-->

Wave Optics

Question
CBSEENPH12039212

(a) In Young's double slit experiment, describe briefly how bright and dark fringes are obtained on the screen kept in front of a double slit. Hence obtain the expression for the fringe width.

(b) The ratio of the intensities at minima to the maxima in the Young's double slit experiment is 9: 25. Find the ratio of the widths of the two slits.

Solution

a)
Let S1 and S2 be two coherent sources separated by a distance d.

Let the distance of the screen from the coherent sources be D. Let point M be the foot of the perpendicular drawn from O, which is the midpoint of S1 and S2 on the screen. Obviously point M is equidistant from S1 and S2. Therefore the path difference between the two waves at point M is zero. Thus the point M has the maximum intensity.

Now, Consider a point P on the screen at a distance y from M. Draw S1N perpendicular from S1 on S2 P. 

The path difference between two waves reaching at P from S1 and S2 is given by, 
increment space equals space S subscript 2 P minus S subscript 1 P space almost equal to space S subscript 2 N 
Since, D >> d, so angle S subscript 2 S subscript 1 N space equals space theta is very small.
angle S subscript 2 S subscript 1 N space equals space angle M O P space equals space theta 
In space increment space S subscript 1 S subscript 2 N italic comma

italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space sin space theta space equals space fraction numerator S subscript italic 2 N over denominator S subscript italic 1 S subscript italic 2 end fraction
I n italic space italic increment M O P italic comma italic space

italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space sin space theta space equals space theta space equals space tan space theta italic space

italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space fraction numerator S subscript italic 2 N over denominator S subscript italic 1 S subscript italic 2 end fraction space equals space fraction numerator M P over denominator O M end fraction
italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space S subscript italic 2 N space equals space S subscript italic 1 S subscript italic 2 space cross times space fraction numerator M P over denominator O M end fraction space equals space d. y over D

Therefore comma space

Path space difference comma space increment equals S subscript 2 P minus S subscript 1 P space equals S subscript 2 N space equals space fraction numerator y d over denominator D end fraction italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic. italic. italic. italic space italic left parenthesis italic 1 italic right parenthesis

F o r italic space b r i g h t italic space f r i n g e italic comma italic space w e italic space h a v e italic space

fraction numerator y d over denominator D end fraction equals space n lambda italic comma italic space n italic space italic equals italic space italic 0 italic comma italic 1 italic comma italic 2 italic comma italic 3 italic comma italic. italic. italic.

T h e r e f o r e italic comma italic space

italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space italic space y subscript n equals fraction numerator n D lambda over denominator d end fraction  
Error converting from MathML to accessible text.

For dark fringe, path difference is an odd multiple of half wavelength.
So, we have  
Error converting from MathML to accessible text. 

Let, straight y subscript straight n plus 1 end subscript straight space and straight space straight y subscript straight n italic spacebe the distance of two consecutive fringes. Then, we have
y subscript n plus 1 end subscript space equals space left parenthesis n plus 1 right parenthesis fraction numerator D lambda over denominator d end fraction a n d space space y subscript n equals fraction numerator n D lambda over denominator d end fraction

So comma space fringe space width space is comma space
space y subscript n plus 1 end subscript italic space minus space space y subscript n space end subscript equals space left parenthesis n plus 1 right parenthesis fraction numerator D lambda over denominator d end fraction minus fraction numerator n D lambda over denominator d end fraction equals fraction numerator D lambda over denominator d end fraction 

Fringe width is same for both bright and dark fringe.

b)
Give, ratio of minima to maxima intensity is given by, 9:25

That is, 
I subscript m i n end subscript over I subscript m a x end subscript equals space fraction numerator left parenthesis a subscript 1 minus a subscript 2 right parenthesis squared over denominator left parenthesis a subscript 1 plus a subscript 2 right parenthesis squared end fraction equals space 9 over 25 
rightwards double arrow straight space fraction numerator straight a subscript 1 minus straight a subscript 2 over denominator straight a subscript 1 plus straight a subscript 2 end fraction equals straight space 3 over 5 semicolon

where space straight a space is space the space amplitude space of space the space slit space and space straight I space the space intensity.

So comma space
space space space space space straight a subscript 1 over straight a subscript 2 equals straight space 4 over 1
fraction numerator straight space straight w subscript 1 over denominator straight w subscript 2 end fraction equals straight space fraction numerator left parenthesis straight a subscript 1 right parenthesis squared over denominator left parenthesis straight a subscript 2 right parenthesis end subscript squared end fraction equals straight space 16 over 1 semicolon space is space the space ratio space of space the

space width space of space the space slit.