-->

त्रिकोणमिति का परिचय

Question
CBSEHHIMAH10010464

निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित हैं, न्यून कोण है:
सर्वसमिका cosec squared straight A space equals space 1 plus cot squared straight A को लागू करके
fraction numerator cosA minus sinA plus 1 over denominator cosA plus sinA minus 1 end fraction equals cosecA plus cotA

Solution

 straight L. straight H. straight S space equals space fraction numerator begin display style fraction numerator cos space straight A minus sin space straight A plus 1 over denominator sin space straight A end fraction end style over denominator begin display style fraction numerator cos space straight A space plus space sin space straight A space minus 1 over denominator sin space straight A end fraction end style end fraction space equals space fraction numerator cot space straight A space minus 1 plus cosec space straight A over denominator cot space straight A plus 1 minus cosec space straight A end fraction
equals space fraction numerator left parenthesis cot space straight A plus cosec space straight A right parenthesis plus left parenthesis cot squared straight A minus cosec squared straight theta right parenthesis over denominator left parenthesis cotA minus cosecA plus 1 right parenthesis end fraction
equals space fraction numerator left parenthesis cot space straight A space plus space cosec space straight A right parenthesis thin space left parenthesis cot space straight A space minus cosec space straight A space minus 1 right parenthesis over denominator left parenthesis cot space straight A minus cosec space straight A space plus 1 right parenthesis end fraction
equals space cosecA plus cotA
equals space straight R. straight H. straight S.
अत: L.H.S. = R.H.S.

Some More Questions From त्रिकोणमिति का परिचय Chapter