Areas of Parallelograms and Triangles
Given: In ∆ ABC, AD is the perpendicular bisector of BC.
To Prove: A ABC is an isosceles triangle in which AB = AC.
Proof: In ∆ ADB and ∆ADC,
∠ADB = ∠ADC | Each = 90° DB = DC
| ∵ AD is the perpendicular bisector of BC
AD = AD | Common
∴ ∆DB ≅ ∆ADC | By SAS Rule
∴ AB = AC | C.P.C.T.
∴ ∆ABC is an isosceles triangle in which AB = AC.
Sponsor Area
Line I is the bisector of an angle ∠A and B is any point on I. BP and BQ are perpendiculars from B to the arms of ∠A (see figure). Show that:
(i) ∆APB ≅ ∆AQB
(ii) BP = BQ or B is equidistant from the arms of ∠A.
(i) ∆DAP ≅ ∆EBP
(ii) AD = BE.
AB is a line-segment. AX and BY are two equal line-segments drawn on opposite sides of line AB such that AX || BY. If AB and XY intersect each other at P. Prove that:
(i) ∆APX ≅ ∆BPY
(ii) AB and XY bisect each other at P.
Sponsor Area
Sponsor Area