing agent. In H2O2, the oxidation number of O is -1, it can increase its O.N. to zero and get oxidised. Similarly, it can decrease its oxidation number to -2 and get reduced.

    Question 35
    CBSEENCH11006670

    The compound AgF2 is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why?

    Solution
    In AgF2, the oxidation state of Ag is +2 whereas its normal oxidation state is +1. The compound will, therefore, take part in a chemical reaction in order to decrease its oxidation state of Ag from +2 to +1. It is, therefore, a strong oxidising agent.
     Ag to the power of 2 plus end exponent space plus space straight e to the power of minus space space space rightwards arrow space space space Ag to the power of plus
    Question 36
    CBSEENCH11006671

    Which of the following is not a redox reaction?
    left parenthesis straight i right parenthesis space Na space plus space straight H subscript 2 straight O space space rightwards arrow space space space NaOH space plus space 1 half straight H subscript 2
left parenthesis ii right parenthesis space CaCO subscript 3 space space rightwards arrow space space space CaO space plus space CO subscript 2

    Solution

    Reduction (ii) is not a redox reaction. Since in the given reaction, no element undergoes a change in oxidation state.
    + 2    + 4     -2             + 2      -2        +4        -2
    Ca      C        O3    <pre>uncaught exception: <b>Http Error #502</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #502')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #502')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #502')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #502')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #502')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>    Ca       O        + C        O2

    Question 37
    CBSEENCH11006672

    A metal ion M3+ loses 3 electrons. What is its oxidation number ?

    Solution
    Its oxidation number is +6.
    Question 38
    CBSEENCH11006673

    For the redox reaction:
    MnO subscript 4 superscript minus space plus space straight C subscript 2 straight O subscript 4 superscript 2 minus end superscript space plus space straight H to the power of plus space space space rightwards arrow space space space space Mn to the power of 2 plus end exponent space plus space CO subscript 2 space plus space straight H subscript 2 straight O
    the correct stoichiometric coefficient of space space space space space MnO subscript 4 superscript minus comma space space straight C subscript 2 straight O subscript 4 superscript 2 minus end superscript comma space space straight H to the power of plus are ? 

    Solution

    The correct stoichiometric coefficient of space space space space space space space space space MnO subscript 4 superscript minus comma space space straight C subscript 2 straight O subscript 4 superscript 2 minus end superscript comma space space straight H to the power of plus are 2, 5, 16
    the balanced equation is,
    space space 2 MnO subscript 4 superscript 2 minus end superscript space plus space 5 straight C subscript 2 straight O subscript 4 superscript 2 minus end superscript space plus space 16 straight H to the power of plus space rightwards arrow space space space 2 Mn to the power of 2 plus end exponent space plus space 10 CO subscript 2 space plus space 8 straight H subscript 2 straight O
                       

    Question 39
    CBSEENCH11006674

    What is the oxidation number of iron in  Fe3O4?

    Solution

    Let x be the oxidation number of Fe.
    Oxidation state of oxygen = -2
    Thus, 
    3x + 4(-2) = 0
    or
    3x - 8 = 0
    x = 8/3

    Sponsor Area

    Question 40
    CBSEENCH11006675

    What is the nature of the reaction which occurs at cathode?

    Solution
    Reduction reaction occurs at the cathode. In this reaction, cations take up electrons and are reduced to atom.
    Question 41
    CBSEENCH11006676

    What is voltaic cell?

    Solution
    The cell which converts chemical energy into electrical energy is called voltaic or galvanic cell.
    Question 42
    CBSEENCH11006677

    What is redox couple?

    Solution
    A redox couple may be defined as a combination of the oxidised and reduced forms of the same substance taking part in an oxidation or reduction half reactions. 
    Question 43
    CBSEENCH11006678

    Can we use KCl as an electrolyte in the following cell Cu|Cu2+ || Ag+|Ag ?

    Solution
    KCl cannot be used in the salt bridge in the given cell because it will undergo a chemical reaction with Ag+ ions to form a precipitate of AgCl.
    Question 44
    CBSEENCH11006679

    Name the electrodes on which the following reactions take place:
    <pre>uncaught exception: <b>Http Error #502</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #502')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #502')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #502')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #502')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #502')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

    Solution
    Reaction: 
    (i) takes place at the anode and reaction
    (ii) takes place at the cathode.
    Question 45
    CBSEENCH11006680

    What is the reference electrode in determining standard electrode potential?

    Solution
    Normal hydrogen electrode (N.H.E.) is a reference electrode  used in determining standard electrode potential. 
    Question 46
    CBSEENCH11006681

    What is the function of platinised platinum in the standard hydrogen electrode?

    Solution

    (i) It acts as an inert metal connection to H2/H+ system.
    (ii) It allows H2 gas to be absorbed onto its surface.

    Question 48
    CBSEENCH11006683

    What is electrode potential of a hydrogen electrode?

    Solution
    It is the potential difference between the metal electrode and the metal ions (aq).
    Question 49
    CBSEENCH11006684

    If E° for the reaction
       2 space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space rightwards arrow space space space Zn left parenthesis straight s right parenthesis
is space space minus space 0.76 space straight V space what space will space be space straight E degree space value space for space the space reaction
space space 2 space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 4 straight e to the power of minus space space space rightwards arrow space space space 2 space Zn left parenthesis straight s right parenthesis ?

    Solution
      E° for the reaction will be the same –0.76 V.
    Question 50
    CBSEENCH11006685

    What does negative electrode potential imply?

    Solution
    It implies that electrode has a larger tendency to lose electrons than hydrogen.
    Question 51
    CBSEENCH11006686

    What does positive electrode potential imply?

    Solution
    It implies that electrode has lesser tendency to lose electrons than hydrogen.


    Question 52
    CBSEENCH11006687

    Why is it not possible to measure the single electrode potential?

    Solution
    Oxidation and reduction cannot take place alone. Moreover, it is a relative tendency and can be measured w.r.t. a reference electrode only.
    Question 53
    CBSEENCH11006688

    What is electrochemical series?

    Solution
    A table showing the arrangement of the electrode in order of increasing standard electrode potential (reduction potential) is called electrochemical series.
    Question 54
    CBSEENCH11006689

    Copper does not dissolve in H2SO4. Why?

    Solution
    Copper has a positive standard electrode  potential and is placed below hydrogen in electrochemical series. The standard reduction potential of Cu is higher than that of H2. Hence, Cu has lesser tendency to give up electron than H. Therefore, Cu does not reduce H+ ion given by dil. H2SO4 to H2 and can not dissolve.
    Question 55
    CBSEENCH11006690
    Question 56
    CBSEENCH11006691

    The E° of Cu2+ | Cu is + 0 . 34 V. What does it signify?

    Solution
    It signifies that copper lies below hydrogen in the activity series.
    Question 57
    CBSEENCH11006692

    What is the equivalent mass of the oxidation agent in the reaction

    SO subscript 2 plus space 2 straight H subscript 2 straight O space space rightwards arrow space space space 3 straight S space plus space 2 straight H subscript 2 straight O

    Solution
    In this reaction, SO2 oxidises H2S, therefore, SO2 acts as oxidising agent. During oxidation, four electrons are lost i.e.
                SO subscript 2 space plus space 4 straight e to the power of minus space space space rightwards arrow space space space straight S space plus space 2 straight O to the power of 2 minus end exponent
therefore space space Equivalent space man space of space SO subscript 2 space equals fraction numerator Molecular space mass space of space SO subscript 2 over denominator 4 end fraction space
space space space space space space space space space space space space space space equals 64 over 4 space equals space 16
    Question 59
    CBSEENCH11006694

    Explain oxidation and reduction according to electronic concept. Give examples.

    Solution
    Oxidation: It is the process which involves the loss of one or more electrons by an atom, ion or molecule. Thus, there is an increase in positive charge or decrease in negative charge on the atom or ion undergoing oxidation. For example,

    Reduction: Reduction is the process which involves the gain of one or more electrons by an atom, ion or molecule. Thus, there is decrease in the +ve charge or increase in the -ve charge on the atom or ion undergoing reduction, e.g.
    Question 60
    CBSEENCH11006695

    Define oxidising agents and reducing agents in terms of electronic concept ?

    Solution
    Oxidising agent: It is a substance which can accept one or more electrons from other substances. Thus, all those species (atom, ion or molecule) which undergo reduction are in fact, oxidising agents or oxidants, e.g. oxygen, nitric acid, permanganate ion etc. are oxidising agents.
    open square brackets straight O close square brackets space plus space 2 straight e to the power of minus space space space rightwards arrow space space space straight O to the power of 2 minus end exponent
2 HNO subscript 3 space plus space 2 straight e to the power of minus space space rightwards arrow space space space 2 NO subscript 2 plus straight H subscript 2 straight O plus straight O to the power of negative 2 end exponent
MnO subscript 4 superscript minus space plus space 5 straight e to the power of minus space space rightwards arrow space space space Mn to the power of 2 plus end exponent space plus space 4 straight O to the power of 2 minus end exponent
    Reducing agent: It is a substance which can readily lose one or more electrons to other substances. Thus, all those species (atom, ion or molecule) which undergo oxidation are in fact, reducing agents or reductant; e.g.sulphide ion, stannous ion, hydrogen peroxide etc. are reducing agents.
    straight S to the power of 2 minus end exponent space space space rightwards arrow space space space straight S plus space 2 straight e to the power of minus
Sn to the power of 2 plus end exponent space space space rightwards arrow space space space Sn to the power of 4 plus end exponent space plus space 2 straight e to the power of minus
straight H subscript 2 straight O subscript 2 space rightwards arrow space space 2 straight H to the power of plus space plus space stack straight O subscript 2 space plus space 2 straight e to the power of minus with left parenthesis Acidic space medium right parenthesis below
    Question 61
    CBSEENCH11006696

    Show that oxidation cannot occur without reduction.
    Or
    Show that oxidation and reduction go side by side.

    Solution
    In a chemical reaction, the species which loses electrons is said to be oxidised and the species which gains electrons is said to be reduced. Since there is no net loss or gain of electrons in a chemical reaction, it means that a substance can gain electron only if another substance that can lose electron is also present in the system. Similarly, a substance can lose electrons only if another substance which can gain electrons is also present in the system. This means oxidation can take place only if reduction also takes place simultaneously and vice versa. In other words, oxidation-reduction reactions are electron transfer processes and always occur side by side. Such reactions in which oxidation and reduction take place simultaneously are called oxidation-reduction or simply redox reactions. For example, consider the following reaction:
    Zn plus Cu to the power of 2 plus end exponent space space rightwards arrow space space space Zn to the power of 2 plus end exponent space plus space Cu
    This reaction consists of two distinct simultaneous processes which take place in such a way that 
    No. of electrons lost  = No. of electrons gained
    (i) Oxidation half-reaction:
    Zn space rightwards arrow space space Zn to the power of 2 plus end exponent space plus space 2 straight e to the power of minus
    Here each atom of zinc loses two electrons and thus gets oxidised to Zn2+ ions.
    (ii)  Reduction half-reaction:
    Cu to the power of 2 plus end exponent space plus space 2 straight e to the power of minus space space rightwards arrow space space Cu
    Thus, a redox reaction may also be defined as a reaction in which electrons are transferred from one reactant to the other.

       

    Question 62
    CBSEENCH11006697

    In the following reactions:
    space space left parenthesis straight i right parenthesis space straight H subscript 2 straight O space plus space 2 FeCl subscript 3 space space space space space rightwards arrow space space space space 2 FeCl subscript 2 space plus space 2 HCl space plus space straight S
space space left parenthesis ii right parenthesis space 2 Al space plus space Fe subscript 2 straight O subscript 3 space space rightwards arrow space space space Al subscript 2 straight O subscript 3 space plus space 2 Fe

    which is oxidised to what and which is reduced to what? Also, mention the oxidising and reducing agent.

    Solution

    Here, H2S reduces FeCl3 to FeCl2 while itself gets oxidised to S. Conversely, FeCl3oxidises H2S to S while itself gets reduced to FeCl2. Therefore H2S acts as a reducing agent while FeCl3 acts as an oxidising agent.

    Here, Al reduces Fe2O3 to Fe while itself gets oxidised to Al2O3. Conversely, Fe2Ooxidises Al to Al2O3 while itself gets reduced to Fe. Therefore Al acts as a reducing agent while Fe2O3 acts as an oxidising agent.



    Question 63
    CBSEENCH11006698

    Identify the oxidant and the reductant in the following reactions:
    left parenthesis straight i right parenthesis space Zn left parenthesis straight s right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space ZnO left parenthesis straight s right parenthesis
left parenthesis ii right parenthesis space Zn left parenthesis straight s right parenthesis space plus space 2 straight H to the power of plus left parenthesis aq right parenthesis space space rightwards arrow space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space straight H subscript 2 left parenthesis straight g right parenthesis

    Solution

    In reaction (i) zinc donates electrons to O to give zinc and oxide ions. Therefore, Zn acts as a reductant while oxygen acts as an oxidant.
    In reaction (ii) Zn transfers its electrons to Hand therefore, zinc acts as a reductant and H+ acts as an oxidant.

    Question 64
    CBSEENCH11006699

    In the reactions given below, identify the species undergoing oxidation and reduction:

    left parenthesis straight i right parenthesis space straight H subscript 2 straight S left parenthesis straight g right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 HCl space left parenthesis straight g right parenthesis space plus space space straight S left parenthesis straight s right parenthesis
left parenthesis ii right parenthesis space 3 Fe subscript 3 straight O subscript 4 left parenthesis straight s right parenthesis space plus space 8 Al space left parenthesis straight s right parenthesis space rightwards arrow space space space 9 space Fe left parenthesis straight s right parenthesis space plus space 4 Al subscript 2 straight O subscript 3 left parenthesis straight s right parenthesis
left parenthesis iii right parenthesis space 2 Na left parenthesis straight s right parenthesis space plus space straight H subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 NaH left parenthesis straight s right parenthesis

    Solution

    (i) H2S is oxidised because a more electronegative element, chlorine is added to hydrogen or a more electropositive hydrogen has been removed from S and chlorine is reduced because of the addition of hydrogen to it. 
    (ii) Aluminium is oxidised due to the addition of oxygen to it and ferrous ferric oxide (Fe3O4) is reduced due to the removal of oxygen from it.
    (iii) Sodium is oxidised while hydrogen is reduced.

    Question 65
    CBSEENCH11006700

    Using Stock notation, represent the following compounds : HAuCl4, Tl2O,FeO, Fe2O3, CuI, CuO, MnO and MnO2?

    Solution

    Formula of the compound

    O.N. of metallic element

    Stock notation

    HAuCl4

    3

    HAu(llI)CI

    Tl2O

    1

    Tl2(I)O

    FeO

    2

    Fe(ll)O

    Fe2O3

    3

    Fe2(III)O3

    CuI

    1

    Cu(I)I

    CuO

    2

    Cu(II)O

    MnO

    2

    Mn(II)O

    MnO2

    4

    Mn(IV)O2

     
    Question 66
    CBSEENCH11006701

    How will you classify the redox reactions?

    Solution

    The redox reactions have been classified into two types:
    (i) Direct redox reactions: In these reactions, oxidation and reduction take place in the same vessel. For example,
    (a) Displacement of copper from CuSO4 solution when a zinc rod is dipped in it.
    (b) Reduction of HgCl2 to Hg2Cl2 by SnCl2.
    (ii) Indirect redox reactions: In these reactions, oxidation and reduction take place in different vessels. These reactions form the basis of the electrochemical cells in which chemical energy is converted into electrical energy.

    Question 67
    CBSEENCH11006702

    What are the changes which take place when a redox reaction is carried in a beaker? Explain with the help of a suitable example.
    Or
    Explain the redox reaction

    Zn space plus space CuSO subscript 4 space space rightwards arrow space space ZnSO subscript 4 space plus space Cu
    occurring in a beaker.



    Solution

    When a zinc rod is placed in an aqueous solution of copper sulphate, the following changes will be observed:
    (i) The zinc plate loses weight gradually.
    (ii) A precipitate of copper settles at the bottom of the beaker.
    (iii) The blue colour of the solution gradually fades.
    (iv) The solution remains electrically neutral throughout.
    (v) The solution becomes hot (exothermic reaction).
    The overall reaction which takes place in a beaker may be represented as:
    Zn left parenthesis straight s right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
space space space space space space space space space space space space space rightwards arrow space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis space plus space Heat
Cancelling space the space common space ion comma space
Zn left parenthesis straight s right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis space plus space Heat
    Here, Zn is oxidised to Zn2+ ions by losing two electrons and Cu2+ ions are reduced to Cu(s).
                              Zn left parenthesis straight s right parenthesis space rightwards arrow space space space space Zn to the power of 2 plus left parenthesis aq right parenthesis end exponent space plus space 2 straight e to the power of minus
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis Oxidation space reaction right parenthesis
Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space space Cu left parenthesis straight s right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis Reduction space reaction right parenthesis space space space space space space space space space space space

    As Cu2+ ions from the solution are changing to Cu(s), the blue colour of the solution which is due to Cu2+ ions, slowly fades. Also, the number of electrons lost in the oxidation half reaction is equal to the number of electrons gained in the reduction half reaction, the solution remains electrically neutral.
    Similarly, when a copper rod is placed in a silver nitrate solution, silver gets precipitated with the evolution of heat energy. The reaction taking place in the beaker is:
    space Cu left parenthesis straight s right parenthesis space plus space 2 Ag to the power of plus left parenthesis aq right parenthesis space plus space 2 NO subscript 3 superscript minus left parenthesis aq right parenthesis space space
space space space space rightwards arrow space space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space space 2 NO subscript 3 superscript minus left parenthesis aq right parenthesis space plus space 2 Ag left parenthesis straight s right parenthesis space plus space Heat
    Cancelling the common ion, 
    Cu left parenthesis straight s right parenthesis space plus space 2 Ag to the power of plus left parenthesis aq right parenthesis space space space rightwards arrow space space space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 Ag left parenthesis straight s right parenthesis space plus space Heat
space space Here space Cu left parenthesis straight s right parenthesis space is space oxidised space to space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space and space Ag to the power of 2 plus end exponent left parenthesis aq right parenthesis space is space reduced space to space Ag left parenthesis straight s right parenthesis.
space space space Cu left parenthesis straight s right parenthesis space space space rightwards arrow space space space space space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space left parenthesis Oxidation right parenthesis
space space space space 2 Ag to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space space rightwards arrow space space space space 2 Ag left parenthesis straight s right parenthesis space left parenthesis Redcution right parenthesis
    Hence whenever a redox reaction is carried out in a single beaker, decrease in chemical energy or free energy appears in the form of heat.

    Question 68
    CBSEENCH11006703

    What do you mean by redox reactions in aqueous solutions? Give examples.

    Solution

    A large number of redox reactions proceed slowly in aqueous solutions. Each redox reaction can be considered as a sum of two half reactions-one involving oxidation called oxidation half reaction and the other involving reduction called reduction half reaction. For example;
    (a) Let us consider the oxidation of aqueous potassium iodide by hydrogen peroxide. This reaction can be divided into two half reactions.
    space space left parenthesis straight i right parenthesis space Oxidation space half space reaction.
space space space space space space space 2 straight I to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space straight I subscript 2 left parenthesis straight s right parenthesis space plus space 2 straight e to the power of minus
space space left parenthesis ii right parenthesis space Reduction space half space reaction.
space straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space space rightwards arrow space space space 2 OH to the power of minus left parenthesis aq right parenthesis
Adding space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis comma space the space overall space redox space reaction space is colon
2 straight I to the power of minus left parenthesis aq right parenthesis space plus space straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space rightwards arrow space space straight I subscript 2 left parenthesis straight s right parenthesis space plus space 2 OH to the power of minus left parenthesis aq right parenthesis
    Supplying the required number of spectator ions, the balanced redox equation is
            2 KI left parenthesis aq right parenthesis space plus space straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space space rightwards arrow space space straight I subscript 2 left parenthesis straight s right parenthesis space plus space 2 KOH left parenthesis aq right parenthesis
    Note. The ions which do not part in any reaction but are simply added to balance the charge are called spectator ions.
    (b) Consider the oxidation of aqueous ferrous sulphate to ferric sulphate by aqueous acidified KMnO4 solution.
    space space space left parenthesis straight i right parenthesis space Reduction space half space reaction.
space MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 8 straight H to the power of plus left parenthesis aq right parenthesis space plus space 5 straight e to the power of minus space space rightwards arrow space space space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis

space space left parenthesis ii right parenthesis space Oxidation space half space reaction.
Fe to the power of 2 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space Fe to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space straight e to the power of minus right square bracket space cross times space 5
Adding space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis space the space overall space redox space reaction space is
MnO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 5 Fe to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 8 straight H to the power of plus left parenthesis aq right parenthesis
space space space space space space space space space space space space space space space space space space space space space rightwards arrow space space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 5 Fe to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis

    Supplying the required spectator ions, the complete balanced redox equation is
    space KMnO subscript 4 left parenthesis aq right parenthesis space plus space 5 FeSO subscript 4 left parenthesis aq right parenthesis space plus space 4 straight H subscript 2 SO subscript 4 left parenthesis aq right parenthesis
space space rightwards arrow space space space MnSO subscript 4 left parenthesis aq right parenthesis space plus space 5 over 2 Fe left parenthesis SO subscript 4 right parenthesis subscript 3 space plus space 4 straight H subscript 2 SO subscript 4 left parenthesis straight l right parenthesis
space 2 KMnO subscript 4 left parenthesis aq right parenthesis space plus space 10 FeSO subscript 4 left parenthesis aq right parenthesis space plus space 8 straight H subscript 2 SO subscript 4 left parenthesis aq right parenthesis
space space space space space space rightwards arrow space space space space 2 MnSO subscript 4 left parenthesis aq right parenthesis space plus space 5 Fe subscript 2 left parenthesis SO subscript 4 right parenthesis subscript 3 left parenthesis aq right parenthesis space plus 8 straight H subscript 2 straight O left parenthesis straight l right parenthesis

    Question 69
    CBSEENCH11006704

    Write the half reactions for each of the following redox reactions:
    left parenthesis straight a right parenthesis space 2 Fe to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight I to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space straight I subscript 2 left parenthesis straight s right parenthesis space plus space 2 Fe to the power of 2 plus end exponent left parenthesis aq right parenthesis
left parenthesis straight b right parenthesis space Sn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 Hg to the power of 2 plus end exponent left parenthesis aq right parenthesis space rightwards arrow space space Sn to the power of 4 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight H to the power of plus left parenthesis aq right parenthesis

    Solution

    Redox reaction (a):
    (i) Oxidation half-reaction.
                     <pre>uncaught exception: <b>Http Error #503</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #503')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #503')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #503')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #503')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #503')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    (ii) Reduction half-reaction
    2 Fe to the power of 3 plus end exponent plus space left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space space 2 Fe to the power of 2 plus end exponent left parenthesis aq right parenthesis
    For redox reaction (b):
    (i) Oxidation half-reaction
                   <pre>uncaught exception: <b>Http Error #502</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #502')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #502')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #502')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #502')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #502')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    (ii) Reduction half-reaction
              left square bracket Hg to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space straight e to the power of minus space space rightwards arrow space Hg to the power of plus left parenthesis aq right parenthesis right square bracket space cross times space 2
             or 
       2 Hg squared left parenthesis aq right parenthesis space plus space left parenthesis aq right parenthesis space 2 straight e to the power of minus space rightwards arrow space space 2 Hg to the power of 2 plus end exponent left parenthesis aq right parenthesis

    Question 70
    CBSEENCH11006705

    In the following reactions:

    1. space 2 Na left parenthesis straight s right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 NaCl left parenthesis straight s right parenthesis
2. space Mg left parenthesis straight s right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space MgCl subscript 2 left parenthesis straight s right parenthesis
3. space Zn left parenthesis straight s right parenthesis space plus space 2 straight H to the power of plus left parenthesis aq right parenthesis space space rightwards arrow space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space straight H subscript 2 left parenthesis straight g right parenthesis
    Mention:
    (i) Which reactant is oxidised? To what?
    (ii) Which reactant is an oxidising agent?
    (iii) Which reactant is reduced?
    (iv) Which reactant is reducing agent?

    Solution

     1.2 Na left parenthesis straight s right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 NaCl left parenthesis straight s right parenthesis
    (i) Na(s) is oxidised to Na+(g)
    (ii) Cl2(g) is the oxidising agent.
    (iii) Cl2(s) is reduced to Cl- (aq)
    (iv) Na(s) is the reducing agent.

    2. space Mg left parenthesis straight s right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space MgCl subscript 2 left parenthesis straight s right parenthesis
    (i) Mg(s) is oxidised to Mg2+ (g)
    (ii) Cl2(g) is the oxidising agent.
    (iii) Cl2(g) is reduced to Cl-(aq)
    (iv) Mg (s) is reducing agent.

    3. space Zn left parenthesis straight s right parenthesis space plus space 2 straight H to the power of plus left parenthesis aq right parenthesis space space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space straight H subscript 2 left parenthesis straight g right parenthesis
    (i) Zn(s) is oxidised to Zn2+ (aq)
    (ii) H+ (aq) is the oxidising agent.
    (iii) H+ (aq) is reduced to H2(g)
    (iv) Zn(i) is the reducing agent.

    Question 72
    CBSEENCH11006707

    Define oxidation number. What are the rules for assigning oxidation number to an element?

    Solution

    Oxidation number: The term oxidation number represents the positive or negative character of an atom in a compound. It may be defined as the charge which an atom has or appears to have when present in the combined state with another atom in the formula of a compound or an ion. Oxidation number can be zero, positive, negative or fraction.

    Rules for assigning oxidation numbers:
    (i) The oxidation number of an element in the free atomic state (Ma, HCl, Fe, Ag) or in its poly-atomic state (P4, Sg, graphite, H2, Cl2, etc.) is always zero.
    (ii) The oxidation number of a monatomic ion is the same as the charge on it e.g. oxidation numbers of Na+, Mg2+ and Al3+ are +1, +2 and +3 respectively; oxidation numbers of Cl-, S2- and N3-ions are –1, –2 and –3 respectively.
    (iii) In a binary compound, the more electronegative element has negative oxidation number whereas less electronegative element has positive oxidation number
     +1           -1         +3           -1
      Cl            F           Br           Cl3

    (iv) The oxidation number of hydrogen in its compounds is always +1 except in metallic hydrides (e.g. LiH, NaH, MgH2) where it is -1.
    (v) The oxidation number of oxygen in most compounds is -2. However in peroxides like H2ONa2O2, BaOz etc., the oxidation number of oxygen is -1. In OF2 the oxidation number is +2 because F is more electronegative than O.
    (vi) The oxidation number of F is always -1 in all its compounds.
    (vii) The oxidation number of alkali metals i.e. Li, Na, K etc. is always +1 in their compounds and that of alkaline earth metals i.e. Be, Ca, Sr and Ba are always +2 in their compounds.
    (viii) The algebraic sum of the oxidation numbers of all atoms in a neutral molecule is zero.
    (xi) The algebraic sum of the oxidation numbers of all atoms in a polyatomic ion is equal to the charge on the ion.

    Question 73
    CBSEENCH11006708

    Define the term oxidation, reduction, oxidation agent and reducing agent on the basis of oxidation number.

    Solution

    Oxidation: Oxidation is defined as a chemical reaction in which oxidation number of an element increases.
    Reduction: Reduction is defined as a chemical reaction in which oxidation number of an element decreases.
    Oxidising agent: Oxidising agent is a species which undergoes a decrease in oxidation number.
    Reducing agent: Reducing agent is a species which undergoes an increase in oxidation number.
    For example in the reaction:


    The oxidation number of S increases from -2 to 0 while the oxidation number of Fe decreases from +3 (in FeCl3) to +2 (in FeCl2). Therefore H2S is oxidised and FeCl3 is reduced. Thus FeCl3 acts as an oxidising agent and H2S acts as a reducing agent.

    Question 74
    CBSEENCH11006709

    Consider the elements:
    Cs, Ne, I and F.

    (a) Identify the element that exhibits only negative oxidation state.

    (b) Identify the element that exhibits only positive oxidation state.

    (c) Identify the element that exhibits both positive and negative oxidation states.

    (d) Identify the element which exhibits neither negative nor positive oxidation state.

    Solution

    (i) F (fluorine) exhibits only - ve oxidation state.
    (ii) Cs (cesium) exhibits only +ve oxidation state.
    (iii) I (iodine) exhibits both +ve and -ve oxidation states.
    (iv) (neon) neither exhibits +ve nor - ve oxidation states.

    Question 75
    CBSEENCH11006710

    Fluorine reacts with ice and results in the change:
    H2O(s) + F2(g) → HF(g) + HOF (g)
    Justify that this reaction is a redox reaction.

    Solution
    In a redox reaction, one of the reacting species is to undergo an increase in Oxidation Number and other must undergo a decrease in Oxidation Number based upon this, the given reaction is redox reaction.

    Here F2 is oxidised to HOF and reduced to HF, therefore it is a redox reaction.
    Question 76
    CBSEENCH11006711

    Justify that the reaction

    bold space bold space bold 2 bold Na bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold H subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold rightwards arrow bold space bold space bold space bold 2 bold NaH bold space bold left parenthesis bold s bold right parenthesis bold space bold is bold space bold a bold space bold redox bold space bold change bold.

    Solution
    Writing the oxidation number of each atom above its symbol,
    stack bold 2 bold Na bold left parenthesis bold s bold right parenthesis with bold 0 on top bold space bold space bold plus stack bold H subscript bold 2 bold left parenthesis bold g bold right parenthesis with bold 0 on top bold space bold rightwards arrow stack bold space bold 2 bold Na with bold plus bold 1 on top bold H with bold minus bold 1 on top
    Since, O.N. of hydrogen decreases from 0 in Hto -1 in NaH, therefore hydrogen (H2) is reduced. Further, the oxidation number of Na increases from in 0 to Na to +1 in NaH, therefore, sodium is oxidised. Hence the above reaction is a redox reaction.
    Question 77
    CBSEENCH11006712

    Justify that the reaction

    bold 2 bold Cu subscript bold 2 bold O bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold Cu subscript bold 2 bold S bold left parenthesis bold s bold right parenthesis bold space bold space bold rightwards arrow bold space bold space bold 6 bold Cu bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold SO subscript bold 2 bold left parenthesis bold g bold right parenthesis
    is a redox reaction. Identify the species oxidised/ reduced, which acts as an oxidant and which acts as a reductant. 

    Solution
    Writing O.N. of each atom above its symbol,
    space space space stack bold 2 bold Cu subscript bold 2 with bold plus bold 1 on top stack bold O bold left parenthesis bold s bold right parenthesis with bold minus bold 2 on top bold space bold space bold plus bold space stack bold Cu subscript bold 2 with bold plus bold 1 on top stack bold S bold left parenthesis bold s bold right parenthesis with bold minus bold 2 on top bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold space stack bold 6 bold Cu bold left parenthesis bold s bold right parenthesis with bold 0 on top bold space bold plus bold space bold S with bold plus bold 4 on top stack bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis with bold minus bold 2 on top
    Since O.N. of copper decreases from +1 (in Cu2O) or Cu2S to 0 in Cu, therefore Cu is reduced. Since the O.N. of S increases from -2 (in Cu2S) to +4 (in SO2), therefore S is oxidised. Hence, the above reaction is a redox reaction.
    Further, O in Cu2O helps S in Cu2S to increase its O.N. from -2 to +4, therefore Cu2O is an oxidant, and S in Cu2S helps Cu both in Cu2O and Cu2S to decrease its O.N. of +1 to zero in Cu metal, therefore, Cu2S is the reductant.
    Question 78
    CBSEENCH11006713

    Identify the oxidising agent, reducing agent and the substance undergoing oxidation and reduction in the following reactions:

    bold space bold space bold left parenthesis bold a bold right parenthesis bold space bold H subscript bold 2 bold SO subscript bold 4 bold space bold plus bold space bold 2 bold HBr bold space bold space bold rightwards arrow bold space bold space bold space bold space bold SO subscript bold 2 bold space bold plus bold space bold Br subscript bold 2 bold space bold plus bold space bold 2 bold H subscript bold 2 bold O
bold space bold space bold left parenthesis bold b bold right parenthesis bold space bold 3 bold CuO bold space bold plus bold space bold 2 bold NH subscript bold 3 bold space bold space bold rightwards arrow bold space bold space bold space bold space bold 3 bold Cu bold space bold plus bold space bold N subscript bold 2 bold space bold plus bold space bold 2 bold H subscript bold 2 bold O

    Solution

    a) 

    (i) Oxidising agent H2SO4
    (ii) Reducing agent HBr
    (iii) Substance oxidised HBr
    (iv) Substance reduced H2SO4

     b)

    (i) Oxidising agent CuO
    (ii) Reducing agent NH3
    (iii) Substance oxidised NH3 
    (iv) Substance reduced CuO.


    Question 79
    CBSEENCH11006714

    Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:

    (a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)

    (b) HCHO(l) + 2[Ag (NH3)2]+ (aq) + 3OH-(aq) → 2Ag(s) + HCOO(aq) + 4NH3(aq) + 2H2O(l)

    (c)  HCHO (l) + 2 Cu2+ (aq) + 5 OH(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)

    (d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)

    (e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)



     



    Solution

    a)    AgBr is reduced to Ag

    C6H6O2 is oxidised to C6H4O2

    AgBr is an oxidising agent

    C6H6O2 is a reducing agent.

    b)    [Ag(NH3)+2 reduced to Ag+

    HCHO is oxidised to HCOO-

    [Ag(NH3)+2 is an oxidising agent.

    c)   HCHO is oxidised to HCOO-

    Cu2+ is reduced to Cu(I)  state.

    d)   N2H4 is reduced to H2O

    H2O2 is an oxidising agent

    N2H4 is reducing agent.

     

    e)  Pb has been oxidised to PbSO4

    PbO2 is reduced to PbSO4

    PbO2 is an oxidising agent

    Pb is a reducing agent.

     

     

    Sponsor Area

    Question 81
    CBSEENCH11006716

    Consider the reactions:
    (a) H3PO2(aq) + 4 AgNO3(aq) + 2 H2O(l) → H3PO4(aq) + 4Ag(s) + 4HNO3(aq)

    (b) H3PO2(aq) + 2CuSO4(aq) + 2H2O(l) → H3PO4(aq) + 2Cu(s) + H2SO4(aq)

    (c) C6H5CHO(l) + 2[Ag (NH3)2]+(aq) + 3OH(aq) → C6H5COO(aq)+ 2Ag(s) +4NH3 (aq) + 2H2O(l)

    (d) C6H5CHO(l) + 2Cu2+(aq) + 5OH(aq) → No change observed.

    What inference do you draw about the behaviour of Ag+ and Cu2+ from these reactions ?

    Solution

    (a) Ag ions are reduced to Ag which is precipitated.
    (b) Cu2+ (aq) are reduced to Cu which is precipitated.
    (c) Ag+ (aq) present in the complex are reduced to Ag which gets precipitated as shining mirror.
    (d) Cu2+ (aq) ions are not reduced by C6H5CHO (benzaldehyde) which is a very weak reducing agent.
    Therefore from the above reactions, we conclude that Ag+ ion is a stronger oxidising agent than Cu2+ ions.

    Question 82
    CBSEENCH11006717

    Determine the oxidation number of: (i) Si in SiH4 (ii) B in BH(iii) B in BF3

    Solution

    (i) Let the oxidation number of Si = x
    Writing the oxidation number of each atom at the op of its symbol,
      x               -1
    Si                H4
    The algebraic sum of oxidation number of various atoms = 0
    x + 4 (-1) = 0
         x  = 4
    (ii) Let the oxidation number of B =x
    Writing the oxidation number of each atom at the top of its symbol
    x               -1
    B               H3
    The algebraic sum of the oxidation number of various atoms = 0
            x  + 3(-1) = 0
                        x = 3
    (iii) Let the oxidation number of B = x
    Writing the oxidation number of each atom at the top of its symbol,
     x      -1 
    B        F3
    The algebraic sum of the oxidation number of various atoms = 0
                        x +  3 (-1) = 0
                                    x = 3

    Question 83
    CBSEENCH11006718

    Give the points of difference between valency and oxidation number?

    Solution
    Valencey Oxidation Number
    1. It is the combining capacity of an element in terms of the number of hydrogen atoms with which the element may combine e.g. valency of S in H2S is 2 and that of N in NH3 is 3. 1. It is the charge which an atom of the element has or appears to have when present in the combined state with their atoms e.g. oxidation number of N in HNO3 is +5.
    2. It is purely a number and has no plus or minus sign associated with it. e.g. valency of N in NH3 is 3 and that of H is 1. 2. It is always assigned plus or minus sign except when it is zero e.g. oxidation number of N in NH3 is -3 and that of H is +1
    3. It is always a whole number.

    3. It may not always be a whole number but may be fractional also. The e.g. oxidation number of Fe

    in Fe3O4 is +8/3.

    4. It is a real concept which can be verified or determined experimentally.  4. It is a hypothetical concept. Experimental verification or determination is usually not possible.
    Question 84
    CBSEENCH11006719

    Discuss briefly the types of redox reactions. Give examples. 
    or
    Discuss the following redox reactions.
    (a) Combination reactions
    (b) Decomposition reactions
    (c) Displacement reactions
    (d) Disproportionation reactions.
    Give one example in each case.

    Solution

    Redox reactions have been divided into the following classes.
    (a) Combination reactions. In such reactions, two or more elements combine chemically to form compounds. The chemical reactions involving the participation of oxygen (combustion reactions) and also few others which involve a change in the oxidation number of some atoms are the examples of such redox reactions.
    For space example.
space space space 0 space space space space space space space space space space space space space space space space space space space space space 0 space space space space space space space space space space space space space space space plus 4 minus 2
straight C left parenthesis straight s right parenthesis space space space space space space plus space space space space space space space space space space straight O subscript 2 left parenthesis straight g right parenthesis space space space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis
0 space space space space space space space space space space space space space space space space space space space space space space space space space 0 space space space space space space space space space space space space space space space plus 1 minus 1
    straight H subscript 2 left parenthesis straight g right parenthesis space space space space space plus space space straight O subscript 2 left parenthesis straight g right parenthesis space space space space space rightwards arrow space space space space straight H subscript 2 space straight O subscript 2 left parenthesis l right parenthesis
0 space space space space space space space space space space space space space space space space space 0 space space space space space space space space space space space space space space space space space plus 2 space space minus 3
3 Mg left parenthesis straight s right parenthesis space plus space space space straight N subscript 2 left parenthesis straight g right parenthesis space space space space space space space rightwards arrow space space space space Mg subscript 3 straight N subscript 2 left parenthesis straight s right parenthesis space space space
    (b) Decomposition reactions: In such reactions, a compound either of its own or upon heating decomposes to produce two or more components. Out of such components, at least one component must be in the elemental state. For example,

    There are also some decomposition reactions which are not redox reactions in nature because in such reactions there is no change in Oxidation number of the reactant species. 

    (c) Displacement reactions: In such reactions, a weak atom/ion present in a compound gets replaced by strong atom/ion of another element. such as,
    <pre>uncaught exception: <b>Http Error #503</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #503')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #503')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #503')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #503')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #503')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    In this reaction, A has replaced B from the compound BC. These reactions are of two types.
    (i) Metal displacement reactions. In such reactions, a metal present in a compound gets displaced by a metal in the uncombined state provided it occupies a position higher in the activity series. For example,

    (ii) Non-metal displacement reactions Such reactions include hydrogen displacement and very few occurring reactions involving oxygen displacement, All alkali metals and few alkaline earth Sr metals(Ca, Sr and Ba) known to be very good reducing agents will displace hydrogen from cold water.


    (d) Disproportionation reaction: Such reactions, the same substance acts as oxidant as well as reductant simultaneously i.e. a Chemical reaction in which same species undergoes Oxidation (oxidation number increases) as well as reduction (oxidation number decreases);
    For example:
    (i) Hydrogen peroxide (H2O2) is quite unstable and undergoes? disproportionation.

    Oxygen of H2O=in -1 oxidation state is converted to , (0) oxidation state as well as (-2) oxidation state.
    (ii) In alkaline solution, phosphorus (P4) undergoes disproportionation.

         In the above reaction oxidation state of P4(0) is converted to (-3) in PHand to (+1) in straight H subscript 2 PO subscript 4 superscript minus

    Question 85
    CBSEENCH11006720

    Suggest a scheme of classification of the following redox reactions:
    (a) N2(g) + O2(g) → 2 NO (g)
    (b) 2Pb(NO3)2(s) → 2PbO(s) + 2 NO2 (g) + ½ O2 (g)
    (c) NaH(s) + H2O(l) → NaOH(aq) + H2 (g)
    (d)2NO2(g) + 2OH(aq) → NO2-(aq) +NO3(aq)+H2O(l)



    Solution

    (a) It is a combination redox reaction:
              0                 0                  +2 - 2
          N2(g)              O2(g)       space rightwards arrow  2NO(g)
    because, the compound nitric oxide is formed by the combination of the elemental substances, like nitrogen and oxygen. Since the oxidation number of nitrogen increases from 0 (in N2) to +2(in NO) and that of oxygen decreases from zero (in 02) to -2 (in NO),
    hence, it is a combination redox reaction.
    (b) It is a decomposition redox reaction,

    because on heating lead nitrate decomposes to form a lead oxide, nitrogen dioxide and oxygen. Since the oxidation number of nitrogen decreases from +5 (in lead nitrate) to +4 (in NO2) and that of oxygen increases from -2 (in lead nitrate) to zero (in O2), hence, it is a decomposition redox reaction.

    because hydrogen of water has been displaced by hydride ion to produce dihydrogen gas. Also, the oxidation number of hydrogen increases from -1 in NaH) to zero (in H2) while that of hydrogen decreases from +1 (in water) to zero (in H2), hence it is a displacement redox reaction.

    (d) It is a disproportionation reaction

    Because oxidation state of nitrogen decreases from +4 (In NO2) to +3 (In NO-2 ion), as well as increases from +4 (in NO2) to +5 (In NO3- ion), hence it is disproportionation reaction.

     

    Question 86
    CBSEENCH11006721

    Refer to the periodic table given in your book and now answer the following questions:
    (a) Select the possible non-metals that can show disproportionation reaction.
    (b) Select three metals that can show disproportionation reaction.

    Solution

    In a disproportionation reaction, one of the reacting substances in a reaction always contains an element that can exist in at least three oxidation states.

    (a) The non-metals such as P4,Cl2 and S8 show disproportionation reaction as indicated below:

    (b) The metals such as Cu+, Ga+, In+ show disproportionation reactions indicated below:

    Question 87
    CBSEENCH11006722

    Which of the following species, do not show disproportionation reaction and why?
    ClO, ClO2, ClO3- and ClO4– 
    Also write reaction for each of the species that disproportionates.

    Solution

    ClO(hydrochlorite ion):

    ClO4-1 (perchlorate ion) cannot show any disproportionation reaction. The oxidation state of Cl is ClO4- ion is +7. It is the maximum oxidation state which it can have. It is the maximum oxidation state which it can have. It can decrease the same by undergoing reduction and not increase it anymore hence ClO4- ion does not undergo disproportionation reactions.



    Question 88
    CBSEENCH11006723

    What sorts of informations can you draw from the following reaction?
    (CN)2(g) + 2OH (aq) → CN(aq) + CNO(aq) + H2O(l)

    Solution

    The oxidation number of carbon in (CN)2, CN- and CNO- are +3, +2 and +4 respectively. These are obtained as shown below:

    (CN)2: Let the oxidation number of C =x

    2(x-3) =0

    X= 3

    CN-

    x-3= -1

    x=2

    CNO-

    X-3-2 =-1

    X=4

    (i) The reaction involves the decomposition of cyanogen (CN)2 in alkaline medium.
    (ii) Both (CN)2 (i.e. cyanogen) and CN- (i.e., cyanide ions) are pseudo halogens in nature i.e. both behave like halogens in characteristics.
    (iii) Cyanogen undergoes disproportionation in the reaction.
    (iv) It is an example of a redox reaction.

    Question 89
    CBSEENCH11006724

    Suggest a scheme of classification of the given redox reactions,

     N2 (g) + O2 (g) rightwards arrow 2NO (g)

    Solution

    In reaction the compound nitric oxide is formed by the combination of the elemental substances, nitrogen and oxygen, therefore, this is an example of combination redox reactions. 



    Question 90
    CBSEENCH11006725

    What sorts of information can you draw from the following reaction?
    (CN)2(g) + 2OH(aq) → CN(aq) + CNO(aq) + H2O(l)

    Solution

    The oxidation number of carbon in (CN)2, CN- and CNO- are +3, +2 and +4 respectively. These are obtained as shown below:

    (CN)2: Let the oxidation number of C =x

    2(x-3) =0

    X= 3

    CN-

    x-3= -1

    x=2

    CNO-

    X-3-2 =-1

    X= 4

    (i) The reaction involves the decomposition of cyanogen (CN)2 in alkaline medium.
    (ii) Both (CN)2 (i.e. cyanogen) and CN- (i.e., cyanide ions) are pseudo halogens in nature i.e. both behave like halogens in characteristics.
    (iii) Cyanogen undergoes disproportionation in the reaction.
    (iv) It is an example of a redox reaction.

    Question 91
    CBSEENCH11006726

    Why do the following reactions proceed differently?

    Pb3O4 +8HCl --->3PbCl2 +Cl2 +4H2O
    Pb3O4 +4HNO3 --->2Pb(NO3)2 +PbO2 +2H2O

    Solution
    Pb3O4 is a stoichiometric mixture of 2 mol of PbO and 1 mol of PbO2. In PbO and PbO2 the oxidation state of lead is +2 and +4 respectively. PbOthus behaves as an oxidising agent and therefore can oxidise Cl- ion of HCl into chlorine. Also, PbO being basic in nature, therefore the reaction
    Pb3O4 + 8HCl → 3PbCl2 + Cl2 + 4H2O
    can be split into two reactions namely:
    (a) Acid-base reaction
         2PbO + 4HCl  →  2PbCl2 + 2H2O
    (b) Redox reaction
     +4          -1          +2    0
    PbO2 + 4HCl → PbCl2 + Cl2 +2H2O
    Since HNO3 itself is in oxidant, therefore, the reaction between PbO2 and HNO3 is not possible. However, the acid-base reaction occurs between PbO and HNO3 as:
    2PbO + 4HNO3 → 2Pb(NO3)2 + 2H2O
                                           (acid-base reaction).
    It is the passive nature of PbO2 against HNO3 that makes the reaction different from the one that follows with HCl.
    Question 92
    CBSEENCH11006727

    While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agent is their reactions, ozone and nitric acid act only an oxidants. Why? 

    Solution
    In sulphur dioxide (SO2) and hydrogen peroxide (H2O2), the oxidation states of sulphur and oxygen are +4 and -1 respectively. As these can increase as well as decrease when the compounds take part in chemical reactions, hence they can act as oxidising as well as reducing agents. Example,

    In hydrogen peroxide H2O2, the oxidation number of O is -1 and the range of the Oxidation number that O can have are from O to -2 can sometimes also attain the oxidation numbers +1 and +2. Hence, H2O2 can act  as an oxidising as well as reducing agent.


    In ozone (O3), the oxidation state of oxygen is zero while in nitric acid (HNO3), the oxidation state of nitrogen is +5. As both can undergo decrease in oxidation state and not an increase in its value, hence they can act only as oxidants and no as reductants.
    Question 93
    CBSEENCH11006728

    Consider the reaction:



    Why does the same reductant—thiosulphate react differently with iodine and bromine? 

    Solution
    The first reaction is,bold space bold space bold 2 bold S subscript bold 2 bold O subscript bold 3 superscript bold 2 bold minus end superscript bold left parenthesis bold aq bold right parenthesis bold space bold plus bold I subscript bold 2 bold left parenthesis bold s bold right parenthesis bold rightwards arrow bold S subscript bold 4 bold O subscript bold 6 superscript bold 2 bold minus end superscript bold left parenthesis bold aq bold right parenthesis bold space bold plus bold 2 bold I to the power of bold minus bold left parenthesis bold aq bold right parenthesis
bold average bold space bold Oxidation bold space bold number bold space bold in bold space bold S subscript bold 2 bold O subscript bold 3 superscript bold 2 bold minus end superscript bold space bold is bold space bold plus bold 2
bold average bold space bold Oxidation bold space bold number bold space bold in bold space bold S subscript bold 4 bold O subscript bold 6 superscript bold 2 bold minus end superscript bold space bold is bold space bold 2 bold. bold 5
    I2 being a weaker oxidant oxidises S of space space straight S subscript 2 straight O subscript 3 superscript 2 minus end superscript an ion to a lower oxidation state of 2.5 in space space space straight S subscript 2 straight O subscript 6 superscript 2 minus end superscript ion.
    The second reaction is,
    bold space bold space bold S subscript bold 2 bold O subscript bold 3 superscript bold 2 bold minus end superscript bold left parenthesis bold aq bold right parenthesis bold space bold plus bold 2 bold Br subscript bold 2 bold left parenthesis bold l bold right parenthesis bold space bold plus bold 5 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold rightwards arrow bold 2 bold SO subscript bold 4 superscript bold 2 bold minus end superscript bold left parenthesis bold aq bold right parenthesis bold space bold plus bold 4 bold Br to the power of bold minus bold left parenthesis bold aq bold right parenthesis bold plus bold 10 bold H to the power of bold plus bold left parenthesis bold aq bold right parenthesis

    Oxidation number of S in SO42-=+6

    Since Br2 is a stronger oxidant than I2, it oxidises S of S2O32- to a higher oxidation state of +6 and hence forms SO42- ions. As a result, thiosulphate ions behave differently with I2 and Br2.

    Question 94
    CBSEENCH11006729

    Why does the following reaction occur?bold XeO subscript bold 6 superscript bold 4 bold minus end superscript bold left parenthesis bold aq bold right parenthesis bold space bold plus bold 2 bold F to the power of bold minus bold left parenthesis bold aq bold right parenthesis bold space bold plus bold 6 bold H to the power of bold plus bold left parenthesis bold aq bold right parenthesis
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold rightwards arrow bold XeO subscript bold 3 bold left parenthesis bold g bold right parenthesis bold space bold plus bold F subscript bold 2 bold left parenthesis bold g bold right parenthesis bold plus bold 3 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis

    conclusion about the compound Na4XeO6 (of which XeO64– is a part) can be drawn from the reaction ?






    Solution

    Writing the oxidation number of all the atoms above their respective symbols, bold Xe with bold plus bold 8 on top bold O subscript bold 6 superscript bold 4 bold minus end superscript bold left parenthesis bold aq bold right parenthesis bold space bold plus bold 2 stack bold F to the power of bold minus with bold minus bold 1 on top bold left parenthesis bold aq bold right parenthesis bold plus bold 6 bold H to the power of bold plus bold left parenthesis bold aq bold right parenthesis end exponent
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold rightwards arrow bold Xe with bold plus bold 6 on top bold O subscript bold 3 bold left parenthesis bold g bold right parenthesis bold plus stack bold space bold F subscript bold 2 with bold 0 on top bold left parenthesis bold g bold right parenthesis bold plus bold 3 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis
          
    Since the O.N.of F increases from -1 in F- to zero in F2 and therefore it is oxidised and hence acts as a reductant. The O.N. of Xe decreases from +8 in XeO64- to 6+ in XeOand therefore it is reduced and acts as an oxidant. This reaction occurs since Na4XeO64- (or XeO64- is a stronger oxidant than F2).

    Question 95
    CBSEENCH11006730

    Justify giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compunds, hydroiodic acid is the best reductant.

    Solution
    Since the halogens (X2) have strong electron accepting tendency, therefore they are powerful oxidants. The relative order of oxidising power of halogens is:
    X2   :   F2         >       Cl2    >        Br2    >     I2
    E0   :    2.87 V            1.36         1.09V      0.54 V
    The fact that fluorine is the strongest oxidant can be justified as it can liberate the other halogens from their 
    bold 2 bold KCl bold space bold plus bold space bold F subscript bold 2 bold space bold space bold rightwards arrow bold space bold space bold space bold 2 bold KF bold space bold plus bold space bold Cl subscript bold 2
bold 2 bold KF bold space bold plus bold space bold F subscript bold 2 bold space bold space bold rightwards arrow bold space bold space bold space bold 2 bold KF bold space bold plus bold space bold space bold Br subscript bold 2
bold 2 bold Kl bold space bold plus bold space bold F subscript bold 2 bold space bold space bold space bold rightwards arrow bold space bold space bold space bold 2 bold KF bold space bold plus bold space bold I subscript bold 2
    Among halogen acids (HX), HI is the strongest reducing agent or reductant as its bond dissociation enthalpy is the minimum (299 kJ mol-).
    Halogen acid          :                HF           HCl          HBr        HI
    Bond dissociation   :                 566         431          366       299
    enthalpy(kJ mol-1
    The iodination of methane is of reversible nature since HI formed in the reaction, being very strong reductant, converts iodomethane back to methane.
           bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold CH subscript bold 4 bold space bold plus bold space bold I subscript bold 2 bold space bold space bold space bold rightwards arrow bold space bold space bold space bold space bold CH subscript bold 3 bold I bold space bold plus bold space bold HI
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold CH subscript bold 3 bold I bold space bold plus bold space bold HI bold space bold space bold rightwards arrow bold space bold space bold space bold space bold space bold space bold CH subscript bold 4 bold space bold plus bold space bold I subscript bold 2
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold ______________________________
bold Net bold space bold reaction bold colon bold space bold CH subscript bold 4 bold space bold plus bold space bold I subscript bold 2 bold space bold space bold rightwards harpoon over leftwards harpoon bold space bold space bold space bold space bold CH subscript bold 3 bold I bold space bold plus bold space bold HI
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space

    Question 96
    CBSEENCH11006731

    When a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed when the oxidising agent is in excess. Justify this statement giving three illustrations.

    Solution
    The Fact given in the question is clear from the following illustration.
    First illustration: Carbon is a reducing agent while oxygen is an oxidising agent; Let carbon be taken in excess and allowed to burn in a limited supply of O2. CO has formed in which carbon has +2 oxidation state (lower oxidation state).
    bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold plus bold 2
bold 2 bold C bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold space bold space bold 2 bold CO bold left parenthesis bold g bold right parenthesis
    Also, let O2 be taken in excess, then initially formed CO gets oxidised to CO2 in which carbon has +4 oxidation state (higher oxidation state).
    bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold plus bold 4
bold C bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold CO subscript bold 2 bold left parenthesis bold g bold right parenthesis
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold Excess bold right parenthesis
    Second illustration. Sodium is a reducing agent while oxygen is an oxidising agent. Let sodium be taken in excess and allowed to burn in a limited supply of O2. Sodium oxide (Na2O) is formed in which oxygen has -2 oxidation state.
    bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold minus bold 2
bold 4 bold Na bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold space bold 2 bold Na subscript bold 2 bold O bold left parenthesis bold s bold right parenthesis
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold Excess
    On the other hand, let O2 be taken in excess, then Na2O2 is formed in which has -1 oxidation state which is higher than -2.
    bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space
bold 2 bold Na bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold Na subscript bold 2 bold O subscript bold 2 superscript bold minus bold 1 end superscript bold left parenthesis bold s bold right parenthesis
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold Excess bold right parenthesis
    Third illustration P4 is a reducing agent while Cl2 is an oxidising agent. Let P4 be taken in excess and allow to react it with Cl2, then PCl3 is formed in which P has +3 oxidation state.
    bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold plus bold 3
bold P subscript bold 4 bold left parenthesis bold s bold right parenthesis bold space bold space bold space bold space bold space bold plus bold space bold space bold space bold 6 bold Cl subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold rightwards arrow bold space bold space bold 4 bold PCl subscript bold 3 bold space
bold Excess
    On the other hand, let Cl2 be taken in excess, then initially formed PCl3 reacts further to form PClin which P has +5 oxidation state.
    bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 0 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold plus bold 5
bold P subscript bold 4 bold left parenthesis bold s bold right parenthesis bold space bold space bold space bold plus bold space stack bold 10 bold Cl subscript bold 2 with bold left parenthesis bold Excess bold right parenthesis below bold space bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold space bold 4 bold PCl subscript bold 5
    Question 97
    CBSEENCH11006732

    How do you account for the following observations?

    (a) Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants; yet in the manufacture of benzoic acid from toluene we use alcoholic potassium permanganate as an oxidant. Why? Write a balanced redox for the equation reaction.

    (b) When concentrated sulphuric acid is added to an inorganic mixture containing chloride, we get colourless pungent smelling gas HCl, but if the mixture contains bromide then we get red vapours of bromine. Why?

    Solution

    a) Toluene, being a non-polar liquid will not dissolve in an aqueous alkaline or acidic KMnO4. Therefore alcoholic KMnO4 is preferred in the manufacture of benzoic acid from toluene.



    (b) A chloride such as NaCl reacts with concentrated sulphuric acid to evolve hydrogen chloride gas upon heating.
    bold space bold space bold NaCl bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold H subscript bold 2 bold SO subscript bold 4 bold left parenthesis bold aq bold right parenthesis bold space bold space bold rightwards arrow with bold space bold Heat on top bold space bold space bold NaHSO subscript bold 4 bold left parenthesis bold aq bold right parenthesis bold space bold plus bold space bold HCl bold left parenthesis bold g bold right parenthesis
    Since HCl is a very weak reducing agent, it cannot reduce H2SO4 to SO2 and hence HCl is not oxidised to Cl2.
    bold space bold 2 bold HCl bold space bold plus bold space bold H subscript bold 2 bold SO subscript bold 4 bold space bold space bold space bold rightwards arrow bold space stack bold Cl subscript bold 2 bold space bold plus bold space bold SO subscript bold 2 bold space bold plus bold space bold 2 bold H subscript bold 2 bold O with bold left parenthesis bold Reaction bold space bold is bold space bold not bold space bold possible bold right parenthesis below

    A bromide (NaBr) will also form a vapour of hydrogen bromide (HBr) but be a strong reducing agent, HBr will be oxidised by sulphuric acid to evolve red vapours of bromine. 
    bold space bold space bold H subscript bold 2 bold SO subscript bold 4 bold left parenthesis bold aq bold right parenthesis bold space bold space bold space bold rightwards arrow with bold Heat on top bold space bold SO subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold plus bold space open square brackets bold O close square brackets
bold space bold NaBr bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold H subscript bold 2 bold SO subscript bold 4 bold left parenthesis bold aq bold right parenthesis bold space bold rightwards arrow with bold Heat on top bold space bold NaHSO subscript bold 4 bold left parenthesis bold aq bold right parenthesis bold space bold plus bold space bold HBr bold left parenthesis bold g bold right parenthesis
bold space bold 2 bold HBr bold left parenthesis bold g bold right parenthesis bold space bold plus bold space open square brackets bold O close square brackets bold space bold space bold rightwards arrow bold space bold space bold space bold space bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold plus bold space bold Br subscript bold 2 bold left parenthesis bold g bold right parenthesis   
    Question 98
    CBSEENCH11006733

    Consider the reactions:

    bold left parenthesis bold a bold right parenthesis bold space bold space bold 6 bold CO subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold 6 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold space bold rightwards arrow bold space bold space bold space bold C subscript bold 6 bold H subscript bold 12 bold O subscript bold 6 bold left parenthesis bold aq bold right parenthesis bold space bold plus bold space bold 6 bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis
    Why is it more appropriate to write these reactions as:
    bold left parenthesis bold a bold right parenthesis bold space bold 6 bold CO subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold 12 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold space
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold C subscript bold 6 bold H subscript bold 12 bold O subscript bold 6 bold left parenthesis bold aq bold right parenthesis bold space bold plus bold space bold 6 bold H subscript bold 2 bold O bold left parenthesis bold I bold right parenthesis bold space bold plus bold space bold 6 bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis
bold left parenthesis bold b bold right parenthesis bold space bold O subscript bold 3 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold H subscript bold 2 bold O subscript bold 2 bold left parenthesis bold l bold right parenthesis bold space bold space bold rightwards arrow bold space bold space bold space bold space bold space bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis

    Also, suggest a technique to investigate the path of the above (a) and (b) redox reactions. 

    Solution
    (a) Although the mechanism of photosynthesis is very complex but broadly speaking it may be visualised to occur in two steps. In the first step, H2O decomposes to give H2 and O2 in the presence of chlorophyll and H2 thus produced reduces CO2 to C6H12O6 in the second step. During the second step, some H2O molecules are also produced as
    bold 12 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold space bold rightwards arrow bold space bold space bold 12 bold H subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold 6 bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold. bold. bold left parenthesis bold 1 bold right parenthesis
bold 6 bold CO subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold 12 bold H subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold space bold rightwards arrow bold space bold space bold C subscript bold 6 bold H subscript bold 12 bold O subscript bold 6 bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold 6 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold. bold. bold left parenthesis bold 2 bold right parenthesis
bold space bold space bold space bold 6 bold CO subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold 12 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold rightwards arrow bold space bold space bold space bold C subscript bold 6 bold H subscript bold 12 bold O subscript bold 6 bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold 6 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis bold space bold plus bold space bold 6 bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold. bold. bold left parenthesis bold 3 bold right parenthesis
    Therefore, it is more appropriate, to write the equation for photosynthesis as (3) because it emphasises that 12H2O are used per molecule of carbohydrate formed and 6H2O are produced during the process.
    (b) The purpose of writing O2 two times suggests that O2 is being obtained from each of the two reactants.
                      bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold O subscript bold 3 bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold rightwards arrow bold space bold space bold space bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold space bold O bold left parenthesis bold g bold right parenthesis
bold space bold H subscript bold 2 bold O subscript bold 2 bold space bold plus bold space bold space bold O bold left parenthesis bold g bold right parenthesis bold space bold space bold space bold space bold rightwards arrow bold space bold H subscript bold 2 bold O bold left parenthesis bold italic l bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis
bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _ bold italic _
bold O subscript bold 3 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold H subscript bold 2 bold O subscript bold 2 bold left parenthesis bold italic l bold right parenthesis bold space bold rightwards arrow bold space bold space bold H subscript bold 2 bold O bold left parenthesis bold italic l bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis
    The path of reactions (a) and (b) can determine by using straight H subscript 2 straight O to the power of 18 in reaction (a) or by using bold H subscript bold 2 bold O subscript bold 2 to the power of bold 18 bold space bold or bold space bold O subscript bold 3 to the power of bold 18 bold space bold in bold space bold reaction bold space bold left parenthesis bold b bold right parenthesis bold.
    Question 99
    CBSEENCH11006734

    What is the oxidation number of sulphur in:
    (i)H2SO4            (ii)        Na2S2O3?

    Solution

    (i) H2SO4:
    Let the oxidation number of S = x
    Writing the oxidation number of each atom at the top of its symbol
    +1             x             -2
    H2             S              O4
    The algebraic sum of the oxidation number of various atoms = 0
    2(+1) + x + 4(-2) = 0
                  x - 6  = 0
                       x = +6
    (ii) Na2S2O2:
    Let the oxidation number of S = x
    Writing the oxidation number of each atom at the top of its symbol.
                   +1             x            -2
                  Na2            S2            O3
    The algebraic sum of the oxidation number of various atoms  = 0
                           2(+1) + 2(x) + 3(-2) = 0
    or                           2 + 2x - 6 = 0
    space space therefore                                 x = +2

    Question 100
    CBSEENCH11006735

    Determine the oxidation number of:
    left parenthesis straight i right parenthesis space straight S space in space straight S subscript 2 straight O subscript 3 superscript 2 minus end superscript space straight S subscript 2 straight O subscript 3 superscript 2 minus end superscript space space space space space left parenthesis ii right parenthesis space Br space in space BrO subscript 4 superscript minus space space space space space space left parenthesis iii right parenthesis space straight P space in space HPO subscript 4 superscript 2 minus end superscript

    Solution
    Error converting from MathML to accessible text.
    Error converting from MathML to accessible text.
    The algebraic sum of the oxidation number of various atoms  = 1
     Error converting from MathML to accessible text.
    The algebraic sum of the oxidation number of various atoms = 2
    therefore space space space space space space space plus 1 space plus straight x space plus 4 left parenthesis negative 2 right parenthesis space equals space minus 2
or space space space space space space space space space space space space space straight x space minus space 7 space equals space minus 2
or space space space space space space space space space space space space space space space straight x space equals space plus 5.
    Question 101
    CBSEENCH11006736

    Determine the oxidation number of C in the following:

    bold left parenthesis bold i bold right parenthesis bold space bold C subscript bold 2 bold H subscript bold 6 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold ii bold right parenthesis bold space bold C subscript bold 4 bold H subscript bold 10 bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold iii bold right parenthesis bold space bold CO
bold left parenthesis bold iv bold right parenthesis bold space bold CO subscript bold 2 bold space bold space bold space bold space bold space bold space bold space bold space space space


    Solution

    C2H6: Let the oxidation number of C= x
    Oxidation number of H = 1
    The algebraic sum of the oxidation number of various atoms = 0
           bold therefore bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 2 bold x bold space bold plus bold space bold space bold 6 bold left parenthesis bold plus bold 1 bold right parenthesis bold space bold equals bold space bold 0
bold or bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold 2 bold x bold space bold space bold equals bold space bold minus bold 6
bold or bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold x bold space bold equals bold space bold space bold minus bold 3


    (ii) C4H10:
     Let the oxidation number of C = x
    Writing the oxidation number of each atom at the top of its symbol,
                               x                +1
                             C4                 H10
    The algebraic sum of the oxidation number of various atoms = 0
     therefore                4x  + 10(+1) = 0
    or                        4x = -10
    or                         bold x bold space bold equals bold space bold minus bold 10 over bold 4 bold space bold equals bold minus bold 2 bold 1 over bold 2
    (iii) CO:
    Let the oxidation number of C = x
    Writing the oxidation number of each atom at the top of its symbol,
                       x               -2
                       C                O
    The algebraic sum of the oxidation number of various atoms = 0
                           therefore            x - 2  = 0
                            or             x = 2
    (iv) CO2:
    Let the oxidation number of C = x
    Writing the oxidation number of each atom at the top of its symbol,
                   x              -2
                   C              O2
    The algebraic sum of the oxidation number of various atoms = 0
    therefore             x + 2(-2) = 0
    or                  x = 4

                       
     
    Question 102
    CBSEENCH11006737

    Determine the oxidation number of:
    (i) Mn in KMnO (ii)Cr in K2Cr2O7    (iii) Cl in KClO?

    Solution

     (i) KMnO4.
    Let the oxidation number of Mn=x
    Writing the oxidation number of each atom at the top of its symbol,
              +1             x           -2
              K             Mn           O4
    The algebraic sum of the oxidation number of various atoms = 0
    therefore space space space space space space plus 1 space plus space straight x space plus space 4 left parenthesis negative 2 right parenthesis space equals space 0
or space space space space space space space space space space space space space space space space space straight x minus 7 space equals space 0
or space space space space space space space space space space space space space space space space space space space space space space space space space straight x space equals space plus 7

    (ii) straight K subscript 2 Cr subscript 2 straight O subscript 7
    Let the oxidation number of Cr = x
    Writing the oxidation number of each atom at the top of tis symbol,
                             +1             x            -2
                             K2             Cr2           O7
    The algebraic sum of the oxidation number of various atoms = 0
    therefore space space 2 left parenthesis plus 1 right parenthesis space plus 2 left parenthesis straight x right parenthesis space plus space 7 left parenthesis negative 2 right parenthesis space equals space 0
or space space space space space space space space space space space space space space space space space space space space space 2 straight x minus 12 space equals space 0
or space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x space equals space plus 6
    left parenthesis iii right parenthesis space KClO subscript 4 colon
    Let the oxidation number of Cl = x
    Writing the oxidation number of each atom at the top of its symbol,
                         +1         x            -2
                          K          Cl            O4
    The algebraic sum of the oxidation number ofvarious atoms = 0
    therefore space space space plus 1 plus straight x plus 4 left parenthesis negative 2 right parenthesis space equals space 0
or space space space space space space space space space space space space space straight x space minus 7 space equals space 0
or space space space space space space space space space space space space space space space space straight x space equals space plus 7
     

    Question 103
    CBSEENCH11006738

    Assign oxidation number of the underlined elements in each of the following species:
    space space space NaH subscript 2 bottom enclose straight P straight O subscript 4


    Solution
    space space space space NaH subscript 2 bottom enclose straight P straight O subscript 4.
    Let the oxidation number of P = x
    Writing the oxidation number of each atom at the top of its symbol.
                     +1 + 1 x - 2
                     Na  H2PO4    
    Sum of the oxidation number of various atoms = 0
                                    +1+2(+1)+x+4(-2) = 0
                                            x - 5 = 0
    or                                      x = 5
    space space space therefore  Oxidation number of P in NaH2PO4 = 5 
    Question 104
    CBSEENCH11006739

    Assign oxidation number of the underlined elements in each of the following species:
    NaH bottom enclose straight S straight O subscript 4


    Solution
    NaH bottom enclose straight S straight O subscript 4
    Let the oxidation number of S = x
    Writing the oxidation number of each atom at the top of its symbol.
     +1      -1          x - 2
    Na        H            SO
    Sum of the oxidation number of various atoms = 0
                            +1 + 1 + x + 4(-2) = 0
                                           x - 6 = 0
    or                                      x = +6
    therefore Oxidation number of S in NaHSO4 = +6
    Question 105
    CBSEENCH11006740

    Assign oxidation number of the underlined elements in each of the following species:
    straight H subscript 4 bottom enclose straight P subscript 2 end enclose straight O subscript 7



    Solution
    straight H subscript 4 bottom enclose straight P subscript 2 end enclose straight O subscript 7
    Let the oxidation number of P = x
    Writing the oxidation number of each atom at the top of its symbol.
                       +1        x - 2
                       H4        P2O7
    Sum of the oxidation number of various atoms = 0
                            4(+1)+ 2x + 7(-2) = 0
    i.e.                           x - 5 = 0
    or                                x = +5
    therefore space space space space Oxidation space number space of space straight P space in space straight H subscript 4 straight P subscript 2 straight O subscript 7 space equals space plus 5
     
    Question 106
    CBSEENCH11006741

    Assign oxidation number of the underlined elements in each of the following species:
    straight K subscript 2 bottom enclose Mn straight O subscript 4



    Solution
    straight K subscript 2 bottom enclose Mn straight O subscript 4
    Let the oxidation number of Mn = x
                             +1  x - 2
                             K2 MnO4
    therefore                           2(+1) +x +4(-2) = 0
    or                                 x - 6 = 0
    or                                  x = +6
    therefore   Oxidation number of Mn in K2MnO4 = +6
    Question 107
    CBSEENCH11006742

    Assign oxidation number of the underlined elements in each of the following species:
      Ca bottom enclose straight O subscript 2 end enclose




    Solution

    Let the oxidation state of O =x
    we know that,
    the oxidation state of Ca=+2
    Thus, oxidation state of O is,
    2+2(x) =0
    2x=-2
    x=-1
    The oxidation state of O is -1.

    Question 108
    CBSEENCH11006743

    Assign oxidation number of the underlined elements in each of the following species:
      Na bottom enclose straight B straight H subscript 4




    Solution

    Let the oxidation number of B =x
    Oxidation number of Na =+1
    Oxidation number of H =-1
    Therefore the oxidation number of B is,
    1+ x+4(-1) =0
    x-3=0
    x= 3

    Question 109
    CBSEENCH11006744

    Assign oxidation number of the underlined elements in each of the following species:
    straight H subscript 2 bottom enclose straight S subscript 2 end enclose straight O subscript 7
      




    Solution

    Let the oxidation number of S =x
    Oxidation number of H =1
    Oxidation number of O= (-2)
    Therefore the oxidation number of S in H2S2O7 is,
    1(2) +2x+7(-2)=0
    2x-12=0
    x=6

    Question 110
    CBSEENCH11006745

    Assign oxidation number of the underlined elements in each of the following species:
    KAl left parenthesis bottom enclose straight S straight O subscript 4 right parenthesis subscript 2. space 12 straight H subscript 2 straight O

      




    Solution

    Let the oxidation number of S =x
    Oxidation number of K=+1
    Oxidation number of Al =+3
    Oxidation number of O= (-2)
    In this case, we ignore water molecule since it is a neutral molecule.
    1+3+2x+[2(-2)4] =0
    4+2x+(-16) =0
    2x-12=0
    x=6

    Question 111
    CBSEENCH11006746

    What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
    straight K bottom enclose straight I subscript 3

    Solution
    KI subscript 3
    The structure of KI3 is K+ open square brackets 1 minus 1 space leftwards arrow space 1 close square brackets to the power of negative 1 end exponent
    Here a coordinate bond is formed between I2 molecule and I- ion. The oxidation number of this iodine atom forming the I2 molecule is zero while that of iodine forming the coordinate bond is -1.
    Question 112
    CBSEENCH11006747

    What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
    straight H subscript 2 bottom enclose straight S subscript 4 end enclose straight O subscript 6

    Solution
    straight H subscript 2 bottom enclose straight S subscript 4 end enclose straight O subscript 6
    By conventional method
                 + 1    x   - 2 
                 H2     S4    O6
                
    2(+1) + 4x + 6(-2) = 0
     or                        x = +2.5 (wrong)
    But it is wrong because all the four S atoms cannot be in the same oxidation state.
    By chemical bonding method. The structure of H2S4O6 is'
    H2S4O6 is'
     
    The oxidation number of each of the S-atoms linked with each other in the middle is zero while that of each of the remaining two S-atoms is -5.
    Question 114
    CBSEENCH11006749

    What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?

    bold space bold space bottom enclose bold C bold H subscript bold 3 bottom enclose bold C bold H subscript bold 2 bold OH




    Solution

    C2H6O: The oxidation number of carbon in the ethanol can be given as,

    Let the oxidation number of C= x
    oxidation number of H= +1
    Oxidation number of O= (-2)
    Thus by adding the all oxidation number we get,
    2x +6(1)+(-2)=0
     2x+4=0
    2x=-4
    x=-2
    The oxidation number of carbon is -2.
    Question 115
    CBSEENCH11006750

    What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
    bottom enclose straight C straight H subscript 3 bottom enclose straight C OOH 





    Solution

    C2H4O2: The oxidation number of C in the acetic acid is given as,
    Let the oxidation number of carbon= x
    oxidation number of H = +1
    Oxidation number of O= (-2)
    Thus,
    The algebraic sum of all oxidation number gives,
    2x+ 4(1) +2(-2)=0
    2x+ 4-4=0
    2x=0
    x=0
    However, 0 is average oxidation number of carbon. The two carbon atoms present in this molecules are present in different environments. Hence, they cannot have the same oxidation number. Thus, C exhibits the oxidation states of +2 and -2 in CH3COOH.

    Question 116
    CBSEENCH11006751

    Calculate the oxidation number of sulphur, chromium and nitrogen in H2SO5space space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript and space space NO subscript 3 superscript minus Suggest structure of these compounds. Count for the fallacy.

    Solution

    (i) Oxidation number of S in H2SO5
    By conventional method
    2 x 1 + x + 5 x (-2) = 0
    or 2 + x - 10 = 0 or x = + 8 (wrong)
    But this cannot be true as maximum oxidation number for sulphur cannot exceed +6. The exceptional value is due to the fact that two oxygen atoms in H2SO5 show peroxide linkage.

    This is wrong because maximum oxidation of Cr cannot be more than +6 since it has only six electrons (3d5 4s1) to take part in bond formation. Actually, four out of five oxygen atoms in CrO5 are present in peroxide linkage.
    By chemical bonding method.

    Question 117
    CBSEENCH11006752

    Calculate the oxidation number of Fe in K4|Fe(CN)6|.

    Solution
    Let the oxidation number of Fe =x Writing the oxidation number of each atom at the top of its symbol.
    +1         x     -1
    K4         [Fe(CN)6]
    The algebraic sum of the oxidation number of various atoms = 0
    4(+1) + x + 6(-1) = 0
    or x - 2 = 0
    or x = + 2
    Question 118
    CBSEENCH11006753

    Calculate the oxidation number of:
    (i) Cr in dichromate ion
    (ii) Mn in manganate ion
    (iii) S in tetrathionate ion.

    Solution

    (i) Let the oxidation number of Cr in dichromate ion open parentheses Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript close parentheses space equals straight x
    Writing the oxidation number of each atom at the top of its symbol
                              open square brackets table row straight x cell space space space minus 2 end cell row cell Cr subscript 2 end cell cell space space space space straight O subscript 7 end cell end table close square brackets to the power of negative 2 end exponent
    The algebraic sum of oxidation number of various atoms = 2
                        2(x) + 7(-2) = 0
    or                     2x - 14 = -2
                                  2x =  12
    therefore                          x = +6
    (ii) Let the oxidation number of Mn in manganate ion left parenthesis MnO subscript 4 superscript 2 minus end superscript right parenthesis space equals space straight x
             Writing the oxidation number of each atom at the top of its symbol
                                   x             -2
                                  [Mn          O4]2-
    The algebraic sum of the oxidation number of various atoms = -2
                     x + 4(-2) = -2
                         x - 8 = -2
                          x = +6
    (iii) Let the oxidation number of S in tetrathionate ion left parenthesis straight S subscript 4 straight O subscript 6 superscript 2 minus end superscript right parenthesis space equals space straight x
               Writing the oxidation number of each atom at the top of its symbol.
                                 x              -2
                                [S4             O6]2-
              The algebraic sum of oxidation number of various atoms = -2
                            4(x) + 6(-2) = -2
                       or     4x - 12 = -2
                       or            4x = 10
    Therefore ,   x = 5/2.

    Question 119
    CBSEENCH11006754

    Compute the oxidation number of:
    (i) Ni in |Ni(Fe(C2O4)3|
    (ii) Fe in K3|Fe(C2O4)3|

    Solution

    (i) Let the oxidation number of Ni = x
    Writing the oxidation number of each atom at the top of its symbol. 
                              x       0
                             [Ni  (CO)4]
    The algebraic sum of the oxidation number of various atoms = 0
                      x + 4(0) = 0
                              x = 0
    (ii) Let the oxidation number of Fe = x
    Writing the oxidation number of each atom at the top of its symbol,
                            +1                  x - 2
                             K3               [Fe(C2O4)3]
    The algebraic sum of the oxidation number of various atoms = 0
              3(+1) + x + 3(-2) = 0
                      3 + x - 6 = 0
    therefore space space space space space space space straight x space equals space plus 3

    Sponsor Area

    Question 120
    CBSEENCH11006755

    Compute the oxidation number of Co in [CO(NH3)5Br]SO subscript 4 superscript negative 2 end superscript

    Solution

    Let the oxidation number of Co =x
    Writing the oxidation number of each atom at the top of its symbol,
      x     0     -1
    [CO(NH3)5Br]SO subscript 4 superscript negative 2 end superscript
    The algebraic sum of the oxidation number of various atoms = 0
           x + 5 (0) - 1  =+2(anions charge)
           x-1=2
           x=3
                

    Question 121
    CBSEENCH11006756

    Write the various steps for balancing a redox equation by oxidation number method.

    Solution

    During a redox reaction, the total increase in oxidation number must be equal to the total decrease in oxidation number. This is the basic principle for balancing the chemical equation by oxidation number method. The following are the steps involved:
    1. Writing the skeleton redox reaction.
    2. Assign oxidation numbers of atoms in each compound above the symbol of the element.
    3. Identify the element or elements which undergo a change in oxidation number.
    4. Calculate the increase or decrease in oxidation number per atom. Multiply this number of increase/ decrease of oxidation number with the number of atoms which are undergoing the change.
    5. The species (atoms, ions or molecules) involved in change in O.N. are now multiplied by a suitable coefficient so that the total increase in O.N. becomes equal to the total increase in O.N. The determination of the increase in oxidation number and a decrease in oxidation number (step 4) itself gives the values of these coefficients.
    6. Balance the equation with respect to all other atoms except hydrogen and oxygen.
    7. Finally, balance hydrogen and oxygen.
    8. For balancing oxygen atoms, add a water molecule for each oxygen atom on the side deficient in oxygen.
    9. In acidic medium, for balancing hydrogen atoms, add H+ ions for each hydrogen atom on the side deficient in hydrogen atoms. Be sure that all participants and charges are balanced in the final equation.
    10. In a basic medium, if hydrogen remains unbalanced , add water molecule for each hydrogen atom on the side deficient in hydroxyl atoms and add an equal number Of hydrogen ions on the opposite side.

    Question 122
    CBSEENCH11006757

    Can you store copper sulphate solutions in a zinc pot?

    Solution

    Zinc is more reactive than copper. Therefore, zinc can displace copper from its salt solution. If copper sulphate solution is stored in a zinc pot, then zinc will displace copper from the copper sulphate solution.
    CuSO4 +Zn → ZnSO4 +Cu
    Hence, copper sulphate solution cannot be stored in a zinc pot

    Question 123
    CBSEENCH11006758

    Balance the following equation by oxidation number method.

    bold space bold space bold FeCl subscript bold 3 bold space bold plus bold space bold H subscript bold 2 bold S bold space bold space bold rightwards arrow bold space bold space bold space bold FeCl subscript bold 2 bold space bold plus bold space bold HCl bold space bold plus bold space bold S

    Solution

    (i) The skeleton equation along with oxidation number of each atom is
             +3 -1    +1 -2       +2-1    +1-1  0
              FeCl3  + H2S  rightwards arrow FeCl2 + HCl + S
              (Fe = +3) (S = 2) (Fe = +2) (S =0)
    (ii) Noting the change on O. N. of above atoms
    Increase         S = -2 to  0 i.e.  2
    Decrease        Fe = +3  to +2 i.e. 1
    (iii) Equalise the increase/decrease in O.N. by multiplying FeCl3 by 2.
                     2 FeCl subscript 3 space plus space straight H subscript 2 straight O space space space rightwards arrow space space space FeCl subscript 2 space plus space HCl space plus space straight S
    (iv) On counting and balancing atoms on both the sides, we get the balanced equation.
         2 FeCl subscript 3 space plus space straight H subscript 2 straight O space space rightwards arrow space space space space FeCl subscript 2 space plus space HCl space space plus space straight S
2 FeCl subscript 3 space plus space straight H subscript 2 straight S space space space rightwards arrow space space space 2 FeCl subscript 2 space plus space 2 HCl space plus space straight S

    Question 124
    CBSEENCH11006759

    Balance the following equation by oxidation number method:
        straight P space plus space HNO subscript 3 space space rightwards arrow space space space HPO subscript 3 space plus space NO space plus space straight H subscript 2 straight O

    Solution

    (i) The skeleton equation along with oxidation number of each atom is,
    0  + 1      +5      -2      +1    +5  -2  +2  -2   +1   -2
    P  +H        N      O3 rightwards arrow  H     P   O3  N   O  +H2   O
    (ii) Noting the change in O.N. of above atoms,
    Increase  P = 0  to   5  i.e. 5
    Decrease N = +5  to -2 i.e. 3
    (iii) Equalise the increase/decrease in O.N. by multiplying P by 3 and HNO3 by 5.
            3P + 5HNO3  rightwards arrow  HPO3  + NO + H2O
    (iv) On counting and balancing the atoms on both sides, we get the balanced equation.
                3P + 5HNO3  rightwards arrow  3HPO3 + 5NO + H2O

    Question 125
    CBSEENCH11006760

    Balance the following equation by oxidation number method:

    SnO subscript 2 space plus space straight C space rightwards arrow space space space Sn space plus space CO

    Solution

    (i) The Skeleton equation along with oxidation number of each atom is
                    +4      -2            0            0            +2             -2
                   Sn        O2   +     C   rightwards arrow    Sn+         C              O
    (ii) Noting the change in O.N. of above atoms,
        Increase           C = 0 to  +2   i.e. 2
       Decrease           Sn = +4 to 0  i.e. 4
    (iii) Equalise the increase/decrease in O.N. by multiplying SnO2 by 1 and C by 2
                       SnO2 + 2C  rightwards arrow  Sn + CO
    (iv) On counting and balancing the atoms on both sides, we get the balanced equation:
                         SnO2 + 2C  rightwards arrow Sn + 2CO

    Question 126
    CBSEENCH11006761

    Balance the equation by oxidation number method:

    bold space bold Fe subscript bold 2 bold O subscript bold 3 bold space bold plus bold space bold C bold space bold space bold rightwards arrow bold space bold space bold space bold space bold Fe bold space bold plus bold space bold CO

    Solution

    (i) The skeleton equation along with O.N. of equation is 
         +3  -2      0               0     + 2     -2
         Fe2O3     + C     bold space bold rightwards arrow   Fe +  C        O
        Fe = +3 (C = 0)         (Fe = 0) (C = +2)
    Total O.N. Fe = 6
    (ii) Noting the change in O.N. of above atoms,
      Increase        C = 0 to  2  i.e.  2
      Decrease       Fe  = 3 to 0 i.e. 3
    (iii) Equalise the increase/decrease in O.N. by multiplying C by 3
                       Fe2O3 + 3C  bold space bold rightwards arrow  Fe + CO
    (iv) On counting and balancing the atoms on both sides, we get the balanced equation. 
                       Fe2O3 + 3C space bold rightwards arrow 2Fe + 3CO

    Question 127
    CBSEENCH11006762

    Balance the euqation by oxidation number method:
    straight C subscript 6 straight H subscript 6 space plus space straight O subscript 2 space space space rightwards arrow space space space CO subscript 2 space plus space space straight H subscript 2 straight O

    Solution
    1. The skeleton equation.along with oxidation number of each atom is
    + 1 + 1     0                 +4         -2          +1           -2
    C6H6   + O2     rightwards arrow         C          O2      +H2            O
    (C =-1) (O =0)             (C= +4)           (O = -2)
    2. The oxidation number of C increases from to +4, while that of oxygen decreases from. 0 to -2 (in H2O). Therefore, the equation may be? written 

    3. Equalise the increase/decrease in O.N. by multiplying C6H6 by 2 and O2 by 15, we get,
    2 straight C subscript 6 straight H subscript 6 space plus space 15 straight O subscript 2 space space rightwards arrow space space CO subscript 2 space plus space straight H subscript 2 straight O
    4. On counting and balancing the atoms on both the sides, we get the balanced equation as
    2 straight C subscript 6 straight H subscript 6 space plus 15 straight O subscript 2 space rightwards arrow space space space 12 CO subscript 2 space plus space 6 straight H subscript 2 straight O
    Question 128
    CBSEENCH11006763

    Balance the following,chemical equation by oxidation number method:

    FeS subscript 2 space plus space straight O subscript 2 space space rightwards arrow space space space Fe subscript 2 straight O subscript 3 space plus space SO subscript 2

    Solution
    (i) The skeleton equation along with oxidation number of each atom is:
    +2        -1        0           +3   -2         +4  -2
    Fe      S2   + O2       rightwards arrow  Fe2O3  + SO2
    (O.N. of S in FeS2 is -1 and not - 2)
    (ii) The oxidation number of iron, as well as sulphur, increases from +2 to +3 and -1 to +4 respectively. Since Fe and S must maintain their atomic ratio, the change in oxidation number will be considered together. But, the oxidation number of oxygen decreases from 0 to 2. Thus
    O.N: increases 1 per Fe and 5 per S atom

    (iii) Equalise the increase/decrease of O:N. multiply FeS2 by 4 and O2 by 11.
    4 FeS subscript 2 space plus space 11 straight O subscript 2 space space rightwards arrow space space Fe subscript 2 straight O subscript 3 space plus space SO subscript 2
    (iv) On counting and balancing the atoms on both sides, we get the balanced equation as,
    4 FeS subscript 2 space plus space 11 straight O subscript 2 space space space rightwards arrow space space space 2 Fe subscript 2 straight O subscript 3 space plus space 8 SO subscript 2
    Question 129
    CBSEENCH11006764

    Balance the following,chemical equation by oxidation number method:

    Mn to the power of 2 plus end exponent space plus space straight S subscript 2 straight O subscript 8 superscript 2 minus end superscript space space space space rightwards arrow space space space space stack MnO subscript 4 superscript minus space plus space HSO subscript 4 superscript minus with left parenthesis acidic space medium right parenthesis below


    Solution
    (i)The skeleton equation along with oxidation number each atom is:
    space space straight O. straight N space increases space by space 5 space per space atom

stack Mn to the power of 2 plus end exponent with Mn equals plus 2 below and plus 2 on top space space plus stack stack left square bracket straight S subscript 2 with plus 7 on top space stack straight O subscript 8 with negative 2 on top with straight S equals plus 7 below right square bracket to the power of 2 minus end exponent space rightwards arrow space stack Mn with plus 7 on top space straight O with negative 2 on top to the power of negative space end exponent with Mn space equals plus 7 below space space space plus space stack straight H with plus 1 on top straight S with plus 6 on top space stack straight O subscript 4 superscript minus with negative 2 on top with straight S equals space plus 6 below

ii right parenthesis space Equalise space the space increase space divided by decrease space in space straight O. straight N. space multiply
space Mn to the power of 2 plus end exponent by space 2 space and space 5 straight S subscript 2 straight O subscript 8 superscript 2 minus end superscript space by space 5 comma
2 Mn to the power of 2 plus end exponent space plus space space 5 straight S subscript 2 straight O subscript 8 superscript 2 minus end superscript space rightwards arrow space MnO subscript 4 superscript minus space plus HSO subscript 4 superscript minus

iii right parenthesis space Balance space straight O space atoms comma space by space adding space eight space straight H subscript 2 straight O space molecules space
on space the space reactant space side comma
2 Mn to the power of 2 plus end exponent space plus 5 straight S subscript 2 straight O subscript 8 superscript 2 minus end superscript space space plus 8 straight H subscript 2 straight O space rightwards arrow space 2 MnO subscript 4 superscript minus space plus space 10 HSO subscript 4 superscript minus
Balance space the space straight H space atoms comma
Net space charge space on space LHS space equals plus 4 minus 10 space equals negative 6
Net space charge space on space RHS space equals negative 2 minus 10 space equals negative 12
Adding space six space straight H to the power of plus space on space RHS comma
2 Mn to the power of 2 plus end exponent space plus 5 straight S subscript 2 straight O subscript 8 superscript 2 minus end superscript space plus 8 straight H subscript 2 straight O space rightwards arrow space
space space space space space space space space space space space space space space space space space 2 MnO subscript 4 superscript minus space plus space 10 space HSO subscript 4 superscript minus space plus 6 straight H to the power of plus
    Question 130
    CBSEENCH11006765

    Balance the following chemical equation by oxidation number method:
              Zn space plus space NO subscript 3 superscript minus space space rightwards arrow space space space Zn to the power of 2 plus end exponent space plus space left parenthesis NH subscript 4 right parenthesis to the power of plus in acidic medium.

    Solution

    (i) The skeleton equation along with oxidation number of each atom is
     Zn space equals space space space space space open square brackets NO subscript 3 close square brackets to the power of minus space space space space rightwards arrow space space space space open square brackets Zn close square brackets to the power of 2 plus end exponent space plus space open square brackets NH subscript 4 close square brackets to the power of plus
left parenthesis Zn space equals 0 right parenthesis space space left parenthesis straight N space equals plus 5 right parenthesis space space space left parenthesis Zn space equals space plus 2 right parenthesis thin space left parenthesis straight N space equals space minus 3 right parenthesis
 
    (ii) Noting the change in O.N. of above atoms
    Increase Zn = 0 to  +2  i.e 2
    Decrease N = +5 to -3 i.e. 8
    (iii) Equalise the increase/decrease O.N. by multiplying Zn by 4 and NO subscript 3 superscript minus by 1.
                    4 Zn space plus space left parenthesis NO subscript 3 superscript minus right parenthesis space space space rightwards arrow space space space space Zn to the power of 2 plus end exponent space plus space left parenthesis NH subscript 4 right parenthesis to the power of plus
    (iv) Balance Zn atoms by multiple Zn2 ion by 4.
        4 Zn plus left parenthesis NO subscript 3 right parenthesis to the power of minus space space space rightwards arrow space space space space 4 Zn to the power of 2 plus end exponent space plus space left parenthesis NH subscript 4 right parenthesis to the power of plus
    (v) Balance the oxygen atoms by adding three H2O molecules on the right-hand side. 
    4 Zn plus left parenthesis NO subscript 3 right parenthesis to the power of minus space space space rightwards arrow space space space 4 Zn to the power of 2 plus end exponent space plus space left parenthesis NH subscript 4 right parenthesis to the power of plus space plus space 3 straight H subscript 2 straight O
    (vi) Balancing the hydrogen atoms by adding 10H+ ions  on the reactant side. The complete balanced equation is
    4 Zn space plus space left parenthesis NO subscript 3 right parenthesis to the power of minus space plus space 10 straight H to the power of plus space space rightwards arrow space space space 4 Zn to the power of 2 plus end exponent space plus space left parenthesis NH subscript 4 right parenthesis to the power of plus space plus space 3 straight H subscript 2 straight O

    Question 131
    CBSEENCH11006766

    Balance the following equation by oxidation number method:
    Fe to the power of 2 plus end exponent space plus space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space plus space straight H to the power of plus space space rightwards arrow space space Fe to the power of 3 plus end exponent space plus space 2 Cr to the power of 3 plus end exponent space plus space 3 straight H subscript 2 straight O

    Solution

    (i) The skeleton equation along with oxidation number of each atom is
stack stack Fe to the power of 2 plus end exponent with plus 2 on top with Fe equals plus 2 below space plus stack stack Cr subscript 2 with plus 6 on top space stack straight O subscript 7 superscript negative 2 end superscript with negative 2 on top space with Cr space equals plus 6 below plus stack straight H to the power of plus with plus 1 on top space rightwards arrow stack space stack Fe to the power of 3 plus end exponent with 3 plus on top with Fe space equals plus 3 below space plus stack stack 2 Cr to the power of 3 plus end exponent with plus 3 on top with Cr space equals plus 3 below space plus stack 3 straight H subscript 2 with plus 1 on top straight O with negative 2 on top
    Total O.N. of Cr = +12
    Total O.N of Cr = +6
    (ii) Noting the change in O.N. of above atoms,
        Increase     Fe = +2  to  +3 to i.e.  1
      Decrease      Cr = +12  to  +6 i.e. 6
    (iii) Equalise the increase/decrease in O.N. by multiplying Fe2+ by 6,
                  6 Fe to the power of 2 plus end exponent space plus space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space plus space straight H to the power of plus space space space rightwards arrow space space space space 6 Fe to the power of 3 plus end exponent space plus space 2 Cr to the power of 3 plus end exponent space plus space 3 straight H subscript 2 straight O
    (iv) Balance Fe atoms by multiply Fe3+ by 6.
       6 Fe to the power of 2 plus end exponent space plus space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space plus space straight H to the power of plus space space space rightwards arrow space space space space 6 Fe to the power of 3 plus end exponent space plus space 2 Cr to the power of 3 plus end exponent space plus space 3 straight H subscript 2 straight O
    (v) Balance the hydrogen atoms
       Net charge on LHS = +12 -2 + 1 = +11
       Net charge on RHS = +18 + 6 = +24
      So difference  = 24 - 11 = 13
    Therefore adding thirteen H+ LHS,
    6 Fe to the power of 2 plus end exponent space plus space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space plus space 14 straight H to the power of plus space rightwards arrow space space space 6 Fe to the power of 3 plus end exponent space plus space 2 Cr to the power of 3 plus end exponent space plus space 3 straight H subscript 2 straight O    
    (vi) Balance O atoms and four more H2O molecules on RHS, the balanced equation is
    6 Fe to the power of 2 plus end exponent space plus space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space plus space 14 straight H to the power of plus space space rightwards arrow space space 6 Fe to the power of 3 plus end exponent space plus space 2 Cr to the power of 3 plus end exponent space plus space 7 straight H subscript 2 straight O
      

    Question 132
    CBSEENCH11006767

    Balance the following equation by oxidation number method:
    left enclose CrO subscript 4 right parenthesis to the power of 2 minus end exponent space plus space space left parenthesis SO subscript 3 right parenthesis to the power of 2 minus end exponent space space space rightwards arrow space space end enclose open vertical bar Cr left parenthesis OH right parenthesis subscript 4 close vertical bar to the power of 1 minus end exponent space plus space left parenthesis SO subscript 4 right parenthesis to the power of 2 minus end exponent
    (in alkaline medium)




    Solution

    (i) The skeleton equation along with oxidation number of each atom is
    stack Cr with plus 6 on top space stack straight O subscript 4 superscript 2 minus end superscript with negative 2 on top space with Cr equals plus 6 below plus stack straight S with plus 4 on top space stack straight O subscript 3 superscript 2 minus end superscript with negative 2 on top with straight S equals plus 4 below space rightwards arrow stack left square bracket Cr with plus 3 on top space left parenthesis straight O with negative 2 on top space straight H with plus 1 on top right parenthesis subscript 4 right square bracket to the power of negative 1 end exponent with Cr equals plus 3 below space plus space stack straight S with plus 6 on top stack straight O subscript 4 superscript 2 minus end superscript with negative 2 on top with straight S equals plus 6 below
     
    (ii) Noting the changein O.N. of above atoms,
           Increase      S = +4 to +6 i..e 2  
           Decrease     Cr =  +6   to  +3   i.e.  3
    (iii) Equalise the increase/decrease in O.N. by
    multiplying Cr subscript 2 straight O subscript 4 superscript 2 minus end superscript space by space 2 space and space left parenthesis SO subscript 3 right parenthesis to the power of 2 minus end exponent space by space 3.
       2 left parenthesis CrO subscript 4 right parenthesis to the power of 2 minus end exponent space plus space 3 left parenthesis SO subscript 3 right parenthesis to the power of 2 minus end exponent space space rightwards arrow space space space open square brackets Cr left parenthesis OH right parenthesis subscript 4 close square brackets to the power of minus space plus space left parenthesis SO subscript 4 right parenthesis to the power of 2 minus end exponent
    (iv) Balance Cr atoms by multiplying [Cr(OH)4]- by 2 and balance S atoms by multiplying (SO4)2- by 3.
             2 left parenthesis CrO subscript 4 right parenthesis to the power of 2 minus end exponent space plus space 3 left parenthesis SO subscript 3 right parenthesis to the power of 2 minus end exponent space space space rightwards arrow space space space space 2 open square brackets Cr left parenthesis OH right parenthesis subscript 4 close square brackets to the power of minus space plus space left parenthesis 3 SO subscript 4 right parenthesis to the power of 2 minus end exponent
    (v) Balance O atoms by adding three H2O molecules on the reactant side. 
                  2 left parenthesis CrO subscript 4 right parenthesis to the power of 2 minus end exponent space plus space 3 left parenthesis SO subscript 3 right parenthesis to the power of 2 minus end exponent space plus space 3 straight H subscript 2 straight O space space rightwards arrow space space space 2 open square brackets Cr left parenthesis OH right parenthesis subscript 4 close square brackets to the power of minus space plus space 3 left parenthesis SO subscript 4 right parenthesis to the power of 2 minus end exponent
    (vi) Balance the H atoms
          Net charge on LHS = -4 - 6 = -10
          Net charge on RHS = -2 -6 = -8
    therefore  adding two OH-(basic medium) on RHS and adding 2 water molecules on the reactant side. 
             2 left parenthesis CrO subscript 4 right parenthesis to the power of 2 minus end exponent space plus space 3 left parenthesis SO subscript 3 right parenthesis to the power of 2 minus end exponent space plus space 5 straight H subscript 2 straight O space rightwards arrow space space space 2 open square brackets Cr left parenthesis OH right parenthesis subscript 4 close square brackets to the power of minus space plus space 3 left parenthesis SO subscript 4 right parenthesis to the power of 2 minus end exponent space plus space 2 OH to the power of minus
               

    Question 133
    CBSEENCH11006768

    Balance the following redox reaction by oxidation number method:

       left parenthesis Cr left parenthesis OH right parenthesis subscript 4 superscript minus space plus space straight H subscript 2 straight O subscript 2 space space rightwards arrow space space space space CrO subscript 4 superscript 2 minus end superscript space plus space straight H subscript 2 straight O space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis Basic space medium right parenthesis

    Solution

    (i) The skeleton equation along with oxidation number of each atom isstack Cr with plus 3 on top space left parenthesis straight O with negative 2 on top space straight H with plus 1 on top right parenthesis subscript 4 superscript minus space with Cr space equals plus 3 below plus space stack straight H subscript 2 with plus 1 on top stack straight O subscript 2 with negative 2 on top space rightwards arrow space stack Cr with plus 6 on top stack straight O subscript 4 superscript 2 minus end superscript with negative 2 on top with Cr space equals plus 6 below space plus space stack straight H subscript 2 with plus 1 on top stack space straight O with negative 2 on top
    (ii) Noting the change in O.N. of above atoms,
        Increase in Cr = + 3 to +6  i.e. 
        Decrease per atom of O = 1 (from O in H2O2 to O in H2O)
        Total number of O atom involved = 2
         Total decrease for 2 atoms of O = 2 x 1  = 2
    (iii) Equalise the increase/decrease in O.N. by multiplying H2O2 by 3 and Cr left parenthesis OH right parenthesis subscript 4 superscript minus space by space 2.
                     space space 2 Cr left parenthesis OH right parenthesis subscript 4 superscript minus space plus space 3 straight H subscript 2 straight O subscript 2 space space rightwards arrow space space space CrO subscript 4 superscript 2 minus end superscript space plus space straight H subscript 2 straight O
    (iv)   2 Cr left parenthesis OH right parenthesis subscript 4 superscript minus space plus space 3 straight H subscript 2 straight O subscript 2 space space rightwards arrow space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space space straight H subscript 2 straight O
    space space left parenthesis straight v right parenthesis space 2 Cr left parenthesis OH right parenthesis subscript 4 superscript minus space plus space 3 straight H subscript 2 straight O subscript 2 space space rightwards arrow space space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space straight H subscript 2 straight O space plus space 5 straight H subscript 2 straight O
space space or space space space space 2 Cr left parenthesis OH right parenthesis subscript 4 space plus space 3 straight H subscript 2 straight O subscript 2 space rightwards arrow space space space space space 3 CrO subscript 4 superscript 2 minus end superscript space plus space 6 straight H subscript 2 straight O
    space space left parenthesis vi right parenthesis space 2 Cr left parenthesis OH right parenthesis subscript 4 superscript minus space plus space 3 straight H subscript 2 straight O subscript 2 space plus space 2 OH to the power of minus space space rightwards arrow space space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space 6 straight H subscript 2 straight O space plus space 2 straight H subscript 2 straight O
space space or space space space space space space 2 Cr left parenthesis OH right parenthesis subscript 4 superscript minus space plus space 3 straight H subscript 2 straight O subscript 2 space plus space 2 OH to the power of minus space rightwards arrow space space 2 Cr left parenthesis OH right parenthesis subscript 4 superscript 2 minus end superscript space plus space 8 straight H subscript 2 straight O
     

    Question 134
    CBSEENCH11006769

    Balance the following equation:
    Cr left parenthesis OH right parenthesis subscript 3 space plus space IO subscript 3 superscript minus space space space rightwards arrow space space space CrO subscript 4 superscript 2 minus end superscript space plus space straight I to the power of minus
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis basic space medium right parenthesis space space space space space space space space


    Solution

    (i) The skeleton equation along with O.N. of each atom isstack Cr with 3 plus on top space left parenthesis space straight O with negative 2 on top space straight H with plus 1 on top right parenthesis subscript 3 with Cr equals space plus 3 below space plus stack left square bracket straight I with plus 5 on top stack straight O subscript 3 superscript minus with negative 2 on top right square bracket space with straight I equals plus 5 below rightwards arrow space left square bracket stack Cr with plus 6 on top stack straight O subscript 4 with negative 2 on top with Cr equals plus 6 below right square bracket space plus stack space stack straight I to the power of minus with negative 1 on top with straight I equals negative 1 below

    (ii) Noting the change in O.N. of the above atoms,
       Increase     Cr = +3   to +6  i.e. 3
      Decrease      1 = +5 to  -1  i.e. 6
    (iii) Balancing the total increase in O.N. with a total decrease in O.N. by multiplying Cr(OH)3 by 2.
          2 Cr left parenthesis OH right parenthesis subscript 3 plus space space IO subscript 3 superscript minus space space space rightwards arrow space space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space straight I to the power of minus
    (iv) Balance Cr atoms by multiplying CrO subscript 4 superscript 2 minus end superscript by 2.
                      2 Cr left parenthesis OH right parenthesis subscript 3 space plus space IO subscript 3 superscript minus space space space rightwards arrow space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space straight I to the power of minus
    (v) Balance O atoms by adding OHion on the R.H.S.
              2 Cr left parenthesis OH right parenthesis subscript 3 space plus space IO subscript 3 superscript minus space space space rightwards arrow space space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space straight I to the power of minus space plus space OH to the power of minus
    (vi) Balance H atoms by adding H2O and OH- ions as,
                  2 Cr left parenthesis OH right parenthesis subscript 3 space plus space IO subscript 3 superscript minus space plus space 5 OH to the power of minus space space rightwards arrow space space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space straight I to the power of minus space plus space 5 straight H subscript 2 straight O space plus space OH to the power of minus
2 Cr left parenthesis OH right parenthesis subscript 3 space plus space IO subscript 3 superscript minus space plus space 4 OH to the power of minus space space rightwards arrow space space space 2 CrO subscript 4 superscript 2 minus end superscript space plus space straight I to the power of minus space plus space 5 straight H subscript 2 straight O
     

    Question 135
    CBSEENCH11006770

    Write the net ionic equation for the reaction of potassium dichromate (VI), K2Cr2O7 with sodium sulphite, Na2SO3, in an acid solution to give chromium (III) ion and the sulphate ion.

    Solution

    (i) The skeleton ionic equation is
            space space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space space space rightwards arrow space space space Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space space space
    (ii) Write the O.N. of each atom and identify the atoms which undergo a change in O.N.

               

    (iii) Calculate the total increase and decrease in O.N.
    Since there are two Cr atoms on L.H.S. and only one on R.H.S., therefore multiply Cr3+on R.H.S. of (1) by 2 and thus a total decrease in O.N. of Cr is 2 x 3 = 6.
    (iv) Equalise the increase/decrease in O.N. by multiplying SO subscript 3 superscript 2 minus end superscript space by space 3 space.
    Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space space rightwards arrow space space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
    (v) Balance S atoms by multiplying SO subscript 4 superscript 2 minus end superscript by 3.
                  Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space space rightwards arrow space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
    (vi) Balance O atoms by adding 4H2O molecules towards the R.H.S.
    Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space space space rightwards arrow space space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    (vii) Balance H atoms by adding 8H ions on the L.H.S., since the reaction, occurs in the acidic medium.
         Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript space left parenthesis aq right parenthesis space plus space 8 straight H to the power of plus left parenthesis aq right parenthesis space space rightwards arrow space space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis

    Question 136
    CBSEENCH11006771

    With the net ionic equation for the reaction of potassium dichromate (VI), K2Cr2O7 with sodium sulphite, Na2SO3, in an acid solution to give chromium (III) ion and the sulphate ion.

    Solution

    (i) The skeleton ionic equation is
         Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space space rightwards arrow space space space Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space space space space... left parenthesis 1 right parenthesis
    (ii) Write the O.N. of each atom and identify the atoms which undergo a change in O.N.

    (iii) Calculate the total increase and decrease in O.N.
     Since there are two Cr atoms on L.H.S. and only one on R.H.S., therefore multiply Cr3+on R.H.S. of (1) by 2 and thus a total decrease in O.N. of Cr is 2x3 = 6.
    space space space left parenthesis iv right parenthesis space Equalise space the space increase divided by decrease space in space straight O. straight N.
space by space multiplying space SO subscript 3 superscript 2 minus end superscript space by space 3.
Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript space left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space space space rightwards arrow space space space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
left parenthesis straight v right parenthesis space Balance space straight S space atoms space by space multiplying space SO subscript 4 superscript 2 minus end superscript space by space 3.
Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space rightwards arrow space space space space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
      (vi) Balance O atoms by adding 4H2O molecules towards the R.H.S.
    Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space rightwards arrow space space space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 SO subscript 4 superscript 2 minus end superscript left parenthesis aq space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    (vii) Balance H atoms by adding 8H ions on the L.H.S., since the reaction, occurs in the acidic medium.
    space space Cr subscript 2 straight O subscript 7 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 3 SO subscript 3 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space space 8 straight H to the power of plus left parenthesis aq right parenthesis space space rightwards arrow space space 2 Cr to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis

    Question 137
    CBSEENCH11006772

    Write the various steps for balancing redox equation by ion-electron method (Half reaction method).

    Solution

    Balancing of equation of ion-electron method involves the following steps:
    1. Identify oxidation and reduction half reactions in noting the change in oxidation number of atoms of different species in the reaction and write them separately.
    2. Balance the atoms of all elements other than hydrogen and oxygen in both oxidation and reduction half reactions separately.
    3. Now add required number of electrons (towards R.H.S. in oxidation half reaction and towards L.H.S. in reduction half reaction) in order to balance the charges of the atom undergoing oxidation or reduction on both the sides of the half reactions.
    4. For a reaction taking place in an acidic or neutral medium, balance oxygen atoms by adding an H2O molecule for each oxygen atom on the side deficient in oxygen atoms in each half reaction and now balance hydrogen atom by adding H+ ion for each H atom on the side deficient in hydrogen.
    5. If the reaction is carried in a basic solution, change each H+ ion to a water molecule and add an equal number of OH- ions to the opposite side of the equation.
    6. Add the two balanced half equations and cancel any term common to both the sides.

    Question 138
    CBSEENCH11006773

    Balance the equation by half reaction method:

    straight I subscript 2 space plus space OH to the power of minus space space space space space rightwards arrow space space space space IO subscript 3 superscript minus space plus space straight I to the power of minus space plus space straight H subscript 2 straight O

    Solution
    1. Write the oxidation and reduction half-reactions by observing the changes in oxidation numbers and write these separately.
                                                     0       +5
    Oxidation half-reaction:                  space straight I subscript 2 space space rightwards arrow space space space straight I space space straight O subscript 3 superscript minus space space
                                                  0
    Reduction half-reaction:               space straight I subscript 2 space space rightwards arrow space space straight I to the power of minus
    2.  Balancing the oxidation half reaction.
    (i) Balance 1 atoms by multiplying space IO subscript 3 superscript minus  by 2.
                              0       +5
                              space straight I subscript 2 space space rightwards arrow space space 2 straight I space space straight O subscript 3 superscript minus
    (ii) Add 10 electrons towards R.H.S. to balance the charges on iodine atoms,
                                0         +5
                               straight I subscript 2 space space space rightwards arrow space space space space 2 straight I space space space straight O subscript 3 superscript minus space space plus space 10 straight e to the power of minus
    (iii) Since the medium is alkaline, 6H2O molecules are added towards R.H.S. and 12 OH-ions towards L.H.S. in order to balance oxygen and hydrogen atoms.
                           space space straight I subscript 2 space plus space 12 OH to the power of minus space space rightwards arrow space space space space 2 IO subscript 3 superscript minus space plus space 6 straight H subscript 2 straight O space plus space 10 straight e to the power of minus
space space space space space space space space space space space space space space space space space space space space space left parenthesis Balanced space oxidation space half space reaction right parenthesis
    3. Balancing the reduction half reaction. 
     (i) Balancing 1 atoms by multiplying I- by 
    2.                     0       +5
                         space space space straight I subscript 2 space space space rightwards arrow space space space space 2 straight I to the power of minus
    (ii) Add two electrons towards L.H.S. in order to balance the charges on iodine atoms
                         space space space straight I subscript 2 space plus space 2 straight e to the power of minus space space space rightwards arrow space space space space 2 straight I to the power of minus
space space space space space space space space space space space space space space space space space space space space space space space left parenthesis Balanced space reduction space half space reaction right parenthesis
    4. Multiplying reduction half-reaction by 5 to equate the electrons and add both the half reactions.
    space straight I subscript 2 space plus space 12 OH to the power of minus space space space space rightwards arrow space space space space 2 IO subscript 3 superscript minus space plus space 6 straight H subscript 2 straight O space plus space 10 straight e to the power of minus
space straight I subscript 2 space plus space 2 straight e to the power of minus space space space space rightwards arrow space space space 2 straight I to the power of minus right square bracket space cross times space space 5
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
space 6 straight I subscript 2 space plus space 12 OH to the power of minus space space space rightwards arrow space space space 10 straight I to the power of minus space plus space 2 IO subscript 3 superscript minus space plus space 6 straight H subscript 2 straight O
space or space
3 straight I subscript 2 space plus space 6 OH to the power of minus space space rightwards arrow space 5 straight I to the power of minus space plus space IO subscript 3 superscript minus space plus space 3 straight H subscript 2 straight O
    This is a balanced redox reaction.
    Question 139
    CBSEENCH11006774

    Balance the following equation by half reaction method in acidic medium:
    MnO subscript 4 superscript minus space plus space Br to the power of minus space space space rightwards arrow space space space Mn to the power of 2 plus end exponent space plus space Br squared

    Solution
    (i) Write the oxidation and reduction half-reactions by observing the changes in oxidation numbers and write these separately.
                                          -1              0
    oxidation half reaction:      Br-   rightwards arrow     Br2
    Reduction half-reaction:
          plus 7
MnO subscript 4 superscript minus space space space space rightwards arrow space space space space space Mn to the power of 2 plus end exponent
    2. Balancing the oxidation half reaction.
    (i) Balance Br atoms by multiplying Br- by 2.
                  2 Br to the power of minus space space rightwards arrow space space space Br subscript 2
    (ii) Add 2 electrons towards R.H.S. in order to balance the charges on bromine atoms.
                       2 Br to the power of minus space space space rightwards arrow space space space space stack Br subscript 2 space plus space 2 straight e to the power of minus with left parenthesis Balanced space oxidation space half space rection right parenthesis below
    3. Balancing the reduction half reaction. 
    (i) Balancing of Mn is not required as the number of each Mn is one on both the sides. 
                          plus 7
MnO subscript 4 superscript minus space space space rightwards arrow space space space space space Mn to the power of 2 plus end exponent
    (ii) Add 5 electrons towards L.H.S. in order to balance the charge on manganese atoms. 
                  MnO subscript 4 superscript minus plus space 5 straight e to the power of minus space space rightwards arrow space space Mn to the power of 2 plus end exponent
    (iii) Balance H atoms by adding 8H+ towards 
    L.H.S.
               MNO subscript 4 superscript minus space plus space 5 straight e to the power of minus space plus space 8 straight H to the power of plus space space rightwards arrow space space space Mn to the power of 2 plus end exponent space plus space 4 straight H subscript 2 straight O
space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis Balanced space reduction space half space reaction right parenthesis
    4. Multiply balanced oxidation half-reaction by 5 and balanced reduction half-reaction by 2 to equate electrons and add both the half reactions.
    space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space 0
space space space space space space space space 2 Br to the power of minus space space space rightwards arrow space space Br subscript 2 space plus space 2 straight e to the power of minus right square bracket space cross times space 5
MnO subscript 4 superscript minus space plus space 5 straight e space plus space 8 straight H to the power of plus space space rightwards arrow space space space space Mn to the power of 2 plus end exponent space plus space 2 straight H subscript 2 straight O right square bracket space cross times space 2
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
10 Br to the power of minus space plus space 2 MnO subscript 4 superscript minus space plus space 16 straight H to the power of plus space space rightwards arrow space space space 5 Br subscript 2 space plus space 2 Mn to the power of 2 plus end exponent space plus space 8 straight H subscript 2 straight O
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
    This is a balanced redox equation.
                           
    Question 140
    CBSEENCH11006775

    Balance the following equation by half reaction method:
    straight H subscript 2 straight S space plus space HNO subscript 3 space space rightwards arrow space space space NO space plus space straight S space plus space straight H subscript 2 straight O
     

    Solution
    (1) Write the oxidation and reduction half-reactions by observing the changes in oxidation numbers and write these separately.
                                          -2             0
    Oxidation half-reaction:   H2S    rightwards arrow   S
                                         
                                          +5           +2
    Reduction half-reaction:     HNO3  rightwards arrow  NO
    (2) To balance the oxidation half reaction. (i) Balancing of S is not required as the number of each S is one on both the sides.
                   2-             0
               H2S    rightwards arrow     S
    (ii) Add two electrons towards R.H.S. to balance the charges on sulphur atom.
                         2-           0
                        straight H subscript 2 straight S space space rightwards arrow space space space space straight S space plus space 2 straight e to the power of minus
    (iii) Balance H atoms by adding two H+ towards 
    R.H.S.
               2-        0
              straight H subscript 2 straight S space rightwards arrow space space straight S    + 2 straight e to the power of minus space plus space 2 straight H to the power of plus
       (Balanced oxidation half reduction)
    (3) To balance the reduction half reaction
    (i) Balancing of N is not required as the number of each N is one on both the sides.
                              + 5           +2
                             HNO3    rightwards arrow  NO
    (ii) Add 3 electrons towards L.H.S. in order to balance the charges on the nitrogen atom. 
                +5                  +2
            HNO3   + 3e-   rightwards arrow NO
    (iii) Balance the O atoms by adding two H2O molecules on R.H.S.
                                           +2
               HNO3 + 3e-  rightwards arrow     NO + 2H2O
    (iv) Balancing H atoms by adding 3H+ on L.H.S.
                                 (Balancing reduction half reaction)
    4. Multiplying oxidation half-reaction by 3 and reductive half-reaction by 2 to equate the electrons and adding both the half reactions. 
          space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight H subscript 2 straight S space rightwards arrow space space space straight S space plus space 2 straight e to the power of minus space plus space 2 straight H to the power of plus right square bracket space cross times space 3
space space space space HNO subscript 3 space plus space 3 straight e to the power of minus space plus space 3 straight H to the power of plus space space space rightwards arrow space space space NO space plus space 2 straight H subscript 2 straight O right square bracket space cross times space 2
___________________________________________________
3 straight H subscript 2 straight S space plus space 2 HNO subscript 3 space space rightwards arrow space space space space 3 straight S space plus space 2 NO space plus space 4 straight H subscript 2 straight O
    This is a balanced redox reaction.
              
     
    Question 141
    CBSEENCH11006776

    Write correctly balanced half reaction and the overall equations for the skeleton equation:
              MnO subscript 4 superscript minus space plus space straight H subscript 2 straight C subscript 2 straight O subscript 4 space space rightwards arrow space space space stack Mn to the power of 2 plus end exponent space plus space CO subscript 2 with left parenthesis in space acid space solution right parenthesis below

    Solution
    1. Write the oxidation and reduction half-reactions by observing the changes in oxidation number and write these separately.
                                            +3            +4 
    Oxidation half reaction:        straight C subscript 2 straight H subscript 4 straight O subscript 2 space space rightwards arrow space space CO subscript 2

    Reduction half reaction:     +7                +2
                                          MnO subscript 4 superscript minus space space space space rightwards arrow space space space Mn to the power of plus 2 end exponent
    2. Balancing the oxidation half reaction.
     (i) Balance C atoms by multiplying CO2 by 2.
                       +3                     +4
                        straight C subscript 2 straight H subscript 4 straight O subscript 2 space space rightwards arrow space space space 2 CO subscript 2
    (ii) Add 2 electrons towards R.H.S. in order to balance charges on carbon atoms.
                       straight C subscript 2 straight H subscript 2 straight H subscript 4 space space space rightwards arrow space space space 2 CO subscript 2 space plus space 2 straight e to the power of minus
    (iii) Balance H atoms by adding two H+ (reaction occurs in the acidic medium) towards R.H.S.
    straight C subscript 2 straight H subscript 2 straight O subscript 4 space rightwards arrow space space 2 CO subscript 2 space plus space 2 straight e to the power of minus space plus space 2 straight H to the power of plus
space space space space space space space space space left parenthesis Balanced space oxidation space half space reaction right parenthesis
    3. Balancing the reduction half reaction.
       (i) Balancing of Mn is not required as the number of each Mn is one on both the sides.
                       +7
                      MnO subscript 4 superscript minus space space space rightwards arrow space space space space Mn to the power of 2 plus end exponent
    (ii) Add 5 electrons towards L.H.S. in order to balance the charges on manganese atoms. 
                           MnO subscript 4 superscript minus space plus space 5 straight e to the power of minus space space space rightwards arrow space space space Mn to the power of 2 plus end exponent
    (iii) Balance H atoms by adding eight H+ towards
    L.H.S.
            MnO subscript 4 superscript minus space plus space 5 straight e to the power of minus space plus space 8 straight H to the power of plus space space space rightwards arrow space space space MN to the power of 2 plus end exponent space plus space 4 straight H subscript 2 straight O
                                          (Balanced reduction half reaction)
    4. Multiply balanced oxidation half reaction by 5 and balanced reduction half reaction by 2 to equate the electrons and add both the half reactions. 
                                  straight C subscript 2 straight H subscript 2 straight O subscript 4 space space space rightwards arrow space space space 2 CO subscript 2 space plus space 2 straight e to the power of minus space plus space 2 straight H to the power of plus right square bracket space cross times space 5
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
MnO subscript 4 superscript minus space plus space 5 straight e to the power of minus space plus space 8 straight H to the power of plus space space space rightwards arrow space space space Mn to the power of 2 plus end exponent space plus space 2 straight H subscript 2 straight O right square bracket space cross times space 2
space space space 2 MnO subscript 4 superscript minus space plus space 5 straight C subscript 2 straight H subscript 2 straight O subscript 4 space plus space 6 straight H to the power of plus space space space rightwards arrow space space space space 2 Mn to the power of 2 plus end exponent space plus space 10 CO subscript 2 space plus space 8 straight H subscript 2 straight O
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
This space is space the space balanced space redox space equation. space
    Question 142
    CBSEENCH11006777

    Balance the equation by half reaction method (ion-electron method):
    straight I subscript 2 space plus space HNO subscript 3 space space rightwards arrow space space space HIO subscript 3 space plus space NO subscript 2 space plus space straight H subscript 2 straight O

    Solution

    1. Write the oxidation and reduction half-reactions by observing the changes in oxidation numbers and write these separately.
                                               
    Oxidation half-reaction:          space space stack bold I subscript bold 2 with bold 0 on top bold space bold space bold rightwards arrow bold space bold space bold H bold I with bold plus bold 5 on top bold O subscript bold 3
    Reduction half-reaction:     bold space bold space bold H bold N with bold plus bold 5 on top bold O subscript bold 3 bold space bold rightwards arrow bold space bold space stack bold space bold N with bold plus bold 4 on top bold O subscript bold 2
    2. Balancing the oxidation half reaction.
    (i) The balance I atoms are done by multiplying HIO3 by 2.
                                  0             +5
                                  straight I subscript 2 space space rightwards arrow space space 2 HIO subscript 3
    (ii) Add 10 electrons towards R.H.S. in order to balance the changes on iodine atoms. 
                                             space space stack bold I subscript bold 2 with bold 10 on top bold space bold rightwards arrow bold space bold space bold 2 bold H bold I with bold plus bold 5 on top bold O subscript bold 3 bold space bold plus bold space bold 10 bold e to the power of bold minus
    (iii) Balance the O atoms by adding six H2O molecules towards L.H.S.
                               space space stack bold I subscript bold 2 with bold 0 on top bold plus bold 6 bold H subscript bold 2 bold O bold space bold space bold rightwards arrow bold space bold space bold space bold 2 bold H bold I with bold plus bold 5 on top bold O subscript bold 3 bold space bold plus bold space bold 10 bold e to the power of bold minus
    (iv) Balance H atoms by adding ten H+ towards 
    R.H.S.
                      space space stack bold I subscript bold 2 bold space with bold 0 on top bold plus bold space bold 6 bold H subscript bold 2 bold O bold space bold space bold rightwards arrow bold space bold space bold space bold 2 bold H bold I with bold plus bold 5 on top bold O subscript bold 3 bold space bold plus bold space bold 10 bold e to the power of bold minus bold space bold plus bold space bold 10 bold H to the power of bold plus
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold left parenthesis bold Balanced bold space bold oxidation bold space bold half bold space bold reaction bold right parenthesis
    3. Balancing the reduction half reaction. 
     (i) Balancing of N is not required as the number of each N is one on both the sides. 
                      +5                   +4
                    HNO3         rightwards arrow   NO2
    (ii) Add one electron towards L.H.S. in order to balance the charges on the nitrogen atom. 
                     +5                     +4
                      HNO3 + e-  rightwards arrow   NO2
    (iii) Balance O atoms by adding one H2O molecule towards R.H.S.
                     5                   4
                   HNO3  + e-     rightwards arrow  NO2 + H2O
    (iv)  Balance H atoms by adding one H+ towards
    L.H.S.
             +5                           +4
            HNO3 + H+ + e-     rightwards arrow   NO2 + H2O
                                         (Balance reduction half reaction)
    4. Multiply balanced reduction half-reaction by 10 to equate electrons and add both the half reactions. 
                  space space space space space space straight I subscript 2 space plus space 6 straight H subscript 2 straight O space space rightwards arrow space space space 2 HIO subscript 3 space plus space 10 straight H to the power of plus space plus space 10 straight e to the power of minus
HNO subscript 3 space plus space straight e to the power of minus space plus space straight H to the power of plus space space rightwards arrow space space space NO subscript 2 space plus space straight H subscript 2 straight O right square bracket space cross times space 10
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
straight I subscript 2 space plus space 10 HNO subscript 3 space space rightwards arrow space space space 2 HIO subscript 3 space plus space 10 NO subscript 2 space plus space 4 straight H subscript 2 straight O
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
    This is a balanced redox reaction.

    Question 143
    CBSEENCH11006778

    Chlorine is used to purify drinking water. Excess of chlorine is harmful. The excess of chlorine is removed by treating with sulphur dioxide. Present a balanced equation for this redox change taking place in water. 

    Solution

    The skeleton equation is
               Cl subscript 2 left parenthesis aq right parenthesis space plus space SO subscript 2 left parenthesis aq right parenthesis space plus space straight H subscript 2 straight O left parenthesis straight l right parenthesis space space space rightwards arrow space space 2 Cl to the power of minus left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
    Let us balance the above equation by ion electron method. 
    1. Write the oxidation and reduction half-reaction by observing the change in oxidation number and writing these separately
    Oxidation half-reaction:
    space space S with plus 4 on top O subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space space S with plus 6 on top O subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis
    2. Balancing the oxidation half reaction: Reduction half reaction:
    stack C l subscript 2 with 0 on top left parenthesis aq right parenthesis space space rightwards arrow space space space stack C l to the power of minus with negative 1 on top left parenthesis aq right parenthesis
    (i) Add 2 electrons towards R.H.S. to balance the change on S.
                     SO subscript 2 left parenthesis aq right parenthesis space rightwards arrow space space space SO subscript 4 superscript 2 minus end superscript space left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    (ii) Balance charge by adding four H+ towards R.H.S.
                         SO subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    (iii) Balance O atoms by adding two H2O molecules towards L.H.S.
    SO subscript 2 left parenthesis aq right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
      (Balanced oxidation half- reaction)
    3. Balancing the reduction half reaction:
       (i) Balance Cl atoms by multiplying Clby 2,
                 Cl subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space 2 Cl to the power of minus left parenthesis aq right parenthesis
       (ii) Add e- towards L.H.S.  to balance the charges
              Cl subscript 2 left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space space 2 Cl to the power of minus left parenthesis aq right parenthesis
space space space space space space space space space space space left parenthesis Balanced space reduction space half space reaction right parenthesis
    4. Adding balanced oxidation half reaction and balanced reduced half reaction.
                       Cl subscript 2 left parenthesis aq right parenthesis space plus space SO subscript 2 left parenthesis aq right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space 2 Cl to the power of minus left parenthesis aq right parenthesis space plus space SO subscript 4 superscript 2 minus end superscript left parenthesis aq right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis
    This is the balanced redox equation.
     

    Question 144
    CBSEENCH11006779

    The Mn3+ ions is unstable in solution and undergoes disproportionation to give Mn2+MnO2 and H+ ion. Write a balanced ionic equation for the reaction.

    Solution

    The skeleton equation is
    Mn3+ (aq) → Mn2+ (aq) + MnO2(s) + H+(aq)
    Let us balance the above equation by ion electron method.
    1. Write the oxidation and reduction half-reactions by observing the changes in oxidation number and writing these separately
    Oxidation half-reaction:
                +3                    +4
                Mn to the power of 3 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space space space MnO subscript 2 left parenthesis straight s right parenthesis
      Reduction half reaction:
                 +3                         +2
                 Mn to the power of 3 plus end exponent space left parenthesis aq right parenthesis space space space space space rightwards arrow space space space space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis

    2. Balancing the oxidation half reaction
    (i) Add 1 electron towards R.H.S. to balance the charge on Mn.
                      Mn to the power of 3 plus end exponent left parenthesis aq right parenthesis space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus straight e to the power of minus
    (ii) Balance the charges by adding four H+ towards R.H.S.
                   Mn to the power of 3 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis space plus straight e to the power of minus
                                   [Balanced oxidation half reaction]
    (iii) Balance O atoms by adding two H2O molecules downwards L.H.S.
              Mn to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis space plus straight e to the power of minus
                                  [Balanced oxidation half reaction]
    3. Balancing the reduction half reaction:
             Add 1 electron towards L.H.S. to balance the charge on Mn. 
                       Mn to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space straight e to the power of minus space space rightwards arrow space space space space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis
                                       (Balanced reduction half reaction]
    4. Adding balanced oxidation half reaction and balanced reduction half-reaction. 
                         2 Mn to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis
    This is balanced redox equation for disproportionation reaction. 

    Question 145
    CBSEENCH11006780

    Balance the following redox reactions by ion-electron method:
    MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space SO subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space HSO subscript 4 superscript minus left parenthesis aq right parenthesis space left parenthesis in space acidic space solution right parenthesis

    Solution

    The skeleton equation is:
        MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space SO subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space HSO subscript 4 superscript minus left parenthesis aq right parenthesis
    (i) Separation of the equation in two half reactions. 
        Write the O.N. of the atoms involved in the equation. 
                 +7-2      +4-2            +2            +1 + 6-2
                left parenthesis MnO subscript 4 right parenthesis to the power of minus space plus space SO subscript 2 space space rightwards arrow space space space left parenthesis Mn right parenthesis to the power of 2 plus end exponent space space plus space left parenthesis HSO subscript 4 right parenthesis to the power of minus
    (ii) Identify the atoms which undergo change in O.N.
                 +7             +4          -2            - 6
           left parenthesis MnO subscript 4 right parenthesis to the power of minus space plus space SO subscript 2 space space space rightwards arrow space space left parenthesis Mn right parenthesis to the power of 2 plus end exponent space plus space left parenthesis HSO subscript 4 right parenthesis to the power of minus
    (iii) Find out the species involved in the oxidation and reduction half reactions.

    Oxidation half reaction:
                                  SO subscript 2 space rightwards arrow space space space HSO subscript 4 superscript minus
    Reduction half reaction:
                           MnO subscript 4 superscript minus space space space space rightwards arrow space space space Mn to the power of 2 plus end exponent
    Balancing the oxidation half reaction:
        The oxidation half reaction is:
                         SO subscript 2 space rightwards arrow space space space HSO subscript 4 superscript minus
    (i) As the increase in O.N. is 2, therefore add two electrons on the product side to balance change in O.N.
    SO subscript 2 space space space rightwards arrow space space space HSO subscript 4 superscript minus space plus space 2 straight e to the power of minus
    (ii) Balance O atoms by adding two H2O molecules on the reactant side and balance H atoms by adding three H+ on the product side. 
            SO subscript 2 space plus space 2 straight H subscript 2 straight O space space space rightwards arrow space space space HSO subscript 4 superscript minus space plus space 3 straight H to the power of plus space plus space 2 straight e to the power of minus        ...(1)
    Balancing the reduction half reaction:
    The reduction half reaction is:
                MnO subscript 4 superscript minus space space rightwards arrow space space space Mn to the power of 2 plus end exponent
    (i) As the decrease in O.N. is 5, therefore, add 5e- on the reactant side. 
                      MnO subscript 4 superscript minus plus 5 straight e to the power of minus space space rightwards arrow space space Mn to the power of 2 plus end exponent
    (ii) Balance O atoms by adding four H2O molecules on the product side and balance H atoms by adding eight H+ on the reactant side. 
                   MnO subscript 4 superscript minus space plus space 8 straight H to the power of plus space plus space 5 straight e to the power of minus space space space rightwards arrow space space space Mn to the power of 2 plus end exponent space plus space 4 straight H subscript 2 straight O space space space space... left parenthesis 2 right parenthesis
    Adding the two half reactions.
    In order to equate the electrons, multiply equation (1) by 5 and equation (2) by 2. Add the two equations.
                SO subscript 2 space plus space 2 straight H subscript 2 straight O space space space rightwards arrow space space space space HSO subscript 4 superscript minus space plus space 3 straight H to the power of plus space plus space 2 straight e to the power of minus right square bracket space cross times space 5
MnO subscript 4 superscript minus space plus space 8 straight H to the power of minus space plus space 5 straight e to the power of minus space space space rightwards arrow space space space space Mn to the power of 2 plus end exponent space plus space 4 straight H subscript 2 straight O right square bracket space cross times space 2
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
2 MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 5 SO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space straight H to the power of plus left parenthesis aq right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards arrow space 5 HSO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 2 Mn to the power of 2 plus end exponent left parenthesis aq right parenthesis

    Question 146
    CBSEENCH11006781

    Balance the following redox reaction by ion-electron method:
    stack MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space straight I to the power of minus left parenthesis aq with left parenthesis in space basic space medium right parenthesis below right parenthesis space space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space straight I subscript 2 left parenthesis straight s right parenthesis

    Solution

    The skeleton equation is:
    MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space straight I to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space straight I subscript 2 left parenthesis straight s right parenthesis
    Separation of the equation in two half reactions
    (i) Write the O.N. of the atoms involved in the equation
       -7 -2           -1                 +4 -2    0
       left parenthesis MnO subscript 4 right parenthesis to the power of minus space plus space left parenthesis straight I right parenthesis to the power of minus space space space rightwards arrow space space space space left parenthesis MnO subscript 2 right parenthesis space plus space straight I subscript 2 
    (ii) Identify the atoms which undergo a change in O.N.
        +7        -1                    +4         0
    left parenthesis MnO subscript 4 right parenthesis to the power of minus space plus space left parenthesis straight I right parenthesis to the power of minus space space space space space rightwards arrow space space space space space left parenthesis MnO subscript 2 right parenthesis space plus space space straight I subscript 2
    (iii) Find out the species involved in the oxidation and reduction half-reactions:

    Oxidation half-reaction:
                       straight I to the power of minus space space space rightwards arrow space space straight I subscript 2
    Reduction half-reaction:
                    MnO subscript 4 superscript minus space space rightwards arrow space space space MnO subscript 2
    Balancing the oxidation half reaction
                        2 straight I to the power of minus space space space rightwards arrow space space space straight I subscript 2 space plus space 2 straight e to the power of minus
    Balancing the reduction half reaction
     The reduction half-reaction is:
                           MnO subscript 4 superscript minus space space rightwards arrow space space space space MnO subscript 2
    (i) As the decrease in O.N. is 3, therefore add 3e- on the reactant side
                                 MnO subscript 4 superscript minus space plus space 3 straight e to the power of minus space space rightwards arrow space space space MnO subscript 2
    (ii) Balance O atoms by adding two H2O molecules on the product side 
                   MnO subscript 4 superscript minus space plus space 3 straight e to the power of minus space space rightwards arrow space space space space MnO subscript 2 space plus space 2 straight H subscript 2 straight O
    (iii) Balance the charges, by adding four OH- on the product side and balance H atoms by adding four H2O molecules on the reactant side. 
    MnO subscript 4 superscript minus plus 3 straight e to the power of minus space plus space 4 straight H subscript 2 straight O space space rightwards arrow space space space MnO subscript 2 space plus space 4 OH to the power of minus space plus space 2 straight H subscript 2 straight O      Thus, the reduction half-reaction is balanced. Adding the two half reactions. In order to equate the electrons, multiply equation. (i) by 3 and equation, (ii) by 2 and add the two equations.


    2 straight I to the power of minus space space space rightwards arrow space space space straight I subscript 2 space plus space 2 straight e to the power of minus right square bracket space cross times space 3
MnO subscript 4 superscript minus space plus space 3 straight e to the power of minus space plus space 2 straight H subscript 2 straight O space space rightwards arrow space space space MnO subscript 2 space plus space 4 OH to the power of minus right square bracket space cross times space 2
minus negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
2 MnO subscript 4 superscript minus space plus space 6 straight I to the power of minus space plus space 4 straight H subscript 2 straight O space space space rightwards arrow space space space 3 straight I subscript 2 plus space 2 MnO subscript 2 space plus space 8 OH to the power of minus
o r space 2 MnO subscript 4 superscript minus left parenthesis aq right parenthesis plus 6 straight I to the power of minus left parenthesis aq right parenthesis plus 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis space rightwards arrow space 3 straight I subscript 2 left parenthesis straight s right parenthesis space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus space 2 MnO subscript 2 left parenthesis straight s right parenthesis space plus space 8 OH to the power of minus left parenthesis aq right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space


    Question 147
    CBSEENCH11006782

    Permanganate (VII) ion, MnO subscript 4 superscript minus in basic solution oxidises iodide ion, I- to produce molecule iodine (I2) and manganese (IV) oxide (MnO2). Write a balanced ionic equation to represent redox reaction. 

    Solution
    The skeleton ionic equation is
    MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space straight I to the power of minus left parenthesis aq right parenthesis space space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space space straight I subscript 2 left parenthesis straight s right parenthesis
    1. Write the oxidation and reduction half-reactions by observing the changes in oxidation number and writing these separately. 
                 Oxidation half reaction:
                    -1               0
                    I-(aq)  rightwards arrow  I2(s)
                  Reduction half reaction:
                    +7               +4
                   MnO subscript 4 superscript minus left parenthesis aq right parenthesis space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis
    2. Balance the oxidation half reaction
    (i) Balance 1 atoms by multiplying I- by 2
                           -1                  0
                           2 straight I to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space space straight I subscript 2 left parenthesis straight s right parenthesis
    (ii) Add 2 electrons towards R.H.S. to balance the charges on iodine atoms
                         2 straight I to the power of minus left parenthesis aq right parenthesis space space space rightwards arrow space space straight I subscript 2 left parenthesis straight s right parenthesis space plus space 2 straight e to the power of minus
space space space space space space space space space space space space space space space space left square bracket Balanced space oxidation space half space reaction right square bracket
    3. Balancing the reduction half reaction
        (i) Add 3 electrons towards L.H.S. to balance the charge on Mn
                         MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 3 straight e to the power of minus space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis
         (ii) Balance O atoms by adding two H2O molecules towards R.H.S.
                 MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 3 straight e to the power of minus space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis
         (iii) Balance H atoms by adding four H+ towardS
          L.H.S.
                   MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis space plus space 3 straight e to the power of minus space space rightwards arrow space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    Since the reaction takes place in a basic solution, therefore for four H+ ions, we add four OH- ions to both sides of the equation.
    MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 4 straight H to the power of plus left parenthesis aq right parenthesis space plus space 4 OH to the power of minus left parenthesis aq right parenthesis space plus space 3 straight e to the power of minus space space rightwards arrow space
space space space space space space space space space space space space space space space space space space space MnO subscript 2 left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space 4 OH to the power of minus left parenthesis aq right parenthesis
or
space MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis plus 3 straight e to the power of minus space rightwards arrow space MnO subscript 2 left parenthesis straight s right parenthesis space plus space 4 OH to the power of minus left parenthesis aq right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    [Balanced reduction half reaction]
    4. Multiply balanced oxidation half-reaction by 3 and balanced reduction half-reaction by 2 and add both the half reactions.
    space 6 straight I to the power of minus left parenthesis aq right parenthesis space plus space 3 MnO subscript 4 superscript minus left parenthesis aq right parenthesis space plus space 4 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space
space space space space space space space space space space space 3 straight I subscript 2 left parenthesis straight s right parenthesis space plus space 2 MnO subscript 2 left parenthesis straight s right parenthesis space plus space 8 OH to the power of minus left parenthesis aq right parenthesis
    This is a balanced equation. 
    Question 148
    CBSEENCH11006783

    Balance the following equations in basic medium by ion-electron method and oxidation number method:

    straight P subscript 4 left parenthesis straight s right parenthesis space plus space OH to the power of minus left parenthesis aq right parenthesis space rightwards arrow space space PH subscript 3 left parenthesis straight g right parenthesis space plus space HPO subscript 2 superscript minus left parenthesis aq right parenthesis

    Solution

    (a) Ion-electron method:
    1. Write the oxidation and reduction half-reactions by observing the changes in oxidation numbers.
       Oxidation half-reaction.
                0               +1
               straight P subscript 4 left parenthesis straight s right parenthesis space space rightwards arrow space space space space space straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis
    Reduction half-reaction.
                0                -3
               straight P subscript 4 left parenthesis straight s right parenthesis space space space rightwards arrow space space space PH subscript 3 left parenthesis straight g right parenthesis
    2. Balancing the oxidation half reaction.
     (i)Balancing P atoms by multiply straight H subscript 2 PO subscript 2 superscript minus by 4
                   straight P subscript 4 left parenthesis straight s right parenthesis space space rightwards arrow space space space space 4 straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis
    (ii) Add 4 electrons towards RHS to balance the charges. 
                     straight P subscript 4 left parenthesis straight s right parenthesis space space space rightwards arrow space space space 4 straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis
    (iii) Add 8OHtowards LHS to balance the charges
                  straight P subscript 4 left parenthesis straight s right parenthesis space plus space 8 OH to the power of minus space left parenthesis aq right parenthesis space rightwards arrow space space 4 straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 4 straight e to the power of minus
             (Balanced oxidation half reaction)
    3. Balancing the reduction half reaction
       (i) Balance P atoms by multiplying PH3 by 4
                   0              -3
               straight P subscript 4 left parenthesis straight s right parenthesis space rightwards arrow space space 4 PH subscript 3 left parenthesis straight g right parenthesis
    (ii) Add 12 electrons towards LHS  to balance the charge on P
                 straight P subscript 4 left parenthesis straight s right parenthesis space plus space 12 straight e to the power of minus space space rightwards arrow space space space 4 PH subscript 3 left parenthesis straight g right parenthesis
    (iii) Balance oxygen and hydrogen atoms by adding 12H2O towards LHS and 12OH- towards 
    RHS
    straight P subscript 4 left parenthesis straight s right parenthesis space plus space 12 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus 12 straight e to the power of minus space space space rightwards arrow space space 4 PH subscript 3 left parenthesis straight g right parenthesis space plus space 12 OH to the power of minus left parenthesis aq right parenthesis
                                            [Balanced reduction half reaction]
    4. Multiply balanced oxidation half-reaction by 3 and add it to the balanced reduction half-reaction, we have
    3 straight P subscript 4 left parenthesis straight s right parenthesis space plus 24 OH to the power of minus left parenthesis aq right parenthesis space plus space straight P subscript 4 left parenthesis straight s right parenthesis space plus 12 space straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space 12 straight H subscript 2 PO subscript 4 superscript 2 minus end superscript space plus space 4 PH subscript 3 left parenthesis straight g right parenthesis space plus 12 OH to the power of minus left parenthesis aq right parenthesis
    or space 4 straight P subscript 4 left parenthesis straight s right parenthesis space plus 12 OH to the power of minus left parenthesis aq right parenthesis space plus 12 straight H subscript 2 straight O left parenthesis straight l right parenthesis space rightwards arrow space space 12 straight H subscript 2 PO subscript 4 superscript 2 minus end superscript space plus space 4 PH subscript 3
    or space straight P subscript 4 left parenthesis straight s right parenthesis space plus 3 OH to the power of minus left parenthesis aq right parenthesis space plus 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space space 3 straight H subscript 2 PO subscript 4 superscript 2 minus end superscript space plus space PH subscript 3 

    This is the balanced redox equation,
    (b) Oxidation number method
    (i) The skeleton equation along with oxidation number of each atom is
    0                                -3 +  1    +1  +1   -2
    straight P subscript 4 left parenthesis straight s right parenthesis space plus OH to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space PH subscript 3 left parenthesis straight g right parenthesis space plus space straight H subscript 2 space space straight P space space space straight O subscript 2 superscript minus
    (ii) The oxidation number of P increases by 1 per atom while that of P decreases by 3 per atom.

    P4 acts both as an oxidising as well as reducing agent
    Total space increase space in space straight O. straight N. space of space straight P subscript 4 space space in space straight H subscript 2 PO subscript 2 superscript minus space equals space 1 space cross times space 4 space equals space 4
Total space decrease space in space straight O. straight N. space of space straight P subscript 4 space in space PH subscript 3 space equals space 3 space cross times space 4 space equals space 12
    left parenthesis iii right parenthesis space Equalise space the space increase divided by decrease space in space straight O. straight N. space by space multiplying space PH subscript 3 space by space 1 space and space straight H subscript 2 PO subscript 2 superscript minus space by space 3
           straight P subscript 4 left parenthesis straight s right parenthesis space plus space OH to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space PH subscript 3 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis
    (iv) Balance O atoms by multiplying OHby 6
    straight P subscript 4 left parenthesis straight s right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space PH subscript 3 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis
    (v) Balance H atoms by adding three H2O towards L.H.S. and three OH- towards R.H.S.
    straight P subscript 4 left parenthesis straight s right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis space plus space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space PH subscript 3 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 PO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 3 OH to the power of minus left parenthesis aq right parenthesis

    This is the balanced equation.

    Question 149
    CBSEENCH11006784

    Balance the following equation in basic medium by ion-electron method and oxidation number method and identify the oxidising agent and the reducing agent.
    straight N subscript 2 straight H subscript 4 left parenthesis straight l right parenthesis space plus space ClO subscript 3 superscript minus left parenthesis aq right parenthesis space space rightwards arrow space space space NO left parenthesis straight g right parenthesis space plus space Cl to the power of minus left parenthesis straight g right parenthesis

    Solution

    (A) Ion electron method:
    1. Write the oxidation and reduction half reaction by observing the changes in oxidation number.
               Oxidation half reaction:
                  -2           +2
                 straight N subscript 2 straight H subscript 4 left parenthesis straight l right parenthesis space space rightwards arrow space space space NO left parenthesis straight g right parenthesis 
                                        +5             -1
    Reduction half reaction:    ClO subscript 3 superscript minus left parenthesis aq right parenthesis space space space rightwards arrow space space space Cl to the power of minus
    2. Balancing the oxidation half reaction:
      (i) Balancing N atoms by multiplying NO by 2
                           straight N subscript 2 straight H subscript 4 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space 2 NO left parenthesis straight g right parenthesis
    (ii)  Add eight electron towards R.H.S. to balance the charges
                                  straight N subscript 2 straight H subscript 4 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space 2 NO left parenthesis straight g right parenthesis space plus space 8 straight e to the power of minus
    (iii) Add eight OH- ions towards LHS to balance the charge. 
                    straight N subscript 2 straight H subscript 4 left parenthesis straight g right parenthesis space plus space 8 OH to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space 2 NO left parenthesis straight g right parenthesis space plus space 8 straight e to the power of minus
    (iv) Balance O atoms by adding six H2O molecules towards R.H.S.
                     straight N subscript 2 straight H subscript 4 left parenthesis straight g right parenthesis space plus space 8 OH to the power of minus left parenthesis aq right parenthesis space space rightwards arrow space space space 2 NO left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space 8 straight e to the power of minus
                                       [Balanced oxidation half reactions]
    3. Balancing the reduction half reaction:
    (i) Add 6 electrons towards LHS to balance the charges on Cl atom
                   ClO subscript 3 superscript minus left parenthesis aq right parenthesis space plus space 6 straight e to the power of minus space space rightwards arrow space space space Cl to the power of minus left parenthesis aq right parenthesis
    (ii) Add six OH- ions towards RHS to balance the charges
                         ClO subscript 3 superscript minus left parenthesis aq right parenthesis space plus space 6 straight e to the power of minus space space rightwards arrow space space space Cl to the power of minus left parenthesis aq right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis
    (iii) Balance O atoms by adding three H2O molecules towards LHS.
    ClO subscript 3 superscript minus left parenthesis aq right parenthesis space plus space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space 6 straight e to the power of minus space space space rightwards arrow space space space Cl to the power of minus left parenthesis aq right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Balanced space reduction space half space reaction close square brackets
    (iv) Multiplying balanced oxidation half reaction by 3 and reduction half reaction by 4 to equate the electrons and add both the half reactions.
    3 straight N subscript 2 straight H subscript 4 left parenthesis straight l right parenthesis space plus space 4 ClO subscript 3 superscript minus left parenthesis aq right parenthesis space rightwards arrow space space 6 NO left parenthesis straight g right parenthesis space plus space 4 Cl to the power of minus left parenthesis aq right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    This is the balanced redox equation.

    (b) Oxidation number method
    (i) The skeleton equation along with oxidation number of each atom is
    -2 + 1             +5                +2 -2           -1
    straight N subscript 2 straight H subscript 4 left parenthesis straight l right parenthesis space plus space ClO subscript 3 superscript minus left parenthesis aq right parenthesis space space space rightwards arrow space space space space straight N space straight O left parenthesis straight g right parenthesis space plus space Cl to the power of minus left parenthesis aq right parenthesis
    (ii) The oxidation number of N increase by 4 per N atom while that of CI decreases by 6 per atom.

    Therefore, straight N subscript 2 straight H subscript 4 acts as the reducing agent while ClO subscript 3 superscript minus acts as the oxidising agent.
    (iii) Equalise the increase/decrease in O.N. by multiplying straight N subscript 2 straight H subscript 4 space by space 3 and ClO subscript 3 superscript minus space by space 4.
    (iv) To balance N and Cl atoms, multiplying NO by 6 and Cl- by 4.
    3 straight N subscript 2 straight H subscript 4 left parenthesis straight l right parenthesis space plus space 4 ClO subscript 3 superscript minus left parenthesis aq right parenthesis space space rightwards arrow space space space 6 NO left parenthesis straight g right parenthesis space plus space 4 Cl to the power of minus left parenthesis aq right parenthesis
    (v) Balance O atoms, by adding six H2O molecules towards R.H.S.
               3 straight N subscript 2 straight H subscript 4 left parenthesis straight l right parenthesis space plus space 4 ClO subscript 3 superscript minus left parenthesis aq right parenthesis space space rightwards arrow space space space 6 NO left parenthesis straight g right parenthesis space plus space 4 Cl to the power of minus left parenthesis aq right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    which is the balanced equation.

    Question 150
    CBSEENCH11006785

    Balance the following equation in basic medium by ion-electron method and oxidation number method and identify the oxidising agent and the reducing agent.
    Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space space ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space plus space straight H to the power of plus

    Solution

    (A) Ion-electron method: 
    1. Write the oxidation and reduction half-reaction by observing the changes in oxidation numbers.
    Oxidiation half reaction:
            -1                      0
       straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space space straight O subscript 2 left parenthesis straight g right parenthesis
    Reduction half-reaction:
           +7                  +3
          Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space ClO subscript 2 superscript minus left parenthesis aq right parenthesis
    2. Balancing the oxidation half reaction
        (i) Add 2 electrons towards R.H.S. to balance the charges
                    straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space space rightwards arrow space space space straight O subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight e to the power of minus
       (ii) Add 2 OH- ions towards L.H.S to balance the charges
             straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space plus space 2 OH to the power of minus left parenthesis aq right parenthesis space rightwards arrow space space straight O subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight e to the power of minus
    (iii) Balance O atoms by adding two H2O molecules towards H
              straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space plus space 2 OH to the power of minus left parenthesis aq right parenthesis space rightwards arrow space space space straight O subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space 2 straight e to the power of minus
space space space left parenthesis Balanced space oxidation space half space reaction right parenthesis
    3. Balancing the reduction half reaction
       left parenthesis straight i right parenthesis Balance space Cl space atoms space by space multiplying space ClO subscript 2 superscript minus space by space 2
space space space space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis
left parenthesis ii right parenthesis space Add space 8 space electrons space towards space LHS space to space balance space the space charge
space space space space space space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 8 straight e to the power of minus space space rightwards arrow space space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis
left parenthesis iii right parenthesis space Add space six space OH to the power of minus space towards space straight R. straight H. straight S. space to space balance space the space charges
space space space space space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 8 straight e to the power of minus space rightwards arrow space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis
      space left parenthesis iv right parenthesis space Balance space straight O space atoms space by space adding space three space straight H subscript 2 straight O space
molecules space towards space straight L. straight H. straight S.
Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 straight O plus space 8 straight e to the power of minus space space rightwards arrow space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis
space space space left parenthesis Balanced space reduction space half space reaction right parenthesis
     4. Multiply balanced oxidation half-reaction by 4 and add it to the balanced reduction half-reaction.
    4 straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space plus space 8 OH to the power of minus left parenthesis aq right parenthesis space plus space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space rightwards arrow space space
space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 6 OH to the power of minus left parenthesis aq right parenthesis plus space 4 straight O subscript 2 left parenthesis straight g right parenthesis space plus space 8 straight H subscript 2 straight O left parenthesis straight l right parenthesis
or space space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 4 straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space plus space 2 OH to the power of minus left parenthesis aq right parenthesis
space space space space space rightwards arrow space space space space space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 4 straight O subscript 2 left parenthesis straight g right parenthesis space plus space 5 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    (B) Oxidation number method            
     (i) The skeleton equation along with oxidation number of each atom is
    +7 -2          +1 -1                 +3               0
    Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space space rightwards arrow space space space ClO subscript 2 superscript minus space left parenthesis aq right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space plus space straight H to the power of plus
    (ii) The ON of O atom increases by 1 per atom while that of CI decreases by 4 per atom.

    Thus Cl2O7(g) acts as an oxidising agent while H2O2(aq) as the reducing agent
    Total increase in O.N. of H2O2 = 2 X 1=2
    Total decrease in O.N. of Cl2O7 = 4 x 2 = 8
    (iii) Equalise the increase/decrease in O.N. by multiplying H2O2 and O2 by 4.
    Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 4 straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space rightwards arrow space space ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 4 straight O subscript 2 left parenthesis straight g right parenthesis
    (iv) Balance Cl atoms by multiplying ClO subscript 2 superscript minus space by space 2
        Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 4 straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space space space rightwards arrow space space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 4 straight O subscript 2 left parenthesis aq right parenthesis
    (v) Balance O atoms by adding three straight H subscript 2 straight O towards R.H.S.
               space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis plus space 4 straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis rightwards arrow space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis space plus space 4 straight O subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    (vi) Balance H atoms by adding two straight H subscript 2 straight O towards R.H.S. and two OHtowards L.H.S.
    space Cl subscript 2 straight O subscript 7 left parenthesis straight g right parenthesis space plus space 4 straight H subscript 2 straight O subscript 2 left parenthesis aq right parenthesis space plus space 2 OH to the power of minus left parenthesis aq right parenthesis space space rightwards arrow
space space space space space space space space space space space space space space space space space space space 2 ClO subscript 2 superscript minus left parenthesis aq right parenthesis plus space 4 straight O subscript 2 left parenthesis straight g right parenthesis space plus space 5 straight H subscript 2 straight O left parenthesis straight l right parenthesis
    This is the balanced redox equation.

    Question 151
    CBSEENCH11006786

    In Ostwald’s process for the manufacture of nitric acid, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can be obtained starting only with 10.0 g of ammonia and 20.0 g of oxygen? 

    Solution
    Mass of the ammonia = 17 g
    Mass of Oxygen molecule= 32g
    Mass of nitric oxide= 30g
    Mass of water =18g
    The reaction involved in the manufacturing process is:
    4 NH subscript 3 left parenthesis straight g right parenthesis space space space plus space space space space 5 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space space 4 NO left parenthesis straight g right parenthesis space space plus space space 6 straight H subscript 2 straight O left parenthesis straight g right parenthesis space space
    4 x 17 = 68 g    5 x 32 = 160 g     4 x 30 = 120 g
    From the available data:
    68g of NH3 will react with O2  = 160 g
    10g of NH3 will react with O210 space straight g space of space NH subscript 3 space will space react space with space straight O subscript 2 space equals space fraction numerator left parenthesis 160 space straight g right parenthesis over denominator left parenthesis 68 space straight g right parenthesis end fraction space cross times space left parenthesis 10 space straight g right parenthesis space equals space 23.6 space straight g
    But oxygen which is actually available (20.0 g) is less than the amount which is needed. Therefore, oxygen is the limiting reactant. 
    Now, 160 g of O2 will form NO = 120 g
    therefore space 20 space straight g space of space straight O subscript 2 space will space form space NO space equals space fraction numerator left parenthesis 120 space straight g right parenthesis over denominator left parenthesis 106 space straight g right parenthesis end fraction cross times space left parenthesis 20 space straight g right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 15 space straight g
    Question 152
    CBSEENCH11006787

    Define electrochemical cell. What are the main requirements of an electro- chemical cell?

    Solution

    Electrochemical cell: A device employed to convert the chemical energy of a redox reaction into electrical energy is called an electrochemical cell. It is also called the galvanic or voltaic cell.
    Main requirements:
    (i) A suitable redox reaction is carried out indirectly in two separate half-cells. The electrons are lost in one-half cell and gained in the other half cell.
    (ii) The substance which loses the electrons and the one which accepts the electrons should not be in direct contact with each other. The electron transfer must take place through an external circuit.

    Question 153
    CBSEENCH11006788

    Discuss in brief the working of an electrochemical cell.

    Solution
    An electrochemical cell is also known as galvanic cell or voltaic cell. A redox reaction takes place in such cells. The oxidation and reduction take place in two separate beakers known as half cells. One beaker contains zinc plate dipped into a 0 .1M zinc sulphate solution. The second beaker contains copper plate dipped into a 0 . 1M copper sulphate solution. The two solutions are connected by an inverted U tube known as a salt bridge. The salt bridge is filled with a solution of an electrolyte such as KNO3, KCl or NH4NO3(which does not undergo a chemical change during the process) to which gelatin or agar-agar has been added to make it semi-solid.


    The ends of the salt-bridge are plugged with glass wool or cotton.
    Reaction in a galvanic cell: When the two electrodes are connected through a copper wire, the reaction takes place and electric current begins to flow as shown by the ammeter. The following reactions occur at different electrodes:
    At anode (Oxidation half-reaction):
                  Zn left parenthesis straight s right parenthesis space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    At cathode (Reduction half reaction):
                Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space Cu left parenthesis straight s right parenthesis
    Oxidation takes place at anode and reduction takes place at the cathode. The electrons from the anode flow to the cathode. The anode is a negative electrode and cathode is a positive electrode. Zn2+ ions dissolve in the anode compartment while Cu2+ ions are deposited on the cathode. The neutrality of the two solutions is maintained by a salt bridge by providing cations and anions to replace the ions lost or produced in two half cells. The complete cell reaction is
    Zn left parenthesis straight s right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis
    In such cells, energy is liberated in the form of electrical energy.
     

    Question 154
    CBSEENCH11006789

    Explain the function of salt bridge in an electrochemical cell.

    Solution

    The safe bridge is an inverted U-shaped glass tube filled with strong electrolytes (NH4NO3, KCl, KNO3 etc.) dissolved in a gelatinous substance. The functions of the salt bridge are:
    (i) To complete the circuit.
    (ii) To maintain electrical neutrality of the two half-cell solutions and ensure a continuous production of electric current in a galvanic cell.
    Let us consider Daniell cell,
    Zn left parenthesis straight s right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis
    In the oxidation half-cell, Zn will lose electrons and would change to Zn2+ ions. So positive charge may accumulate in this half cell due to an excess of Zn2+ ions. This prevents the release of electrons from zinc plate and flow of electricity stops. Similarly, the cathodic half cell, Cu2+ ions would gain electrons and deposited as Cu on the cathode. So the negative charge would accumulate due to an excess of SO subscript 4 superscript 2 minus end superscript ions in the half cell. This prevents the flow of electrons to the copper plate. This also stops the flow of electric current. The salt bridge then supplies negative ions to the oxidation half-cell in order to neutralise excess of Zn2+ ions. Similarly, it supplies positive ions to the reduction half-cell in order to neutralise the excess of sulphate ions. Thus, salt bridge maintains the electrical neutrality in both the half cells.

    Question 155
    CBSEENCH11006790

    What are half cell reactions? Explain. 

    Solution

    An electrons cell is made up of two half cells in each of which a half-reaction takes place. The half reaction taking place in each half cell is known as half cell reaction. A half cell reaction in which electrons are released or oxidation occurs is called oxidation half cell reaction and the one in which electrons are accepted or reduction occurs is called reduction half-cell reaction, e.g. in Daniell cell, two half reactions taking place are:
    (i) Oxidation half cell reaction (Anode reaction):
           Zn left parenthesis straight s right parenthesis space space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    (ii) Reduction half cell reaction (Cathode reaction):
              Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space space Cu left parenthesis straight s right parenthesis

    Question 156
    CBSEENCH11006791

    Write down the half reaction and net reaction for the Daniell cell.
    right enclose Zn left parenthesis straight s right parenthesis end enclose space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis vertical line vertical line space space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space left parenthesis 1 space straight M right parenthesis space Cu left parenthesis straight s right parenthesis.

    Solution

    The half reaction of given cell is,
    (i) Oxidation half-reaction:
                     Zn left parenthesis straight s right parenthesis space space space rightwards arrow space space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space space space space space space... left parenthesis 1 right parenthesis
    (ii) Reduction half-reaction:
           Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space space Cu left parenthesis straight s right parenthesis space space space space space space... left parenthesis 2 right parenthesis
    Net reaction {By adding (1) and (2)}
    Zn left parenthesis straight s right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis

    Question 157
    CBSEENCH11006792

    Give the points of difference between a redox reaction occurring in a beaker and in a cell ?

    Solution
    Redox reaction in a beaker(Direct redox reaction)  Redox reaction in an electrochemical cell (Indirect redox reaction)
    1. Oxidation and reduction take place in the same vessel. 1. Oxidation and reduction take place in different vessels called half cells.
    2. The transference of electrons occurs directly in the solution. 2. The transference of electrons takes place through connecting wires.
    3. Energy is released in the form of heat. 3. Most of the energy is released in the form of electrical energy.
    4. The cations accept the electrons at the surface of the cathode and metal formed gets deposited at the cathode. 4. The cations accept the electrons in solution and metal formed settles down as a precipitate.
    5. Reaction quickly proceeds to completion. 5. The reaction does not proceed to completion.
    Question 158
    CBSEENCH11006793

    How will you represent an electrochemical cell with the help of cell notation or cell diagram?

    Solution

    A galvanic cell can always be represented by a cell diagram.
    (i) The anode is written on the left-hand side and represented by writing metal first and then the metal ions (or electrolyte). The two are separated by a vertical line.
    Zn | Zn2+ (1M)
    Pt, H2(1 atm); H+(1M)
    (ii) The cathode is written on the right-hand side and is represented by writing metal ions (or electrolyte) first and then metal (or solid phase). The two are separated by a vertical line.
    Cu2+ (1M) | Cu
    (iii) The salt bridge is represented by two vertical lines separating the two half cells. Daniell cell is represented as;
    Zn | Zn2+ 1M) || Cu2+ (1M) | Cu

    Question 159
    CBSEENCH11006794

    What do you mean by redox couple ?

    Solution
    A redox couple may be defined as a combination of the oxidised and reduce forms of the same substance taking part in an oxidation or reduction half reactions. A redox couple is usually represented by separating the oxidised form and the reduced form of a vertical line which represents the interface (solid/solution). For example, in a galvanic cell, the two redox couples are represented as Zn2+/Zn and Cu2+/Cu. In both cases, oxidised form is put before the reduced form.
    Question 161
    CBSEENCH11006796

    Write the anode reaction, the cathode reaction and the net cell reaction for the following cells. Which electrode will be the positive terminal in each cell?
    1. space space Zn left parenthesis straight s right parenthesis space vertical line space space Zn to the power of 2 plus end exponent space vertical line vertical line space Br to the power of minus comma space space space Br subscript 2 space vertical line space Pt left parenthesis straight s right parenthesis
2. space space space Cr left parenthesis straight s right parenthesis space vertical line space Cr to the power of 3 plus end exponent space vertical line vertical line space straight I to the power of minus comma space space straight I subscript 2 space straight I space Pt left parenthesis straight s right parenthesis
3. space space space Pt left parenthesis straight s right parenthesis space vertical line space straight H subscript 2 left parenthesis straight g right parenthesis comma space straight H to the power of plus left parenthesis aq right parenthesis space vertical line vertical line space Cu to the power of 2 plus end exponent vertical line space Cu left parenthesis straight s right parenthesis.

    Solution

    1.   For the cell
        Zn left parenthesis straight s right parenthesis space plus space Zn to the power of 2 plus end exponent space vertical line vertical line space Br to the power of minus comma space space Br subscript 2 vertical line space Pt left parenthesis straight s right parenthesis
the space two space half space reactions space can space be space represented space as colon
left parenthesis straight i right parenthesis space Anode space reaction space left parenthesis oxidation space half space reaction right parenthesis colon
space space space space space space space space space space Zn left parenthesis straight s right parenthesis space space space rightwards arrow space space space Zn to the power of 2 plus end exponent space plus space 2 straight e to the power of minus
left parenthesis ii right parenthesis space Cathode space reaction space left parenthesis Reduction space half space reaction right parenthesis colon
space space space space space space space space space space space space Br subscript 2 plus space 2 straight e to the power of minus space rightwards arrow space 2 Br to the power of minus
Net space cell space reaction space left square bracket by space adding space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis right square bracket colon
space space space space space space space space Zn left parenthesis straight s right parenthesis space plus space Br subscript 2 space space rightwards arrow space space space Zn to the power of 2 plus end exponent space plus space 2 Br to the power of minus
    Positive terminal:   The bromine electrode where reduction takes place.
    2. For the cell Cr left parenthesis straight s right parenthesis space plus space Cr to the power of 3 plus end exponent space parallel to space space straight I to the power of minus comma space space straight I subscript 2 space vertical line space Pt left parenthesis straight s right parenthesis
    The two half reactions can be represented as:
    (i) Anode reaction (oxidation half reaction):
                    Cr left parenthesis straight s right parenthesis space rightwards arrow space space space Cr to the power of 3 plus end exponent space left parenthesis aq right parenthesis space plus space 3 straight e to the power of minus
    (ii) Cathode reaction (reduction half reaction):
                   straight I subscript 2 space plus space 2 straight e to the power of minus space space space rightwards arrow space space 2 straight I to the power of minus
    Net cell reaction: It is obtained by multiplying equation (i) by 2 and equation (ii) by 3 and then adding.
    2 Cr left parenthesis straight s right parenthesis space space space rightwards arrow space space space space 2 Cr to the power of 3 plus end exponent space plus space 6 straight e to the power of minus
3 straight l subscript 2 left parenthesis straight s right parenthesis space plus space 6 straight e to the power of minus space space rightwards arrow space space space 6 straight I to the power of minus
2 Cr left parenthesis straight s right parenthesis space plus space 3 straight I subscript 2 left parenthesis straight s right parenthesis space rightwards arrow space space 2 Cr to the power of 3 plus end exponent space plus space 6 straight I to the power of minus

    Positive terminal. The iodine electrode where reduction takes place.
    3. For cell Pt left parenthesis straight s right parenthesis vertical line space straight H subscript 2 left parenthesis straight g right parenthesis comma space straight H to the power of plus left parenthesis aq right parenthesis space parallel to space Cu to the power of 2 plus end exponent space vertical line space Cu left parenthesis straight s right parenthesis
    the two half reactions can be represented as:
    (i) Anode reaction (oxidation half reaction):
                         straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    (ii) Cathode reaction (reduction half reaction):
                       Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space space rightwards arrow space space space Cu left parenthesis straight s right parenthesis
    Net cell reaction:  It is obtained by adding equations (i) and (ii).
    straight H subscript 2 left parenthesis straight g right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space rightwards arrow space space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis
    Positive terminal: The copper electrode where reduction takes place.

    Question 162
    CBSEENCH11006797

    Split the following redox reactions in oxidation and reduction half reactions:
    left parenthesis straight a right parenthesis space 2 straight K left parenthesis straight s right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 KCl left parenthesis straight s right parenthesis
left parenthesis straight b right parenthesis space 2 Al left parenthesis straight s right parenthesis space plus space 3 Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space space rightwards arrow space space space 2 Al to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 Cu left parenthesis straight s right parenthesis

    Solution

    (a) The given reaction
                 2 straight K left parenthesis straight s right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 KCl left parenthesis straight s right parenthesis
can space be space split space into space two space half space reaction space as colon
    (i) Oxidation half-reaction.
                                   2 straight K space rightwards arrow space space 2 straight K to the power of plus space plus space 2 straight e to the power of minus
    (ii) Reduction half reaction:
                                  Cl subscript 2 space plus space 2 straight e to the power of minus space space rightwards arrow space space space 2 Cl to the power of minus
    (b) The given reaction
              2 Al left parenthesis straight s right parenthesis space plus space 3 Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space space space rightwards arrow space space space 2 Al to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus space 3 Cu left parenthesis straight s right parenthesis
can space be space split space into space two space half space reaction colon
    (i) Oxidation half reaction:
                        2 Al left parenthesis straight s right parenthesis space space rightwards arrow space space space 2 Al to the power of 3 plus end exponent left parenthesis aq right parenthesis space plus 6 straight e to the power of minus
    (ii) Reduction half reaction:
                   3 Cu to the power of 2 plus end exponent space plus space 6 straight e to the power of minus space space space rightwards arrow space space space 3 Cu left parenthesis straight s right parenthesis

    Question 163
    CBSEENCH11006798

    What is electrode potential? Name the factors on which it depends.

    Solution
    The tendency of an electrode to lose or gain electrons when in contact with the solution of its own ions is known as electrode potential. The tendency of an electrode to lose electrons is a direct measure of its tendency to get oxidised. This tendency is known as oxidation potential.
    straight M left parenthesis straight s right parenthesis space space space rightwards harpoon over leftwards harpoon space space space straight M to the power of straight n plus end exponent space left parenthesis aq right parenthesis space plus space ne to the power of minus
Zn left parenthesis straight s right parenthesis space space rightwards harpoon over leftwards harpoon space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
straight H subscript 2 space space space space space space rightwards harpoon over leftwards harpoon space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    The tendency of an electrode to gain electron is a direct measure of its tendency to get reduced. This tendency is known as reduction potential.
    straight M to the power of straight n plus end exponent left parenthesis aq right parenthesis space plus space ne to the power of minus space space space space rightwards harpoon over leftwards harpoon space space space space straight M left parenthesis straight s right parenthesis
Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards harpoon over leftwards harpoon space space Cu left parenthesis straight s right parenthesis
2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards harpoon over leftwards harpoon space space space straight H subscript 2 left parenthesis straight g right parenthesis
    It is clear that the oxidation potential is the reverse of reduction potential. For example, if reduction potential of zinc is –0.76V, its oxidation potential is +0.76V.
    In general, for an electrode,
    Oxidation potential =–Reduction potential
    The magnitude of electrode potential depends on upon three factors:
    (i) Nature of electrode
    (ii) Concentration of the metal ion
    (iii) Temperature.
    Since the electrode potentials depend on upon the concentration of the metal ions in solution and temperature, therefore electrode potential are generally measured under standard conditions i.e. 1 molar concentration of metal ions (1 mol L-1) and a temperature of 298K and are called standard electrode potentials and denoted by E°.
    Question 164
    CBSEENCH11006799

    What do you know about the standard hydrogen electrode? What is its significance ?

    Solution
    It consists of platinum foil or wire coated with platinum black dipped into a molar (1 M) solution of H+ ions and hydrogen gas is continuously passed through it at 298 K and 1-atmosphere pressure.

    This electrode may serve as anode or cathode depending upon the nature of another electrode to which it is connected.
    S.H.E. acts as an anode i.e. oxidation takes place, the following reaction occurs:
                        straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    S.H.E. acts as a cathode i.e. reduction takes place, the following reaction occurs:
                        2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space space straight H subscript 2 left parenthesis straight g right parenthesis
    Thus S.H.E. is a reversible electrode.
                        straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards harpoon over leftwards harpoon space space space space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
    The standard electrode potential (E°) of a standard hydrogen electrode is taken to be 0.00 volt. It is usually represented as Pt, H2(g), (1 atm) [H+ (1 M)] Significance. It is used as a reference electrode to measure the relative value of electrode potential of a given electrode.
    Question 165
    CBSEENCH11006800

    Can we measure the absolute value fo single electrode potential? Explain.

    Solution
    It is not possible to measure the absolute value of single electrode potential because neither oxidation nor reduction takes place independently. We can measure electrode potential with reference to a reference electrode. For this purpose, standard hydrogen electrode has been selected as the reference and is assigned an arbitrary value of zero volts in the standard state.
    2 straight H to the power of plus left parenthesis straight e space equals space 1 space mol space straight L to the power of negative 1 end exponent right parenthesis space space plus 2 straight e to the power of minus space space space rightwards arrow space space space space straight H subscript 2 left parenthesis straight g right parenthesis space 1 space atm comma space 25 degree straight C
    The potential difference as measured between any electrode and the standard reference electrode is taken as the reduction potential of the electrode. 
    Question 166
    CBSEENCH11006801

    Define standard electrode potential of an electrode.

    Solution
    Standard electrode potential (E°): The potential of an electrode, under standard conditions, when measured relative to the potential of standard hydrogen electrode is called standard electrode potential. It is represented by E°. The standard conditions are a 1M concentration of ions, 298K temperature and 1-atmosphere pressure. It is important to note that it is common practice to express all the electrode potentials as reduction potentials. The standard reduction potentials of an electrode may be defined as the reduction potential of an electrode as determined with respect to a standard hydrogen electrode. The reduction potential of an electrode is directly proportional to the concentration of the positive ions in solution, in contact with the metal.
    Question 167
    CBSEENCH11006802

    How will you determine the standard reduction potential (E°) of an electrode experimentally?

    Solution

    The standard reduction potential of an electrode is determined by connecting it with a standard hydrogen electrode whose electrode potential is taken as zero.
    Calculation of E° of zinc. A cell consisting of zinc electrode immersed in 1 M ZnSOsolution and [Standard hydrogen electrode is set up as shown.
    The reading as given by voltmeter in the cell circuit is 0.76 V. This measures the E.M.F. of the cell. The electrons flow from zinc electrode to the hydrogen electrode. This means that zinc acts as an anode while hydrogen gas electrode acts as a cathode.

    Oxidation space half space reaction
space space space space Zn left parenthesis straight s right parenthesis space space rightwards arrow space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e
    Reduction space half space reaction. space
space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space straight H subscript 2 left parenthesis straight g right parenthesis
    Since oxidation occurs at the zinc electrode, therefore, the standard electrode potential forZn2+|Zn half cell is –0.76 volt.
    Calculation of E° of copper. A cell consisting of copper electrode immersed in 1M CuSO4 solution and standard hydrogen electrode is set up as shown.

    The reading as given by voltmeter in the cell circuit is 0.34V. This measures the E.M.F. of the cell. The electrons flow from hydrogen electrode to copper electrode. This means that hydrogen electrode acts as an anode while copper electrode acts as a cathode.
    Oxidation space half space reaction.
space space space straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 straight H to the power of plus left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space space space space space... left parenthesis 1 right parenthesis
Reduction space half space reaction. space
space 2 Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus space space rightwards arrow space space Cu left parenthesis straight s right parenthesis space space space space space space space space space space... left parenthesis 2 right parenthesis
    Since reduction occurs at the copper electrode, therefore, the standard electrode potential for Cu2+|Cu half cell is +0.34 volt.

    Question 168
    CBSEENCH11006803

    What is electrochemical series? What are its important applications?

    Solution
    The table in which the reduction potential of various electrodes has been arranged in the increasing order is called electrochemical series. The standard reduction potential of hydrogen electrode is zero. The electrodes above hydrogen have negative reduction potential while those placed below it have positive reduction potential.

    Applications:
    (i) To predict the relative oxidising and reducing powers: Greater the reduction potential, more easily the substance is reduced and hence is a stronger oxidising agent. For example oxidising powers of halogens are F2 > Cl2 > Br2 > I2.
    (ii) To predict whether a metal will react with acid to give H2 gas : Metals above hydrogen in the series displace hydrogen from acids.
    (iii) To calculate the standard E.M.F. of the cell
    straight E subscript cell superscript degree space equals space straight E subscript cathode superscript degree space minus space straight E subscript anode superscript degree
    (iv) To predict the spontaneity of any redox reaction: If E.M.F. of the cell is positive, it is spontaneous, otherwise not.


    Question 169
    CBSEENCH11006804

    Given the standard electrode potentials,

    straight K to the power of plus divided by straight K space equals negative 2.93 space straight V comma space space space Ag to the power of plus divided by Ag space equals space 0.80 space straight V
Hg to the power of 2 plus end exponent divided by Hg space equals space 0.79 space straight V
Mg to the power of 2 plus end exponent divided by Mg space equals space minus 2.37 space straight V comma space space space Cr to the power of 3 plus end exponent divided by Cr space equals space minus 0.74 space straight V
arrange space these space metals space in space their space increasing space order space of space reducing space power.

    Solution
    We know the reducing power of a metal depends on upon its tendency to lose electrons. Thus, lower the reduction potential, more the tendency to get oxidised and thus more will be the reducing power. Hence increasing order of reducing power of metals is,
    Ag < Hg < Cr < Mg < K.
    Question 170
    CBSEENCH11006805

    Arrange the following metals in order in which they displace each other: 
    Al, Cu, Fe, Mg, Zn.

    Solution
    We know that lower the reduction potential more the tendency to lose electrons and thus more will be the displacement, hence decreasing order of displacement power is Mg > Al > Zn > Fe > Cu.
    Question 171
    CBSEENCH11006806

    Zinc liberates hydrogen from dilute hydrochloric acid, copper fails to do so. Explain.

    Solution

    We know zinc has negative reduction potential [E° (Zn2+1 Zn) = –0 . 76V] and lies above hydrogen in the electrochemical series. Therefore, the electron accepting tendency of zinc is less than that of hydrogen or its electron releasing tendency is more.
    Thus, zinc can lose electrons to H+ ions of the acid and as a result, hydrogen gas is liberated.

    Zn left parenthesis straight s right parenthesis space space rightwards arrow space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space 2 straight e to the power of minus
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets oxidation space half space reaction close square brackets
2 straight H to the power of plus left parenthesis aq right parenthesis space plus 2 straight e to the power of minus space space rightwards arrow space space space straight H subscript 2 left parenthesis straight g right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Redcution space half space reaction close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Since copper has a positive reduction potential (E° = +0.34 V) and lies below hydrogen in the electrochemical series, therefore, it cannot lose an electron to H+ ions of the acid. Hence H2 gas is not liberated.

    Question 172
    CBSEENCH11006807

    Sodium is regarded as an active metal, copper is inactive. Explain?

    Solution
    Only those metals are considered to be active which can liberate hydrogen gas from dilute HCl or H2SO4 and have the negative value of the standard reduction potentials. Such metals can lose electrons to H+ ion of an acid.
    HCl space rightwards harpoon over leftwards harpoon space space straight H to the power of plus left parenthesis aq right parenthesis space plus space Cl to the power of minus left parenthesis aq right parenthesis
space Na space rightwards arrow space space Na to the power of plus space plus space straight e to the power of minus
straight H to the power of plus left parenthesis aq right parenthesis space plus space straight e to the power of minus space space rightwards arrow space space space 1 half straight H subscript 2
    On the other hand, those metals are considered to be inactive which fail to liberate hydrogen from dilute acids and have a positive value of standard reduction potentials. Thus sodium [E° (NA| NA) = –2.714 V] is an active metal while copper [E° = +0 . 34V] is regarded as inactive metal.
    Question 173
    CBSEENCH11006808

    How can  you increase the reduction potential of an electrode.

    Solution
    The reduction potential of an electrode can be increased by adding a small amount of electrolyte to the half cell containing the electrode. The reduction potential of an electrode is directly proportional to the concentration of positive ions. Hence the increase in the concentration of cations results in an increase of reduction potential of an electrode and vice-versa. For example, the reaction of Zn - Cu cell is
    Zn left parenthesis straight s right parenthesis space plus space Cu to the power of 2 plus end exponent left parenthesis aq right parenthesis space space space rightwards harpoon over leftwards harpoon space space space Zn to the power of 2 plus end exponent left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis
    An increase in the value of [Cu2+] derives the reaction more to the right (according to Le-Chatelier’s principle) resulting in higher values of A cathode.
    Question 174
    CBSEENCH11006809

    Standard reduction potential of some electrodes are given below:

    Electrode

    Standard reduction potential (volts)
    Cd2+ | Cd –0.40
    Ni2+|Ni –0.25
    2H+|H2 –0.00
    Cu2+ | Cu + 0.34
    Ag+ | + Ag +0.53

    Out of the metals given above which will liberate hydrogen when treated with HCl at 298K?

    Solution
    Only those metals can liberate hydrogen from the acid which has a lower value of reduction potentials i.e. negative value of reduction potential than that of standard hydrogen electrode. As the standard reduction potential of Cd and Ni are lesser than the standard reduction potential of hydrogen, therefore, Cd and Ni metals would liberate hydrogen gas when treated with HCl at 298K.
    The following redox reaction would occur:
    Cd space plus space 2 straight H to the power of plus space space rightwards arrow space space space Cd to the power of 2 plus end exponent space plus space straight H subscript 2
Ni space plus space 2 straight H to the power of plus space space rightwards arrow space space space Ni to the power of 2 plus end exponent space plus space straight H subscript 2
    Question 175
    CBSEENCH11006810

    Suggest a list of the substances where carbon can exhibit oxidation states from -4 to +4 and nitrogen from -3 to 5.

    Solution
    Variable oxidation states of carbon:

    Variable oxidation state of Nitrogen:
    Question 176
    CBSEENCH11006811

    Using the standard electrode potentials given in the Table 8.1, predict if the
    reaction between the following is feasible:
    (a) Fe3+ (aq) and  I- (aq)
    (b) Ag+(aq) and Cu(s)
    (c) Fe3+(aq) and Cu(s)
    (d) Ag(s) and Fe3+(aq)
    (e) Br2(aq) and Fe2+(aq)

    Solution

    a)   Fe3+(aq) and I-(aq)

    Oxidation half-reaction is

    2I- -> I2­ +2e-

    E0 =-0.54V.

    Reduction half reaction is Fe3+ (aq) +e- -> Fe2+] x2

     E0 +.77V

    2I- +2Fe3+ -> I(g) +2Fe2+

    E.M. F. =-0.54 +.077 = +0.23V

    Since the EMF is positive the reaction is feasible.

    b)  Here Cu (s) loses electrons and Ag+(aq) gains electrons

    Thus,

    Oxidation half-cell reaction is

    Cu(s) -> Cu2+ +2e-]E0 =-0.34 V

    Reduction Ag+ +e- -> 2Ag

    E0cell =-0.46V

    Since E0cell is positive the reaction is feasible..

    c) Oxidation Cu(s) -> Cu2+(aq) +2e-; E0 =-0.34 V

    Reduction Fe3+ +e- -> Fe2+

    E0cell = +0.77V

    Probable cell

    Cu(s), Cu2+:: Fe3+, Fe2+

    E0cell = E0red (R.H.S)- E0oxid (L.H.S)

     =[0.77-0.34]V =0.43V

    Since E0cell is positive reaction is feasible

    d)   Ag(s) and Fe3+(aq)

    Oxidation Ag(s) -> Ag+ +e-; E0 =-0.80V

    Reduction Fe3+ +e- -> Fe2+, E0 =0.77V

    E0cell = -0.03V

    Since E0cell is negative, reaction is not feasible

    e)   Br2 and Fe2+

    Here Fe2+ lose electrons and Br2  gain them.

    Oxidation Fe 2+ -> Fe3+ +e-]x 2 E0 =0.77V

    Reduction Br2 +2e- -> Br-] (E0= +1.08 V)

    E0cell = +0.31 V

    Reaction is 2Fe2+ +Br2 –> 2Fe3+ +2Br-

    Since E0cell is positive such that reaction is fesible

    Question 177
    CBSEENCH11006812

    Predict the products of electrolysis in each of the following:

    (i) An aqueous solution of AgNO3 with silver electrodes. 

    ii)An aqueous solution AgNO3 with platinum electrodes. 

    iii) A dilute solution of H2SO4 with platinum electrodes.

    iv) An aqueous solution of CuCl2 with platinum electrodes. 

    Solution

    straight i right parenthesis space AgNO subscript 3 space rightwards harpoon over leftwards harpoon space Ag to the power of plus space plus space NO subscript 3 superscript minus
    At cathode Ag+ +e- → Ag
    silver is deposited.
    At anode= NO3- ions move, Dissolve,equivalent amount of Ag concentration AgNO3 remains unchanged.

    ii) At cathode: Ag will be liberated.
       At anode: O2 gas will be liberated.
    iii) At anode:O2 gas will be liberated.
        At cathode: H2 gas will be liberated.
    iv) At cathode: Cu will be liberated
        At anode: Cl2 gas will be liberated.

     

    Question 178
    CBSEENCH11006813

    Depict the galvanic cell in which the reaction Zn(s) + 2Ag+ (aq) → Zn2+(aq) +2Ag(s)
    takes place, Further show:
    (i) which of the electrode is negatively charged,
    (ii) the carriers of the current in the cell, and
    (iii) individual reaction at each electrode.

    Solution

    The galvanic cell will be

    Zn (s),Zn2+ (aq)// Ag+ (aq), Ag (s)

    i)The Zn electrode will be negatively charged.

    ii) Current will flow from silver electrode to zinc electrode.

    Electrons flow from Zn to Cu outside ions carry current in the cell.

    iii) Individual reaction at each electrode will be

    At anode: Oxidation half reaction

    Zn(s) -> Zn2+ +2e-

    At cathode: Reduction half reaction

    2Ag+ (Aq) +2e- -> 2Ag(s)

    Question 182
    CBSEENCH11008246

    (I)H2O2 +O3 --> H2O +2O2
    (II) H2O2 +Ag2O +--> 2Ag +H2O +O2
    Role of hydrogen peroxide in the above reaction is respectively

    • oxidising in (I) and reducing (II)

    • reducing (I) and oxidizing in (II)

    • reducing in (I) and (II)

    • oxidising in (I) and (II)

    Solution

    A.

    oxidising in (I) and reducing (II)

    In the reaction,

    since H2O2 oxidise, O3 into O2 thus it behaves as an oxidising agent.
    the further reaction, in the reaction,

    Here H2O2 reduces Ag2O into metallic silver [Ag] (as oxidation number is reducing from +1 to 0).Thus, H2O2 behaves as a reducing agent. 

    Question 183
    CBSEENCH11008268

    When Cl2 gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from

    • zero to +1 and zero to -5

    • zero to -1 and zero to +5

    • zero to -1 and zero to +5

    • zero to +1 and zero to -3

    Solution

    B.

    zero to -1 and zero to +5

    When chlorine gas reacts with hot and concentrated NaOH solution, it disproportionates into Chloride (Cl-) and Chlorate (ClO3-) ions. 
    3 Cl with 0 on top subscript 2 space plus space stack 6 NaOH space with Hot space and space concentrated below rightwards arrow space 5 Na Cl with negative 1 on top space plus Na Cl with plus 5 on top straight O subscript 3 space plus 3 straight H subscript 2 straight O

    Question 184
    CBSEENCH11008274

    In which of the following compounds, nitrogen exhibits highest oxidation state?

    • N2H4

    • NH3

    • N3H

    • NH2OH

    Solution

    C.

    N3H

    straight a right parenthesis space stack straight N subscript 2 with straight x on top stack straight H subscript 4 with plus 1 on top
2 left parenthesis straight x right parenthesis space plus left parenthesis plus 1 right parenthesis 4 space equals space 0
2 straight x space equals space minus 4
straight x equals negative 2
space straight b right parenthesis space straight N with straight x on top stack straight H subscript 3 with plus 1 on top
straight x plus left parenthesis plus 1 right parenthesis space 3 space equals space 0
straight x equals negative 3

straight c right parenthesis stack straight N subscript 3 with straight x on top straight H with plus 1 on top space
straight x plus left parenthesis plus 1 right parenthesis 3 space equals space 0
straight x equals negative 3

straight d right parenthesis space straight N with straight x on top straight H with plus 1 on top subscript 2 straight O with negative 2 on top straight H with plus 1 on top
straight x plus left parenthesis plus 1 right parenthesis 2 space plus left parenthesis negative 2 right parenthesis space plus left parenthesis plus 1 right parenthesis space equals space 0
straight x plus 2 minus 2 plus 1 space equals 0
straight x plus 1 space equals space
straight x equals negative 1
    Thus, oxidation state of nitrogen is highest in N3H.
    Question 185
    CBSEENCH11008473

    For the redox reaction

    MnO4- + C2O4-2 + H+    Mn2+ + CO2 + H2O

    The correct coefficients of the reactants for the balanced equation are

    • MnO4- C2O42- H+
      16 5 2
    • MnO4- C2O42- H+
      2 5 16
    • MnO4- C2O42- H+
      5 16 2
    • MnO4- C2O42- H+
      2 16 5

    Solution

    B.

    MnO4- C2O42- H+
    2 5 16

    Mn+7O4-    M+2n2+ ; 5e- gain ... (i)C+32O42-    C+4O2 ;2e- loss ... (ii)Multiplying (i) and 2 and (ii)by 5 to balance e-2MnO4- + 5C2O42-  2Mn2+ + 10CO2On balancing charge;2MnO4- + 5C2O42-  + 16H+  2Mn2+ + 10 CO2 + 8 H2O

    Question 186
    CBSEENCH11008485

    when I- is oxidised by MnO4- in an alkaline medium I- converts into

    • IO3-

    • I2

    • IO4-

    • IO-

    Solution

    A.

    IO3-

    When I- is oxidised by MnO4- in alkaline medium, I- converts into IO3-. The reaction occurs as follows,

    2KMnO4 + 2KOH  K2MnO4 + H2O + [O]K2MnO4 + 2H2O    2MnO2 + 4KOH + 2[O]______________________________________K2MnO4 + H2O Alkaline 2MnO2 + KOH + 3[O]KI + 3[O]     KIO3i.e. IO3-    ion

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    2