Areas of Parallelograms and Triangles

Question

BD and CE are the bisectors of ∠B and ∠C of an isosceles triangle ABC with AB = AC. Prove that BD = CE.

Answer

∵ AB = AC
∴ ∠ACB = ∠ABC
| Angles opposite to equal sides of ∆ABC
⇒    2∠2 = 2∠1
| ∵ CE and BD are the bisectors of ∠C and ∠B respectively
⇒    ∠2 = ∠1
⇒    BP = PC    ...(1)
| Sides opposite to equal angles of ∆PBC

In ∆BPE and ∆CPD,
BP = CP    | Proved above
∠EBP = ∠DCP    | Proved above
∠BPE = ∠CPD
| Vertically Opposite Angles
∴ ∆BPE ≅ ∆CPD    | ASA Axiom
PE = PD    | C.P.C.T.
⇒    PD = PE    ...(2)
Adding (1) and (2), we get
BP + PD = PC + PE
⇒    BD = CE.

Sponsor Area