-->

Wave Optics

Question
CBSEENPH12039301

(a) Calculate the distance of an object of height h from a concave mirror of radius of curvature 20 cm, so as to obtain a real image of magnification 2. Find the location of image also.

(b) Using mirror formula, explain why does a convex mirror always produce a virtual image.

Solution

a) 
Given, 
Radius of curvature, R = 20 cm
So, focal length, f = R/2 = - 10 cm
Since the image obtained is real, therefore magnification of the image, m = -2 
Now, using the formula, 

space space space space straight m space equals space fraction numerator negative straight v over denominator straight u end fraction
rightwards double arrow space minus 2 space equals space fraction numerator negative straight v over denominator straight u end fraction space
rightwards double arrow space straight v space equals space 2 straight u space

Using space the space mirror space formula comma space

1 over straight f space equals space 1 over straight v space plus space 1 over straight u

space space space space space equals space fraction numerator 1 over denominator 2 straight u end fraction space plus space space 1 over straight u space equals space fraction numerator 3 over denominator 2 straight u end fraction
rightwards double arrow space straight u space equals space begin inline style 3 over 2 end style space straight f space
space space space space space space space space space equals space 3 over 2 space straight x space left parenthesis negative 10 right parenthesis space
space space space space space space space space space equals space minus 15 space cm space

Therefore comma space

straight v space equals space space 2 straight u space equals space minus 30 space cm
Therefore, the distance of the object is 15 cm in front of the mirror and the position of the image is  30 cm, formed in front of the mirror. 
b) 
For a convex mirror, 
Focal length, f > 0 
Position of the object, u < 0
Using mirror formula, we have
space space space space space space space space 1 over straight f space equals space 1 over v space plus space 1 over u

rightwards double arrow space space 1 over v space equals space space space 1 over straight f space minus space 1 over u

rightwards double arrow space 1 over v space greater than space 0 space

therefore space straight v thin space greater than space 0 space
That is, the image formed by a convex lens is always behind the mirror and hence is virtual. 

Some More Questions From Wave Optics Chapter