-->

Wave Optics

Question
CBSEENPH12039814

An electron of mass m and a photon have the same energy E. The ratio of de-Broglie wavelength associated with them is,

  • open parentheses fraction numerator straight E over denominator 2 straight m end fraction close parentheses to the power of begin inline style bevelled 1 half end style end exponent
  • straight c space left parenthesis 2 mE right parenthesis to the power of begin inline style bevelled 1 half end style end exponent
  • 1 over straight c open parentheses fraction numerator 2 m over denominator E end fraction close parentheses to the power of begin inline style bevelled 1 half end style end exponent
  • 1 over straight c open parentheses fraction numerator E over denominator 2 m end fraction close parentheses to the power of begin inline style bevelled 1 half end style end exponent

Solution

D.

1 over straight c open parentheses fraction numerator E over denominator 2 m end fraction close parentheses to the power of begin inline style bevelled 1 half end style end exponent

Given that electron has a mass m.
De-Broglie wavelength for an electron will be given as,

straight lambda subscript straight e space equals space straight h over straight p space space space space space space space space space... space left parenthesis straight i right parenthesis
where,
h is the Planck's constant, and
p is the linear momentum of electron
Kinetic energy of electron is given by, E = fraction numerator straight p squared over denominator 2 straight m end fraction
rightwards double arrow space space space space straight p equals space square root of 2 mE end root space space space space space space space space space space space space space space space... space left parenthesis ii right parenthesis
From equation (i) and (ii), we have
straight lambda subscript straight e space equals space fraction numerator straight h over denominator square root of 2 mE end root end fraction space space space space space space space space space space space space... space left parenthesis iii right parenthesis
Energy of a photon can be given as,
straight E space equals space straight h space straight nu
rightwards double arrow space straight E space equals space hc over straight lambda subscript straight P

rightwards double arrow space space straight lambda subscript straight P space equals space hc over straight E space space space space space space space space space space... space left parenthesis iv right parenthesis
Hence, straight lambda subscript straight P is the de-Broglie wavelength of photon.
Now, dividing equation (iii) by (iv), we get
space space space space space space straight lambda subscript straight e over straight lambda subscript straight P space equals space fraction numerator h over denominator square root of 2 m E end root end fraction. fraction numerator E over denominator h c end fraction

rightwards double arrow space space space straight lambda subscript straight e over straight lambda subscript straight P space equals space 1 over straight c. square root of fraction numerator straight E over denominator 2 straight m end fraction end root

Some More Questions From Wave Optics Chapter