Algebraic Expressions
Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) 5 − 3t2 (ii) 1 + t + t2 + t3 (iii) x + 2xy+ 3y
(iv) 100m + 1000n (v) − p2q2 + 7pq (vi) 1.2a + 0.8b
(vii) 3.14 r2 (viii) 2 (l + b) (ix) 0.1y + 0.01 y2
Row |
Expression |
Terms |
Coefficients |
(i) |
5 − 3t2 |
− 3t2 |
− 3 |
(ii) |
1 + t + t2 + t3 |
t t2 t3 |
1 1 1 |
(iii) |
x + 2xy + 3y |
x 2xy 3y |
1 2 3 |
(iv) |
100m + 1000n |
100m 1000n |
100 1000 |
(v) |
− p2q2 + 7pq |
− p2q2 7pq |
− 1 7 |
(vi) |
1.2a +0.8b |
1.2a 0.8b |
1.2 0.8 |
(vii) |
3.14 r2 |
3.14 r2 |
3.14 |
(viii) |
2(l + b) |
2l 2b |
2 2 |
(ix) |
0.1y + 0.01y2 |
0.1y 0.01y2 |
0.1 0.01 |
Sponsor Area
(a) Identify terms which contain x and give the coefficient of x.
(i) y2x + y (ii) 13y2− 8yx (iii) x + y + 2
(iv) 5 + z + zx (v) 1 + x+ xy (vi) 12xy2 + 25
(vii) 7x + xy2
(b) Identify terms which contain y2 and give the coefficient of y2.
(i) 8 − xy2 (ii) 5y2 + 7x (iii) 2x2y −15xy2 + 7y2
Classify into monomials, binomials and trinomials.
(i) 4y − 7z (ii) y2 (iii) x + y − xy
(iv) 100 (v) ab − a − b (vi) 5 − 3t
(vii) 4p2q − 4pq2 (viii) 7mn (ix) z2 − 3z + 8
(x) a2 + b2 (xi) z2 + z (xii) 1 + x + x2
Identify like terms in the following:
(a) −xy2, − 4yx2, 8x2, 2xy2, 7y, − 11x2, − 100x, −11yx, 20x2y, −6x2, y, 2xy,3x
(b) 10pq, 7p, 8q, − p2q2, − 7qp, − 100q, − 23, 12q2p2, − 5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
Simplify combining like terms:
(i) 21b − 32 + 7b − 20b
(ii) − z2 + 13z2 − 5z + 7z3 − 15z
(iii) p − (p − q) − q − (q − p)
(iv) 3a − 2b − ab − (a − b + ab) + 3ab + b − a
(v) 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
(vi) (3 y2 + 5y − 4) − (8y − y2 − 4)
Add:
(i) 3mn, − 5mn, 8mn, −4mn
(ii) t − 8tz, 3tz − z, z − t
(iii) − 7mn + 5, 12mn + 2, 9mn − 8, − 2mn − 3
(iv) a + b − 3, b − a + 3, a − b + 3
(v) 14x + 10y − 12xy − 13, 18 − 7x − 10y + 8xy, 4xy
(vi) 5m − 7n, 3n − 4m + 2, 2m − 3mn − 5
(vii) 4x2y, − 3xy2, − 5xy2, 5x2y
(viii) 3p2q2 − 4pq + 5, − 10p2q2, 15 + 9pq + 7p2q2
(ix) ab − 4a, 4b − ab, 4a − 4b
(x) x2 − y2 − 1 , y2 − 1 − x2, 1− x2 − y2
Subtract:
(i) − 5y2 from y2
(ii) 6xy from − 12xy
(iii) (a − b) from (a + b)
(iv) a (b − 5) from b (5 − a)
(v) − m2 + 5mn from 4m2 − 3mn + 8
(vi) − x2 + 10x − 5 from 5x − 10
(vii) 5a2 − 7ab + 5b2 from 3ab − 2a2 −2b2
(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q2 − pq
(a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?
(b) What should be subtracted from 2a + 8b + 10 to get − 3a + 7b + 16?
What should be taken away from 3x2 − 4y2 + 5xy + 20 to obtain
− x2 − y2 + 6xy + 20?
(a) From the sum of 3x − y + 11 and − y − 11, subtract 3x − y − 11.
(b) From the sum of 4 + 3x and 5 − 4x + 2x2, subtract the sum of 3x2 − 5x and − x2 + 2x + 5.
Sponsor Area
Sponsor Area