-->

त्रिकोणमिति का परिचय

Question
CBSEHHIMAH10010249

निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित हैं, न्यून कोण है:
fraction numerator sinθ minus 2 sin cubed straight theta over denominator 2 cos cubed straight theta minus cosθ end fraction equals space space tanθ

Solution
straight L. straight H. straight S. equals fraction numerator sinθ minus 2 sin cubed straight theta over denominator 2 cos cubed straight theta minus cosθ end fraction
           equals fraction numerator sinθ left parenthesis 1 minus 2 sin squared straight theta right parenthesis over denominator cosθ left parenthesis 2 cos squared straight theta minus 1 right parenthesis end fraction
                            open square brackets because space sin squared straight theta space plus space cos squared straight theta space equals space 1 close square brackets
  equals sinθ over cosθ cross times open square brackets fraction numerator left square bracket 1 minus 2 left parenthesis 1 minus cos squared straight theta right parenthesis right square bracket over denominator 2 cos squared straight theta minus 1 end fraction close square brackets
equals space tanθ space. space open square brackets fraction numerator 1 minus 2 plus 2 cos squared straight theta over denominator 2 cos squared straight theta minus 1 end fraction close square brackets
equals space tanθ space cross times space open parentheses fraction numerator 2 space cos squared straight theta minus 1 over denominator 2 space cos squared space straight theta space minus 1 end fraction close parentheses
equals space tanθ space equals space straight R. straight H. straight S.
अत:  L.H.S. = R.H.S.