Sponsor Area

Wave Optics

Question
CBSEENPH12039191

Using Rutherford model of the atom, derive the expression for the total energy of the electron in hydrogen atom. What is the significance of total negative energy possessed by the electron?

OR

Using Bohr’s postulates of the atomic model derive the expression for radius of nth electron orbit. Hence obtain the expression for Bohr’s radius. 

Solution

According to Rutherford’s model, we have
mv squared over straight r space equals space fraction numerator 1 over denominator 4 pi epsilon subscript o end fraction fraction numerator z e squared over denominator r squared end fraction

rightwards double arrow space mv squared space equals space fraction numerator 1 over denominator 4 pi epsilon subscript o end fraction fraction numerator z e squared over denominator r end fraction

Therefore comma space

Total space energy space equals space straight P. straight E space plus space straight K. straight E

straight T. straight E. space equals space minus fraction numerator 1 over denominator 4 πε subscript straight o end fraction ze squared over straight r space plus space 1 half mv squared

space space space space space space space equals space minus 1 half. fraction numerator 1 over denominator 4 πε subscript straight o end fraction space ze squared over straight r

space space space space space space space equals space minus space. fraction numerator 1 over denominator 8 πε subscript straight o end fraction ze squared over straight r 
Energy is negative implies that the electron –nucleus is a bound or attractive system.

                                                           OR

According to the Bohr’s atomic model, electrons revolve around the nucleus only in those orbits for which the angular momentum is an integral multiple of  fraction numerator straight h over denominator 2 straight pi end fraction.
So, as per Bohr’s postulate, we have
mvr space equals space fraction numerator nh over denominator 2 straight pi end fraction space

Therefore comma space

mv squared over straight r space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction ze squared over straight r squared

mvr space equals fraction numerator nh over denominator 2 straight pi end fraction

therefore space space straight m squared straight v squared straight r squared space equals space fraction numerator straight n squared straight h squared over denominator 4 straight pi squared end fraction

This space implies comma

straight r space equals space fraction numerator straight epsilon subscript straight o straight n squared straight h squared over denominator πze squared straight m end fraction 
This is the required expression for Bohr's radius. 

Sponsor Area