-->

Wave Optics

Question
CBSEENPH12039244

a) In Young’s double slit experiment, derive the condition for (i) constructive interference and

(ii) Destructive interference at a point on the screen.

(b) A beam of light consisting of two wavelengths, 800 nm and 600 nm is used to obtain the interference fringes in a Young’s double slit experiment on a screen placed 1.4 m away. If the two slits are separated by 0.28 mm, calculate the least distance from the central bright maximum where the bright fringes of the two wavelengths coincide.

Solution

a)
Conditions of constructive interference and destructive interference.

Consider two coherent waves travelling in the same direction along a straight line.

Frequency of each wave is given by fraction numerator straight omega over denominator 2 straight pi end fraction

Amplitude of electric field vectors are a1 and a2 rspectively.

Wave equation is represented by, 
straight y subscript 1 space equals space straight a subscript 1 space sin space straight omega space straight t space space space space space space space space space space space space space space space space space... space left parenthesis straight i right parenthesis

straight y subscript 2 space equals space straight a subscript 2 space sin space left parenthesis ωt space plus space straight ϕ right parenthesis space space space space space space space space space... space left parenthesis ii right parenthesis thin space

Using space the space theory space of space superposition comma space

straight y space equals space straight y subscript 1 space plus space straight y subscript 2 space space space space space space space space space space space space space space space space space space space space space... space left parenthesis iii right parenthesis thin space

Here comma space straight y subscript 1 space and space straight y subscript 2 space are space the space points space of space electric space field. space

Putting space values space from space left parenthesis ii right parenthesis space and space left parenthesis iii right parenthesis space in space left parenthesis straight i right parenthesis comma space we space have

straight y space equals space straight a subscript 1 space sin space straight omega space straight t space plus space straight a subscript 2 space sin space space left parenthesis ωt space plus space straight ϕ right parenthesis space space

Now space using space trignometric space identities comma space we space have 
sin space left parenthesis omega t space plus space ϕ right parenthesis thin space equals space sin space ωt space cos space straight ϕ space plus space cos space ωt space sin space straight ϕ

we space get comma

straight y space equals space straight a subscript 1 space sin space ωt space plus space straight a subscript 2 space left parenthesis sin space ωt space cos space straight ϕ space plus space cos space ωt space sin space straight ϕ right parenthesis

space space equals space left parenthesis straight a subscript 1 space plus space straight a subscript 2 space cos space straight ϕ right parenthesis thin space sin space straight omega space straight t space plus space left parenthesis straight a subscript 2 space sin space straight ϕ space right parenthesis space cos space ωt space space space space space space space space... space left parenthesis iv right parenthesis

Assume comma space
space straight a subscript 1 space plus space space straight a subscript 2 space cos space straight ϕ space equals space straight A space cos space straight theta
and
space space space space space space space space space space space straight a subscript 2 space sin space straight ϕ space space equals space straight A space sin space straight theta

So comma space eqn. space left parenthesis iv right parenthesis thin space gives comma space

straight y space equals space straight A space cos space straight theta thin space sin space straight omega space straight t space plus straight A space sin space straight theta space space cos space ωt space

space space equals space straight A space sin space left parenthesis ωt space plus space straight ϕ right parenthesis

Amplitude space of space the space resultant space wave space is space given space by comma space

Amplitude comma space straight A space equals space square root of straight a subscript 1 squared space plus space straight a subscript 2 squared space plus space 2 straight a subscript 1 straight a subscript 2 cos space straight ϕ end root space space

Intensity of the wave is proportional to the amplitude of the wave.

Thus, Intensity of the resultant wave is given by, 
straight I thin space equals straight A squared space equals space straight a subscript 1 squared space plus space straight a subscript 2 squared space plus space 2 straight a subscript 1 straight a subscript 2 space end subscript cos space straight ϕ

Constructive interference: For maximum intensity at any point, cos  = +1

So, maximum intensity is, 

Path difference is, 

Constructive interference is obtained when the path difference between the waves is an integral multiple of straight lambda 

Destructive Interference: For minimum intensity at any point, cos  = -1

Phase difference is given by, 
straight ϕ space equals space straight pi comma space 3 straight pi comma space 5 straight pi comma space 7 straight pi comma....

space space equals left parenthesis 2 straight n space minus 1 right parenthesis space straight pi comma space straight n space equals space 1 comma 2 comma 3 comma...

Minimum space intensity space is comma space

straight I subscript min space equals space straight a subscript 1 squared space plus space straight a subscript 2 squared space minus space 2 space straight a subscript 1 space straight a subscript 2 space equals space left parenthesis straight a subscript 1 space minus space straight a subscript 2 right parenthesis squared  
Path difference is, 

In destructive interference, path difference is odd multiple of  straight lambda over 2.
b)
Given,
 
d = 0.28 mm = 0.28 x 10-3 m
As, straight lambda subscript 1 space greater than space straight lambda subscript 2

If n1 = n then, n2 = n+1