-->

पृष्ठीय क्षेत्रफल और आयतन

Question
CBSEHHIMAH10010398

शंकु के एक छिन्नक के लिए, पूर्व स्पष्ट किये संकेतों का प्रयोग करते हुए, आयतन का निम्न सूत्र सिद्ध कीजिए
आयतन  = 1 third πh open square brackets straight r subscript 1 squared plus straight r subscript 1 space straight r subscript 2 space plus space straight r subscript 2 squared close square brackets
  

Solution

माना ABB1A1 छिन्नक की ऊँचाई h, तिर्यक ऊँचाई तथा वृत्ताकार आधारों की त्रिज्याएँ r1 व r2 हैं 
(जहाँ r1 > r2)।
माना शंकु VAB में,    तिर्यक ऊँचाई (VA) = l1
                          ऊँचाई (VO) = h1
तो शंकु VA1B1 में,
                       तिर्यक ऊँचाई (VA1) = l1 - l
                          ऊँचाई (VO1) = h1 - h

क्योंकि समकोण increment VOA व increment VO subscript 1 straight A subscript 1 समरूप है।
                                VO subscript 1 over VO space equals space fraction numerator straight O subscript 1 straight A subscript 1 over denominator OA end fraction space equals space VA subscript 1 over VA
rightwards double arrow                fraction numerator straight h subscript 1 minus straight h over denominator straight h subscript 1 straight r end subscript end fraction space equals space straight r subscript 2 over straight r subscript 1 space space equals space fraction numerator l subscript 1 minus l over denominator l subscript 1 end fraction
rightwards double arrow               1 minus straight h over straight h subscript 1 space equals space straight r subscript 2 over straight r subscript 1 space equals space 1 minus l over l subscript 1
rightwards double arrow                      straight h over straight h subscript 1 space equals space 1 minus straight r subscript 2 over straight r subscript 1 space straight व space l over l subscript italic 1 
                                   equals space 1 minus straight r subscript 2 over straight r subscript 1
rightwards double arrow                           straight h over straight h subscript 1 space equals space fraction numerator straight r subscript 1 minus straight r subscript 2 over denominator straight r subscript 1 end fraction space straight व space space l over l subscript 1 space equals space fraction numerator straight r subscript 1 minus straight r subscript 2 over denominator straight r subscript 1 end fraction
rightwards double arrow                              straight h subscript 1 space equals space fraction numerator h straight r subscript 1 over denominator straight r subscript 1 minus straight r subscript 2 end fraction space straight व space space straight l subscript 1 space equals space fraction numerator l straight r subscript 1 over denominator straight r subscript 1 minus straight r subscript 2 end fraction     ...(i)
अब,   शंकु VA1B1  की ऊँचाई = h1 - h
                                     equals space fraction numerator hr subscript 1 over denominator straight r subscript 1 minus straight r subscript 2 end fraction minus straight h space equals space fraction numerator hr subscript 2 over denominator straight r subscript 1 minus straight r subscript 2 end fraction            ...(ii)
शंकु VA1B1  की तिर्यक ऊँचाई  = l1 - l
                                     equals space fraction numerator l straight r subscript 1 over denominator straight r subscript 1 minus straight r subscript 2 end fraction minus l space equals space fraction numerator l straight r subscript 2 over denominator straight r subscript 1 minus straight r subscript 2 end fraction             ...(iii)
छिन्नक का आयतन  = (शंकु VAB - शंकु VA1B1) का आयतन
                         equals space 1 third πr subscript 1 squared straight h subscript 1 space minus space 1 third πr subscript 2 squared left parenthesis straight h subscript 1 minus straight h right parenthesis
equals space 1 third straight pi left square bracket straight h subscript 1 straight r subscript 1 squared space minus space left parenthesis straight h subscript 1 minus straight h right parenthesis straight r subscript 2 squared right square bracket
                         equals straight pi over 3 open square brackets fraction numerator hr subscript 1 over denominator straight r subscript 1 minus straight r subscript 2 end fraction cross times straight r subscript 1 squared space minus space fraction numerator hr subscript 2 over denominator straight r subscript 1 minus straight r subscript 2 end fraction cross times straight r subscript 2 squared close square brackets [समीकरण (i) व (ii) से]
                           equals straight pi over 3 open square brackets fraction numerator straight h over denominator straight r subscript 1 minus straight r subscript 2 end fraction left parenthesis straight r subscript 1 cubed space minus space straight r subscript 2 cubed right parenthesis close square brackets
equals space straight pi over 3 straight h open square brackets fraction numerator 1 over denominator straight r subscript 1 minus straight r subscript 2 end fraction left parenthesis straight r subscript 1 minus straight r subscript 2 right parenthesis space left parenthesis straight r subscript 1 squared plus straight r subscript 1 straight r subscript 2 plus straight r subscript 2 squared right parenthesis close square brackets
equals space 1 third πh left square bracket straight r subscript 1 squared space plus space straight r subscript 1 straight r subscript 2 space plus straight r subscript 2 squared right square bracket 



                                   
                                

Some More Questions From पृष्ठीय क्षेत्रफल और आयतन Chapter