-->

त्रिभुज

Question
CBSEHHIMAH10010126

किसी त्रिभुज ABC के शीर्ष A से BC पर डाला गया लम्ब BC को बिंदु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है। सिद्ध कीजिए कि 2AB2=2AC2+BC2 है।

Solution

∵             DB = 3CD        [दिया है]
अब,         BC = CD + DB
rightwards double arrow          BC = CD+ 3CD
rightwards double arrow          BC = 4CD
rightwards double arrow          CD equals 1 fourth BC
समकोण ΔADB में,
            AB2 = AD2 + DB2
rightwards double arrow space space space space space space space space space AB squared space equals AD squared plus left parenthesis BC minus CD right parenthesis squared
rightwards double arrow space space space space space space space space space AB squared space equals space AD squared plus BC squared plus CD squared minus 2 BC. CD
rightwards double arrow space space space space space space space space space AB squared space space equals space AC squared plus BC squared minus BC.1 fourth BC
rightwards double arrow space space space space space space space space space AB squared space equals space AC squared plus BC squared minus BC squared over 2
rightwards double arrow space space space space space space space space AB squared space equals space fraction numerator 2 AC squared plus 2 BC squared minus BC squared over denominator 2 end fraction
rightwards double arrow     AB squared space equals space fraction numerator 2 AC squared plus BC squared over denominator 2 end fraction
rightwards double arrow   2 AB squared space equals space 2 AC squared plus BC squared

Some More Questions From त्रिभुज Chapter