-->

Wave Optics

Question
CBSEENPH12039338

Calculate the de-Broglie wavelength of the electron orbitting in the n=2 state of hydrogen atom.

Solution

Given,
n =2
K.E for the second state, Ek,
 fraction numerator 13.6 over denominator straight n squared end fraction space equals space fraction numerator 13.6 over denominator 4 end fraction
space space space space space space space space space space space equals space 3.4 space x space 1.6 space x space 10 to the power of negative 19 end exponent space J
De-Broglie wavelength, straight lambda space equals space fraction numerator straight h over denominator square root of 2 mE subscript straight k end root end fraction
   equals space fraction numerator 6.63 space straight x space 10 to the power of negative 34 end exponent over denominator square root of 2 space straight x space 9.1 space straight x space 10 to the power of negative 31 end exponent straight x 3.4 straight x 1.6 straight x 10 to the power of negative 19 end exponent end root end fraction

equals space 0.067 space straight m

Some More Questions From Wave Optics Chapter