-->

Wave Optics

Question
CBSEENPH12039052

(a) (i) 'Two independent monochromatic sources of light cannot produce a sustained interference pattern'. Give reason.

(ii) Light waves each of amplitude "a" and frequency "ω", emanating from two coherent light sources superpose at a point. If the displacements due to these waves is given by y1 = a cos ωt and y2 = a cos(ωt + ϕ) where ϕ is the phase difference between the two, obtain the expression for the resultant intensity at the point.

(b) In Young's double slit experiment, using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ, is K units. Find out the intensity of light at a point where path difference is λ/3.

Solution

(a)
(i) The condition for the sustained interference is that both the sources must be coherent (i.e. they must have the same wavelength and the same frequency, and they must have the same phase or constant phase difference).
Two sources are monochromatic if they have the same frequency and wavelength. Since they are independent, i.e. they have different phases with irregular difference, they are not coherent sources.
ii) 

Let the displacement of the waves from the sources S1 and S2 at point P on the screen at any time t be given by: 

y1 = a cos ωt

y2 = a cos (ωt + Φ)

where, Φ is the constant phase difference between the two waves.
By the superposition principle, the resultant displacement at point P is given by:

y = y1 + y2

y = a cos ωt a cos (ωt + Φ)

 

  =2 a[cos cos Error converting from MathML to accessible text. 
y = 2 acos open parentheses fraction numerator bold italic omega bold italic t plus bold italic ϕ over denominator 2 end fraction close parenthesescos open parentheses bold italic ϕ over 2 close parentheses              ... (i) 
 Let space 2 space straight a space cos space open parentheses straight ϕ over 2 close parentheses space equals space straight A                        ... (2)

Then, equation (i) becomes:
y = A cos (ωt+straight space bold italic ϕ over 2 right parenthesis

Now, we have:

 straight A to the power of 2 space end exponent equals space 4 space straight a squared space cos 2 space left parenthesis straight ϕ divided by 2 right parenthesis space space space space space space space space                    ... (3)

The intensity of light is directly proportional to the square of the amplitude of the wave. The intensity of light at point P on the screen is given by:
I = 4 a2 cos2 (bold italic ϕ over 2)                                  ... (4) 

(b) Wavelength of monochromatic light = straight lambda

Path difference = bold italic lambda divided by 3.
So, phase difference,straight phi space equals space fraction numerator 2 straight pi over denominator straight lambda end fraction cross times straight lambda space equals 2 straight space straight pi 

Intensity of light = K units
Intensity is given by, I = straight I space equals space 4 space straight I subscript space 0 end subscript cos to the power of space 2 end exponent bevelled straight ϕ over 2
When path difference is bold italic lambda divided by 3 comma space phase space difference space becomes space straight phi space equals space fraction numerator 2 straight pi over denominator 3 end fraction
Intensity of light, I’=4 straight space straight I subscript straight space 0 end subscript cos to the power of straight space 2 end exponent bevelled straight ϕ over 2 = 4 space straight I subscript space 0 end subscript cos to the power of space 2 end exponent straight pi over 3 equals straight I subscript straight o
rightwards double arrow bold I apostrophe space equals space bold K over 4 italic comma italic space i s italic space t h e italic space n e w italic space i n t e n s i t y italic space o f italic space l i g h t italic. italic space