-->

Wave Optics

Question
CBSEENPH12038998

A proton and an α-particle have the same de-Broglie wavelength. Determine the ratio of

(i) their accelerating potentials
(ii) their speeds.

Solution

De-broglie wavelength of the particle is given by, 
lambda space equals space h over p space equals space fraction numerator h over denominator m v end fraction equals fraction numerator h over denominator square root of 2 m q V end root end fraction;
where, V= Accelerating potential and v is the speed of the particle. 
Given that, the de-broglie wavelength is same for both proton and a-particle.
Charge on straight alpha particle = 2 qp;
Mass of straight alpha-particle = 4 mp 
Charge on proton= qp
Mass of proton =  mp 
lambda subscript a space equals space lambda subscript p
rightwards double arrow space fraction numerator h over denominator square root of 2 m subscript alpha q subscript alpha V subscript alpha end root end fraction space equals space fraction numerator h over denominator square root of 2 m subscript p q subscript p V subscript p end root end fraction

italic rightwards double arrow italic space italic space m subscript alpha q subscript alpha V subscript alpha space equals space m subscript p q subscript p V subscript p

rightwards double arrow space space V subscript p over V subscript alpha space equals space fraction numerator m subscript alpha q subscript alpha over denominator m subscript p q subscript p end fraction equals space fraction numerator italic 4 space m subscript p over denominator m subscript p end fraction cross times fraction numerator italic 2 q subscript p over denominator q subscript p end fraction space equals space 2 over 1

2 : 1 is the required ratio of the accelerating potential.
Also, 
lambda subscript a space equals space lambda subscript p

rightwards double arrow space space space fraction numerator h over denominator m subscript alpha nu subscript alpha end fraction space equals space fraction numerator h over denominator m subscript p nu subscript p end fraction

rightwards double arrow space space space space space space space space v subscript p over v subscript alpha space equals space m subscript alpha over m subscript p equals space fraction numerator italic 4 space m subscript p over denominator m subscript p end fraction space equals space italic 4 over italic 1
4 : 1 is the required ratio of the speed of proton to speed of alpha-particle.  

Some More Questions From Wave Optics Chapter